

Lecture Notes in Computer Science 3322
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Reinhard Klette Jovisa Žunić (Eds.)

Combinatorial
Image Analysis

10th International Workshop, IWCIA 2004
Auckland, New Zealand, December 1-3, 2004
Proceedings

13

Volume Editors

Reinhard Klette
University of Auckland
Tamaki Campus, CITR
Glen Innes, Morrin Road, Building 731, Auckland 1005, New Zealand
E-mail: r.klette@cs.auckland.ac.nz

Jovisa Žunić
Exeter University
Computer Science Department
Harrison Building, Exeter EX4 4QF, U.K.
E-mail: J.Zunic@ex.ac.uk

Library of Congress Control Number: 2004115523

CR Subject Classification (1998): I.4, I.5, I.3.5, F.2.2, G.2.1, G.1.6

ISSN 0302-9743
ISBN 3-540-23942-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11360971 06/3142 5 4 3 2 1 0

Preface

This volume presents the proceedings of the 10th International Workshop on
Combinatorial Image Analysis, held December 1–3, 2004, in Auckland, New
Zealand. Prior meetings took place in Paris (France, 1991), Ube (Japan, 1992),
Washington DC (USA, 1994), Lyon (France, 1995), Hiroshima (Japan, 1997),
Madras (India, 1999), Caen (France, 2000), Philadelphia (USA, 2001), and Pa-
lermo (Italy, 2003). For this workshop we received 86 submitted papers from
23 countries. Each paper was evaluated by at least two independent referees.
We selected 55 papers for the conference. Three invited lectures by Vladimir
Kovalevsky (Berlin), Akira Nakamura (Hiroshima), and Maurice Nivat (Paris)
completed the program.

Conference papers are presented in this volume under the following topical
part titles: discrete tomography (3 papers), combinatorics and computational
models (6), combinatorial algorithms (6), combinatorial mathematics (4), dig-
ital topology (7), digital geometry (7), approximation of digital sets by curves
and surfaces (5), algebraic approaches (5), fuzzy image analysis (2), image seg-
mentation (6), and matching and recognition (7). These subjects are dealt with
in the context of digital image analysis or computer vision.

The editors thank all the referees for their big effort in reading and evaluating
the submissions and maintaining the high standard of IWCIA conferences. We
are also thankful to the sponsors of IWCIA 2004: the University of Auckland, in
particular its Tamaki campus, for hosting the workshop, IAPR (the International
Association for Pattern Recognition) for advertising the event, the Royal Society
of New Zealand for its financial support, and CITR (the Centre for Image Tech-
nology and Robotics at Tamaki campus) and the Computer Science Department
of the University of Auckland for providing the day-by-day support during the
organizing the event. Also, many thanks to the members of the organizing and
scientific committees, which made this conference possible.

September 2004 Reinhard Klette and Jovǐsa Žunić

Organization

IWCIA 2004 was organized by the CITR—Centre for Image Technology and
Robotics at Tamaki Campus—and the Computer Science Department, of the
University of Auckland, New Zealand.

Executive Committee

Conference Co-chairs Reinhard Klette (University of Auckland)
Jovǐsa Žunić (Exeter University)

Scientific Secretariat Patrice Delmas
Gisela Klette

Organizing Committee Penny Barry
Cliff Hawkis
Reinhard Klette (Chair)
Cecilia Lourdes

Referees

E. Andres
J. Baltes
R. Barneva
G. Bertrand
G. Borgefors
V. Brimkov
T. Buelow
C. Calude
J.-M. Chassery
C.-Y. Chen
D. Coeurjolly
M. Conder
I. Debled-Rennesson
P. Delmas
U. Eckhardt
V. di Gesu

A. Hanbury
G. Herman
A. Imiya
K. Inoue
K. Kawamoto
N. Kiryati
C. Kiselman
R. Klette
T.Y. Kong
V. Kovalevski
R. Kozera
W. Kropatsch
A. Kuba
L.J. Latecki
B. MacDonald
M. Moell

K. Morita
I. Nystrom
R. Reulke
J.B.T.M. Roerdink
C. Ronse
B. Rosenhahn
R. Strand
M. Tajine
G. Tee
K. Voss
T. Wei
J. Weickert
G. Woeginger
Q. Zang
J. Žunić

Sponsoring Institutions

University of Auckland, New Zealand
IAPR, International Association for Pattern Recognition
Royal Society of New Zealand

Table of Contents

Discrete Tomography

Binary Matrices Under the Microscope: A Tomographical Problem
Andrea Frosini, Maurice Nivat . 1

On the Reconstruction of Crystals Through Discrete Tomography
K.J. Batenburg, W.J. Palenstijn . 23

Binary Tomography by Iterating Linear Programs from Noisy
Projections

Stefan Weber, Thomas Schüle, Joachim Hornegger,
Christoph Schnörr . 38

Combinatorics and Computational Models

Hexagonal Pattern Languages
K.S. Dersanambika, K. Krithivasan, C. Martin-Vide,
K.G. Subramanian . 52

A Combinatorial Transparent Surface Modeling from Polarization
Images

Mohamad Ivan Fanany, Kiichi Kobayashi, Itsuo Kumazawa 65

Integral Trees: Subtree Depth and Diameter
Walter G. Kropatsch, Yll Haxhimusa, Zygmunt Pizlo 77

Supercover of Non-square and Non-cubic Grids
Troung Kieu Linh, Atsushi Imiya, Robin Strand, Gunilla Borgefors . . 88

Calculating Distance with Neighborhood Sequences in the Hexagonal
Grid

Benedek Nagy . 98

On Correcting the Unevenness of Angle Distributions Arising from
Integer Ratios Lying in Restricted Portions of the Farey Plane

Imants Svalbe, Andrew Kingston . 110

VIII Table of Contents

Combinatorial Algorithms

Equivalence Between Regular n-G-Maps and n-Surfaces
Sylvie Alayrangues, Xavier Daragon, Jacques-Oliver Lachaud,
Pascal Lienhardt . 122

Z-Tilings of Polyominoes and Standard Basis
Olivier Bodini, Bertrand Nouvel . 137

Curve Tracking by Hypothesis Propagation and Voting-Based
Verification

Kazuhiko Kawamoto, Kaoru Hirota . 151

3D Topological Thinning by Identifying Non-simple Voxels
Gisela Klette, Mian Pan . 164

Convex Hulls in a 3-Dimensional Space
Vladimir Kovalevsky, Henrik Schulz . 176

A Near-Linear Time Algorithm for Binarization of Fingerprint Images
Using Distance Transform

Xuefeng Liang, Arijit Bishnu, Tetsuo Asano . 197

Combinatorial Mathematics

On Recognizable Infinite Array Languages
S. Gnanasekaran, V.R. Dare . 209

On the Number of Digitizations of a Disc Depending on Its Position
Martin N. Huxley, Jovǐsa Žunić . 219

On the Language of Standard Discrete Planes and Surfaces
Damien Jamet . 232

Characterization of Bijective Discretized Rotations
Bertrand Nouvel, Eric Rémila . 248

Digital Topology

Magnification in Digital Topology
Akira Nakamura . 260

Curves, Hypersurfaces, and Good Pairs of Adjacency Relations
Valentin E. Brimkov, Reinhard Klette . 276

Table of Contents IX

A Maximum Set of (26,6)-Connected Digital Surfaces
J.C. Ciria, A. De Miguel, E. Domı́nguez, A.R. Francés,
A. Quintero . 291

Simple Points and Generic Axiomatized Digital Surface-Structures
Sébastien Fourey . 307

Minimal Non-simple Sets in 4-Dimensional Binary Images with
(8,80)-Adjacency

T. Yung Kong, Chyi-Jou Gau . 318

Jordan Surfaces in Discrete Antimatroid Topologies
Ralph Kopperman, John L. Pfaltz . 334

How to Find a Khalimsky-Continuous Approximation of a Real-Valued
Function

Erik Melin . 351

Digital Geometry

Algorithms in Digital Geometry Based on Cellular Topology
V. Kovalevsky . 366

An Efficient Euclidean Distance Transform
Donald G. Bailey . 394

Two-Dimensional Discrete Morphing
Isameddine Boukhriss, Serge Miguet, Laure Tougne 409

A Comparison of Property Estimators in Stereology and Digital
Geometry

Yuman Huang, Reinhard Klette . 421

Thinning by Curvature Flow
Atusihi Imiya, Masahiko Saito, Kiwamu Nakamura 432

Convex Functions on Discrete Sets
Christer O. Kiselman . 443

Discrete Surface Segmentation into Discrete Planes
Isabelle Sivignon, Florent Dupont, Jean-Marc Chassery 458

X Table of Contents

Approximation of Digital Sets by Curves and Surfaces

Sketch-Based Shape Retrieval Using Length and Curvature of 2D
Digital Contours

Abdolah Chalechale, Golshah Naghdy, Prashan Premaratne 474

Surface Smoothing for Enhancement of 3D Data Using Curvature-Based
Adaptive Regularization

Hyunjong Ki, Jeongho Shin, Junghoon Jung, Seongwon Lee,
Joonki Paik . 488

Minimum-Length Polygon of a Simple Cube-Curve in 3D Space
Fajie Li, Reinhard Klette . 502

Corner Detection and Curve Partitioning Using Arc-Chord Distance
Majed Marji, Reinhard Klette, Pepe Siy . 512

Shape Preserving Sampling and Reconstruction of Grayscale Images
Peer Stelldinger . 522

Algebraic Approaches

Comparison of Nonparametric Transformations and Bit Vector
Matching for Stereo Correlation

Bogus�law Cyganek . 534

Exact Optimization of Discrete Constrained Total Variation
Minimization Problems

Jérôme Darbon, Marc Sigelle . 548

Tensor Algebra: A Combinatorial Approach to the Projective Geometry
of Figures

David N.R. McKinnon, Brian C. Lovell . 558

Junction and Corner Detection Through the Extraction and Analysis
of Line Segments

Christian Perwass . 568

Geometric Algebra for Pose Estimation and Surface Morphing in
Human Motion Estimation

Bodo Rosenhahn, Reinhard Klette . 583

Table of Contents XI

Fuzzy Image Analysis

A Study on Supervised Classification of Remote Sensing Satellite Image
by Bayesian Algorithm Using Average Fuzzy Intracluster Distance

Young-Joon Jeon, Jae-Gark Choi, Jin-Il Kim . 597

Tree Species Recognition with Fuzzy Texture Parameters
Ralf Reulke, Norbert Haala . 607

Image Segmentation

Fast Segmentation of High-Resolution Satellite Images Using Watershed
Transform Combined with an Efficient Region Merging Approach

Qiuxiao Chen, Chenghu Zhou, Jiancheng Luo, Dongping Ming 621

Joint Non-rigid Motion Estimation and Segmentation
Boris Flach, Radim Sara . 631

Sequential Probabilistic Grass Field Segmentation of Soccer Video
Images

Kaveh Kangarloo, Ehsanollah Kabir . 639

Adaptive Local Binarization Method for Recognition of Vehicle
License Plates

Byeong Rae Lee, Kyungsoo Park, Hyunchul Kang, Haksoo Kim,
Chungkyue Kim . 646

Blur Identification and Image Restoration Based on Evolutionary
Multiple Object Segmentation for Digital Auto-focusing

Jeongho Shin, Sunghyun Hwang, Kiman Kim, Jinyoung Kang,
Seongwon Lee, Joonki Paik . 656

Performance Evaluation of Binarizations of Scanned Insect Footprints
Young W. Woo . 669

Matching and Recognition

2D Shape Recognition Using Discrete Wavelet Descriptor Under
Similitude Transform

Kimcheng Kith, El-hadi Zahzah . 679

XII Table of Contents

Which Stereo Matching Algorithm for Accurate 3D Face Creation?
Ph. Leclercq, J. Liu, A. Woodward, P. Delmas . 690

Video Cataloging System for Real-Time Scene Change Detection of
News Video

Wanjoo Lee, Hyoki Kim, Hyunchul Kang, Jinsung Lee,
Yongkyu Kim, Seokhee Jeon . 705

Automatic Face Recognition by Support Vector Machines
Huaqing Li, Shaoyu Wang, Feihu Qi . 716

Practical Region-Based Matching for Stereo Vision
Brian McKinnon, Jacky Baltes . 726

Video Program Clustering Indexing Based on Face Recognition Hybrid
Model of Hidden Markov Model and Support Vector Machine

Yuehua Wan, Shiming Ji, Yi Xie, Xian Zhang, Peijun Xie 739

Texture Feature Extraction and Selection for Classification of Images
in a Sequence

Khin Win, Sung Baik, Ran Baik, Sung Ahn, Sang Kim, Yung Jo 750

Author Index . 759

Binary Matrices Under the Microscope:
A Tomographical Problem

Andrea Frosini1 and Maurice Nivat2

1 Dipartimento di Scienze Matematiche ed Informatiche “Roberto Magari”,
Università degli Studi di Siena, Pian dei Mantellini 44, 53100, Siena, Italy

frosini@unisi.it
2 Laboratoire d’Informatique, Algorithmique, Fondements et Applications (LIAFA),

Université Denis Diderot 2, place Jussieu 75251 Paris 5Cedex 05, France
Maurice.Nivat@liafa.jussieu.fr

Abstract. A binary matrix can be scanned by moving a fixed rect-
angular window (sub-matrix) across it, rather like examining it closely
under a microscope. With each viewing, a convenient measurement is
the number of 1s visible in the window, which might be thought of as
the luminosity of the window. The rectangular scan of the binary matrix
is then the collection of these luminosities presented in matrix form. We
show that, at least in the technical case of a smooth m×n binary matrix,
it can be reconstructed from its rectangular scan in polynomial time in
the parameters m and n, where the degree of the polynomial depends
on the size of the window of inspection. For an arbitrary binary matrix,
we then extend this result by determining the entries in its rectangular
scan that preclude the smoothness of the matrix.

Keywords: Discrete Tomography, Reconstruction algorithm, Compu-
tational complexity, Projection, Rectangular scan.

1 Introduction and Definitions

The aim of discrete tomography is the retrieval of geometrical information about
a physical structure, regarded as a finite set of points in the integer square lattice
Z × Z, from measurements, generically known as projections, of the number of
atoms in the structure that lie on lines with fixed scopes. A common simplifi-
cation is to represent a finite physical structure as a binary matrix, where an
entry is 1 or 0 according as an atom is present or absent in the structure at
the corresponding point of the lattice. The challenge is then to reconstruct key
features of the structure from some scan of projections.

Our interest here, following [2], is to probe the structure, not with lines of
fixed scope, but with their natural two dimensional analogue, rectangles of fixed
scope, much as we might examine a specimen under a microscope or magnifying
glass. For each position of our rectangular probe, we count the number of visible
atoms, or, in the simplified binary matrix version of the problem, the number of
1s in the prescribed rectangular window, which we term its luminosity. In the

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 1–22, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 A. Frosini and M. Nivat

matrix version of the problem, these measurements can themselves be organized
in matrix form, called the rectangular scan of the original matrix. Our first
objective is then to furnish a strategy to reconstruct the original matrix from its
rectangular scan. As we also note, our investigation is closely related to results
on tiling by translation in the integer square lattice discussed in [2].

To be more precise, let M be an m×n binary matrix, and, for fixed p and q,
with 1 ≤ p ≤ m, 1 ≤ q ≤ n, consider a p× q window Rp,q allowing us to view the
intersection of any p consecutive rows and q consecutive columns of M . Then,
the number Rp,q(M)[i, j] of 1s in M on view when the top left hand corner of
Rp,q is positioned over the (i, j)-entry, M [i, j], of M , is given by summing all the
entries on view:

Rp,q(M)[i, j] =
p−1∑
r=0

q−1∑
c=0

M [i+ r, j + c], 1 ≤ i ≤ m− p+ 1, 1 ≤ j ≤ n− q + 1.

Thus, we obtain an (m−p+1)×(n−q+1) matrix Rp,q(M) with non-negative
integer entries Rp,q(M)[i, j], as illustrated in Fig. 1. We call Rp,q(M) the (p, q)-
rectangular scan of M ; when p and q are understood, we write R(M) = Rp,q(M),
and speak more simply of the rectangular scan. (This terminology is a slight
departure from that found in [2].) In the special case when R(M) has all entries
equal, say k, we say that the matrix M is homogeneous of degree k.

1 1 1

1

1

1

1 1

1 1

11

M R(M)

1 3

22 1 4

2

2 2

3

3

3 2

2

322

Fig. 1. A binary matrix M (entries 0 are omitted) and its (2, 3)-rectangular scan. The
sum of the elements of M inside the highlighted rectangle determines the highlighted
element of R(M)

Given any m×n matrix A and integers p and q with 1 ≤ p ≤ m and 1 ≤ q ≤ n,
we define an (m − p) × (n − q) matrix χp,q(A) = (χp,q(A)[i, j]) by setting, for
1 ≤ i ≤ m− p, 1 ≤ j ≤ n− q:

χp,q(A)[i, j] = A[i, j] + A[i + p, j + q]−A[i + p, j]−A[i, j + q];

note that, in the case where A is a binary matrix, these entries take only the
values -2, -1, 0, 1, or 2 (see Fig. 4). As usual, when p and q can be understood
without ambiguity, we suppress them as subscripts. In the event that the matrix

Binary Matrices Under the Microscope: A Tomographical Problem 3

χ(M)

1 1 1

1

1

1

1 1

1 1

11

M

1

1 −1 −1

0

0

1

−1

−2

0

Fig. 2. A matrix M and its corresponding matrix χ3,4(M)

χ(A) is a zero matrix, the matrix A is said to be smooth. Notice that the homo-
geneous matrices are properly included in the smooth matrices; an example of a
smooth matrix that is not homogeneous is shown in Fig. 3.

We conclude this introductory section with three observations that are direct
consequences of our definitions and to which we shall have frequent recourse in
what follows. Since their proofs are a matter of simple computation, they are
omitted.

Lemma 1. If M1 and M2 are two m× n binary matrices, then

R(M1 + M2) = R(M1) + R(M2) and χ(M1 + M2) = χ(M1) + χ(M2).

Lemma 2. If M is a binary matrix, then

χ1,1(Rp,q(M)) = χp,q(M).

Thus the rectangular scan R(M) of a binary matrix M already contains
sufficient information to compute χ(M) and so to tell whether M is smooth.
Notice that, with a certain terminological inexactitude, we can also say, in the
case where M is smooth, that R(M) is smooth (more precisely, R(M) is (1, 1)-
smooth, while M itself is (p, q)-smooth, as our more careful statement of the
Lemma makes clear).

An appeal to symmetry and induction yields the following generalization of
[2, Lemma 2.2].

Lemma 3. If M be a smooth matrix then, for any integers α and β such that
1 ≤ i + αp ≤ m and 1 ≤ j + βq ≤ n,

M [i, j] + M [i + αp, j + βq] = M [i + αp, j] + M [i, j + βq].

Finally, we say that an entry M [i, j] of a matrix M is (p, q)-invariant if, for
any integer α such that 1 ≤ i + αp ≤ m and 1 ≤ j + βq ≤ n,

M [i + αp, j + αq] = M [i, j].

If all the entries of M are (p, q)-invariant, then M is said to be (p, q)-invariant.

4 A. Frosini and M. Nivat

2 A Decomposition Theorem for Binary Smooth
Matrices

In this section we extend the studies about homogeneous matrices started in
[2] to the class of smooth matrices, and we prove a decomposition theorem by
looking at the invariance of their elements.

Lemma 4. If M is a smooth matrix, then each of its elements is (p, 0)-invariant
or (0, q)-invariant.

Proof. Since M is smooth, for each 1 ≤ i ≤ m− p and 1 ≤ j ≤ n− q, it holds

M [i, j] + M [i + p, j + q] = M [i + p, j] + M [i, j + q].

Let us consider the following four possibilities for the element M [i, j]:

– M [i, j] �= M [i + p, j]: by Lemma 3 for α = 1 and for all β ∈ Z such that
1 ≤ j+βq ≤ n, it holds M [i, j+βq] = M [i, j] and M [i+p, j+βq] = M [i+p, j],
so M [i, j] is (0, q)-invariant.

– M [i, j] �= M [i, j + q]: by reasoning similarly to the previous point, we obtain
that M [i, j] is (p, 0)-invariant.

– M [i, j] = M [i, j + q] = M [i + p, j]: if there exists α0 ∈ Z such that M [i +
α0p, j] �= M [i, j], again reasoning as in the first case we obtain that M [i, j]
is (0, q)-invariant. On the other hand, if for all 1 ≤ i+ αp ≤ m it holds that
M [i + αp, j] = M [i, j], then M [i, j] is (p, 0)-invariant.

Finally, if m− p+1 ≤ i ≤ m and n− q+1 ≤ j ≤ n, a similar reasoning leads
again to the thesis. ��

The reader can check that each entry of the smooth matrix M in Fig. 3 is
(2, 0)-invariant (the highlighted ones) or (0, 3)-invariant.

Theorem 1. A matrix M is smooth if and only if it can be obtained by summing
up a (p, 0)-invariant matrix M1 and a (0, q)-invariant matrix M2 such that they
do not have two entries 1 in the same position.

Proof. (⇒) Let M1 and M2 contain the (p, 0)-invariant and the (0, q)-invariant
elements of M , respectively. By Lemma 4, the thesis is achieved.

(⇐) Since M1 is (p, 0)-invariant, then for each 1 ≤ i ≤ m− p, 1 ≤ j ≤ n− q
it holds

χ(M1)[i, j] = M1[i, j] + M1[i + p, j + q]−M1[i + p, j]−M1[i, j + q] =
= M1[i, j] + M1[i, j + q]−M1[i, j]−M1[i, j + q] = 0

so, by definition, M1 is smooth. The same result holds for M2 and, consequently,
for M = M1 + M2. ��

Obviously, the converse of Lemma 4 holds. Now we furnish a series of results
which lead to the formulation of a reconstruction algorithm for smooth matrices
from their rectangular scan:

Binary Matrices Under the Microscope: A Tomographical Problem 5

Lemma 5. The following statements hold:
1) if M is (0, q)-invariant, then R(M) has constant rows;
2) if M is (p, 0)-invariant, then R(M) has constant columns.

Proof. 1) For each 1 ≤ i ≤ m − p + 1 and 1 ≤ j ≤ n − q, we prove that
R(M)[i, j] = R(M)[i, j + 1]:

R(M)[i, j + 1] =
∑p−1

r=0
∑q−1

c=0 M [i + r, j + 1 + c] =∑p−1
r=0

∑q−1
c=1 M [i + r, j + c] +

∑p−1
r=0 M [i + r, j + q] =

since M is (0, q)-invariant

p−1∑
r=0

q−1∑
c=1

M [i + r, j + c] +
p−1∑
r=0

M [i + r, j] = R(M)[i, j].

2) The proof is similar to 1). ��

As a direct consequence of the above results we have:

Theorem 2. A binary matrix M is smooth if and only if R(M) can be decom-
posed into two matrices Rr and Rc having constant rows and columns, respec-
tively.

Fig. 3 shows that the converse of the two statements of Lemma 5 does not
hold in general. However, we can prove the following weaker version:

3333

2

1

2 2 2

2

1 1 1

2 2 2

M :

1 1

1 1

1 1

R(M) :

1

1

1

1

1

Fig. 3. A non invariant matrix M whose (2, 3)-rectangular scan has constant rows

Lemma 6. Let M be a binary matrix. The following statements hold:
1) if R(M) has constant rows, then there exists a (0, q)-invariant matrix M ′

such that R(M) = R(M ′);
2) if R(M) has constant columns, then there exists a (p, 0)-invariant matrix

M ′′ such that R(M) = R(M ′′).

Proof. 1) We define the matrix M ′ as follows: the first p columns of M ′ are
equal to those of M , while the other entries of M ′ are set according to the
desired (0, q)-invariance. It is easy to verify that R(M ′) = R(M).

2) The proof is similar to 1). ��

6 A. Frosini and M. Nivat

2.1 A Reconstruction Algorithm for Smooth Matrices

Lemma 6 assures the correctness of the following reconstruction algorithm:

RecConstRows(A, p, q)

Input: an integer matrix A having constant rows and two integers p and q.
Output: a (0, q)-invariant matrix M , having A as (p, q) rectangular scan, if it

exists, else return FAILURE.
Procedure:
Step 1: let e1, . . . , ek be the sequence of all the possible configurations of the

elements M [i, j], with 1 ≤ i ≤ p and 1 ≤ j ≤ q, whose sum equals A[1, 1];
Step 2: for 1 ≤ t ≤ k,

Step 2.1: initialize matrix M with the configuration et;
Step 2.2: complete the first q columns of M according with the entries of

the first column of A, if possible, and set t to the value k+2, else increase
t by one;

Step 3: if t is equal to k + 1 then FAILURE, else complete the entries of M
according to the (0, q)-invariance constraint, and return M as OUTPUT.

A simple remark about Step 2.2 is needed: the strategy which allows to
complete the first q columns of M , i.e. from row p+1 to row m, can be a greedy
one. More precisely, for 2 ≤ i ≤ m−p+1, one can set in the leftmost positions of
row p+ i−1 of M as many entries 1 as needed in order to reach the value A[i, 1].
A similar algorithm, say RecConstCols(A, p, q), can be defined to reconstruct
a smooth matrix whose rectangular scan A has constant columns.

Theorem 3. The computational complexity of RecConstRows(A, p, q) is
O(k′(m n)), where m and n are the dimensions of the reconstructed matrix M ,
and k′ is exponential in p and q.

The result immediately follows after observing that k′ grows as fast as

k =
(

p q

A[1, 1]

)
.

Example 1. Let us follow the computation RecConstRows(A, 3, 4), with A as
depicted in Fig. 4.

A :

5 5 5 5 5 5

7

6

8

5

7 7 7 7 7

6 6 6 6 6

8 8 8 8 8

5 5 5 5 5

Fig. 4. The matrix A of Example 1

Binary Matrices Under the Microscope: A Tomographical Problem 7

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1 1

1

1 1

1 1 1 1 1 1

1 1 11 1

111

1 1 1 1 1 1 1 1

a) b)

Fig. 5. Two steps of RecConstRows(A, 3, 4)

In Step 1, all the possible
(
k=12

5

)
configurations of a 3×4 rectangle containing

exactly five entries 1, are listed.
In Step 2, the matrix M is created and its upper-left 3 × 4 submatrix is

updated with each of the k configurations, until one is found which can be
extended to complete the first four columns of M . In Fig. 5 a), it is highlighted
one of the configurations, and a way of filling the first four columns of M starting
from it, by means of a greedy strategy.

Finally, in Step 3, the placed entries are propagated in order to make M a
(0, 4)-invariance matrix (Fig. 5, b)).

Obviously, a smarter strategy for lowering the complexity of the part of the
procedure which is exponential in p and q, can be found, but it could compromise
the easiness of its formulation in order to get a non significant improvement from
a theoretical point of view.

Two simple lemmas are needed, if we want to keep the complexity of the
general reconstruction procedure still polynomial in m and n:

Lemma 7. Let M be a smooth matrix. If there exist two columns, say j and j′,
such that R(M)[1, j′] ≤ R(M)[1, j], then, for each 1 ≤ i ≤ m − p + 1 we have
R(M)[i, j′] ≤ R(M)[i, j].

Proof. Let us consider a decomposition of R(M) into matrices Rr and Rc having
constant rows and columns, respectively, as stated in Theorem 2; moreover it is
convenient to denote by ri (resp. cj) the common value of the elements of the
i-th row (resp. j-th column) of the matrix Rr (resp. Rc).

By hypothesis, we have that R(M)[1, j′] ≤ R(M)[1, j], which means that
r1 + cj′ ≤ r1 + cj , and then cj′ ≤ cj . Therefore, for any 1 ≤ i ≤ m − p + 1 we
have ri + cj′ ≤ ri + cj , so the thesis. ��

As a neat consequence of Lemma 7, if there exists a row i0, and two columns
j and j′ of R(M) such that R(M)[i0, j′] = R(M)[i0, j], then, for all 1 ≤ i ≤
m− p + 1, it holds R(M)[i, j′] = R(M)[i, j].

8 A. Frosini and M. Nivat

Lemma 8. Let A be an integer matrix. If A is (1, 1)-smooth, then it admits k+1
different decompositions into two matrices having constant rows and columns,
where

k = mini,j{R(M)[i, j] : 1 ≤ i ≤ m− p + 1, 1 ≤ j ≤ n− q + 1}.

Proof. Let us give a procedure which lists all the possible couples of matrices
(At

r, A
t
c), with 0 ≤ t ≤ k, each of them being a decomposition of A such that At

r

has constant rows and At
c has constant columns:

Decompose (A)

Input: an integer matrix A of dimension m× n.
Output: a sequence of couples of matrices (A0

r, A
0
c), . . . , (A

k
r , A

k
c), with k being

the minimum value of A, such that, for each 1 ≤ t ≤ k, At
r has constant

rows, At
c has constant columns, and At

r + At
c = A. If such a sequence does

not exist, then return FAILURE.
Procedure:
Step 1: from each element of A, subtract the value k and store the result in the

matrix Ac;
Step 2: for each 1 ≤ i ≤ m

Step 2.1: compute

ki = minj{Ac[i, j] : 1 ≤ j ≤ n};

Step 2.2: subtract the value ki from each element of Ac;
Step 2.3: set all the elements of column i of matrix Ar to the value ki;

Step 3: if the matrix Ac has not constant columns, then give FAILURE as
output, else, for each 0 ≤ t ≤ k, create matrices At

r and At
c such that

At
r[i, j] = Ar[i, j] + t and At

c[i, j] = Ac[i, j] + k − t,

with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Give (At
r, A

t
c) as output.

Example 2 shows a run of the algorithm. By construction, each couple (At
r, A

t
c)

is a decomposition of A, and furthermore, At
r has constant rows.

What remains to prove is that the matrix Ac used in Step 3 has constant
columns (and, consequently, the same hold for all the matrices At

c = Ac +k− t).
As usual, let us denote by ri the common value of the elements of the i-th row
of Ar, and let us proceed by contradiction, assuming that Ac has not constant
columns. Since A is the sum of a column constant and a row constant matrix, and
for all 1 ≤ i ≤ m−p+1 and 1 ≤ j ≤ n− q+1, it holds A[i, j] = ri +Ac[i, j]+k,
then Ac is also the sum of a column constant matrix, say Acc, and a row constant
matrix, say Acr, which has at least one row, say i0, whose elements have value
k′

i0
�= 0.
This situation generates an absurdity, since ki0 computed in Step 2.1 turns

out no longer to be the minimum of row i0 in Ac, updated to that step.

Binary Matrices Under the Microscope: A Tomographical Problem 9

Since a matrix having constant rows (resp. columns) cannot be obtained as
sum of a matrix having constant rows and a matrix having constant columns
unless the latter is a constant matrix, then the k + 1 decompositions listed by
the algorithm are all the possible ones. ��

Example 2. Let us follow the steps of the procedure Decompose(A), with ma-
trix A depicted in Fig.6, as described in the proof of Lemma 8.

A :

6 5 5 4

5 4 4 3

3 3 2

5

4

4

5 4 4 3 4

3

Fig. 6. The (1, 1)-smooth matrix A of Example 2

Step 1: we subtract from all the elements of A, the value k = 2, i.e. its
minimum element, and we store the obtained result in the matrix Ac.

Step 2: for each 1 ≤ i ≤ m− p+ 1, we find the minimum value ki among the
elements of row i of Ac (Step 2.1), we subtract it from all these elements (Step
2.2), and finally, we set the elements in row i of Ar to the value ki (Step 2.3).
In our case, the minimums are k1 = 2, k2 = 1, k3 = 0 and k4 = 1.

2

1

1

2 2 2 2

1111

00000

1111

4 23

4

4

4

3

3

3 3

3

3

3 3

3

3

3

2

2

2

3

2

1

2

3 3 3 3

2 2 2 2

2 2 2 2

1 1 1 1

3 2 2 1 2

3

3

3

2

2

2 2

2

2 2

2

2

1

1

1

4

3

2

3

4 4 4 4

3 3 3 3

3 3 3 3

2 2 2 2

2 1 1 0 1

2

2

2

1

1

1

1

1

1

1

1

0

0

01

A :r

A :c
0

A :c
1

A :r A :r
2

A :c
2

0 1

Fig. 7. The three decompositions of A

Step 3: the matrix Ac updated at the end of Step 2 has constant columns, so
the three different decompositions of A can be computed and listed.
The output is depicted in Fig. 7.

All the previous results are useful for getting the main one of this section,
i.e. the following general procedure which reconstructs a smooth matrix from its
rectangular scan:

10 A. Frosini and M. Nivat

RecSmooth(A, p, q)

Input: a (1, 1)-smooth matrix A and two integers p and q.
Output: a binary (smooth) matrix M such that Rp,q(M) = A, if it exists, else

return FAILURE.
Procedure:
Step 1: let m− p + 1× n− q + 1 be the dimension of A (this choice allows to

obtain the matrix M , if it exists, of dimension m× n), and let

k = mini,j{A[i, j] : 1 ≤ i ≤ m− p + 1, 1 ≤ j ≤ n− q + 1}.

For each 0 ≤ t ≤ k,
Step 1.1: let At

r and At
c be the t-th decomposition of A into matrices ob-

tained by the call Decompose(A);
Step 1.2: use procedure RecConstRows to obtain a sequence s1 of all the

matrices having constant rows and whose rectangular scan is At
r. Use

procedure RecConstCols to obtain a sequence s2 of all the matrices
having constant columns and whose rectangular scan is At

c;
Step 1.3: make all the possible sums of an element of s1 with an element

of s2. If an m × n binary matrix M is obtained, then goto Step 2, else
increase t by one (and go back to Step 1);

Step 2: if t �= k + 1 then gives M as output, else return FAILURE.

The correctness of this procedure immediately follows from the correctness
of RecConstRows and RecConstCols, and from Lemma 8.

Example 3. Let us consider the decomposition of a rectangular scan into the
matrices depicted in Fig. 8, and let p = 3 and q = 3.

A :r

3

3

4

2

2 2 2 2 2 2 2 2

2222222

4 4 4 4 4 4 4

3 3

33

3 3 3

33 3 3

33

3 3 3

cA :

4

4

4

4

4 4

4

4

4

4 4

4

4

4

4

3

3

3

3

3

3

3

3

2

2

2

2

2 2

2

2

2

2 2

2

2

2

2

Fig. 8. The decomposition of a rectangular scan used in Example 3

We reconstruct a matrix M = M1 + M2 such that R(M) = A, R(M1) = Ar

and R(M2) = Ac.
We start to compute and list all the solutions of RecConstRows(Ar, 3, 3)

and RecConstCols(Ac, 3, 3), and we arrange them in two sequences s1 and s2
as requested in Step 1.2. Then, following Step 1.3, the elements of s1 and s2 are
summed up in all possible ways until the binary matrix M is obtained.

We are aware that the search for M can be carried on in a smarter way, but
this will bring no effective contribution to the decreasing of the computational

Binary Matrices Under the Microscope: A Tomographical Problem 11

M :21M :

1

1 1

1

1

1 11

1 1 1 1 1

1 1 1 1 1

1 1

1 1 1

1

1

1

1

1

1

1

1

1

111

11

11

1 1

1 1

1 1

Fig. 9. Two non-disjoint solutions M1 and M2 which are (0, 3)-invariant and (3, 0)-
invariant, as stated in Lemma 6

11 1 1

1 1 1 1 1 1

1 1 1

11 11

M :

1 1 1

11 1 1 1

1 1 1

1 11

11 1 1 1

1 1 1

11 1

Fig. 10. One of the final solutions of the instance in Example 3

complexity of the reconstruction, and, on the other hand, it will add new lemmas
and proofs.

Fig. 9 shows a wrong choice for the matrices M1 and M2, since their sum
is not a binary matrix. In Fig. 10, it is depicted one of the final solutions M ,
obtained by a right choice of M1, whose entries 1 are exactly the highlighted
ones of M , and M2.

The following theorem holds:

Theorem 4. The computational complexity of RecSmooth(A, p, q) is polyno-
mial in m and n.

Proof. The complexity of the algorithm can be computed as the sum of the
complexities of all its steps, in particular:

Step 1 finds the minimum element k of A in O(mn) (we point out that k ≤ p q
is an immediate consequence of the definition of rectangular scan);

Step 1.1 lists k + 1 couples of matrices in O(m n), and for each of them,
Step 1.2 constructs two sequences of matrices in O(k′(m n)), with k′ indepen-

dent from m and n, and exponential in p and q, as stated in Theorem 3.
Step 1.3 compares the elements of the two sequences of matrices in O(m n).
Step 2 gives matrix M as output in O(m n).

The total complexity of the reconstruction process is then O(m n). ��

12 A. Frosini and M. Nivat

Let us call RecSmoothAll(A, p, q) the algorithm which naturally extends
RecSmooth(A, p, q) and which lists all the matrices whose rectangular scan is
A. Using the results of this section, we point out that:

Remark 1. If M is a smooth matrix, then RecSmoothAll(R(M), p, q) lists it.

This result, widely used in next section, completes the first part of the paper
related to the analysis and reconstruction of smooth matrices.

3 The Reconstruction of Binary Matrices from Their
Rectangular Scan

In this section, we concentrate on the entries of a rectangular scan which prevent
it from being smooth. In particular we define a polynomial time algorithm which
lists all the possible matrices which are consistent with them, then we integrate
it with the algorithm for reconstructing a smooth matrix defined in the previous
section in order to solve the reconstruction problem of a binary matrix from its
rectangular scan.

Let 1 ≤ a ≤ p, 1 ≤ b ≤ q, and A be an integer m×n matrix. We define (a, b)
subgrid of A to be the submatrix

S(A)a,b[i, j] = A[a + (i− 1) p, b + (j − 1) q]

where a + (i − 1) p ≤ m, and b + (j − 1) q ≤ n (so S(A)a,b turns out to have
dimension 	(m − a + 1)/p
 × 	(n − b + 1)/q
). If we consider again the binary
matrix M , by definition it holds that

χ(M)[a + (i− 1) p, b + (j − 1) q] = S(χ(M))a,b[i, j] =
= S(M)a,b[i, j] + S(M)a,b[i + 1, j + 1]− S(M)a,b[i + 1, j]− S(M)a,b[i, j + 1].

The matrix V of dimension m× n is said to be a valuation of S(χ(M))a,b if,
for each 1 ≤ i ≤ m, 1 ≤ j ≤ n,

– if i �= (a)modp and j �= (b)modq then V [i, j] = 0;
– S(χ(M))a,b = S(χ(V))a,b (see Fig. 11).

This definition immediately leads to the following lemmas:

Lemma 9. Let S(χ(M))a,b and S(χ(M))a′,b′ be two subgrids whose valuations
are V and V ′, respectively. If a �= a′ or b �= b′, then for each 1 ≤ i ≤ m and
1 ≤ j ≤ n, V [i, j] = 1 implies V ′[i, j] = 0 .

This lemma states that the positions having value 1 of two valuations of
different subgrids are disjoint.

Lemma 10. Let V be a valuation of S(χ(M))a,b, and let i0 be a row of S(V)a,b

having all the elements equal to 1. The matrix V ′ which is equal to V , except in
the elements of the row i0 of S(V ′)a,b which are set to 0, is again a valuation of
S(χ(M))a,b.

Binary Matrices Under the Microscope: A Tomographical Problem 13

1 1 1

1 1

11 1 1

1

11

11

1

1

1

S(M) :
2,2 1

−1

2,2
χS((M)) :

1
V :

1 −1 −2 1

−1 2

−1 2 1

1 1 −1 −1

M : (M) :χ

χ (V) :
−1

1

Fig. 11. The subgrids of the matrices M and χ(M) with respect to the position (2, 2).
Matrix V is one of the possible valuations of S(χ(M))2,2

Roughly speaking, homogeneous changes to the entries of a row of S(V)a,b

do not change the rectangular scan of V . A result similar to Lemma 10 obviously
holds when we act on a column of S(V)a,b.

If V and V ′ are two valuations as in Lemma 10, then we say that the valuation
V is greater than the valuation V ′. This relation can be easily extended to a finite
partial order on the valuations of the subgrids of χ(M).

Remark 2. Let 1 ≤ i ≤ m − p and 1 ≤ j ≤ n − q. If χ(M)[i, j] = 2, then
M [i, j] = M [i + p, j + q] = 1, and M [i + p, j] = M [i, j + q] = 0.

The proof is immediate. A symmetric result holds if χ(M)[i, j] has value −2.
Now we are ready to state the following crucial lemma which immediately

leads to the definition of the procedure Reconstruction(A, p, q), which recon-
structs a binary matrix M from its (p, q) rectangular scan A:

Lemma 11. Given a binary matrix M , for each integers 1 ≤ a ≤ p, 1 ≤ b ≤
q, the number of minimal elements in the partial ordering of the valuations of
S(χ(M))a,b is linear with respect to the dimension m × n of M . Furthermore,
each one of these minimal elements can be reconstructed in polynomial time with
respect to m and n.

The proof of this lemma is quite long and tedious, so the authors decided to
sketch it separately, in Appendix A. The motivation of this choice is the intent
of not moving the attention of the reader too far from the path which leads to
the reconstruction of a matrix from its rectangular scan. In addition, we furnish
the following example where all the valuations of a matrix S(χ(M))a,b are listed.
The chosen matrix constitutes a sort of worst case configuration.

Example 4. Let us find all the possible minimal valuations of the matrix
S(χ(M))a,b of Fig. 12.

We proceed from the leftmost entry of S(χ(M))a,b different from 0, till the
rightmost one, by examining, one by one, all its possible minimal valuations.

14 A. Frosini and M. Nivat

a,b
1

1
−1

−1

S ((M)) :χ

Fig. 12. The matrix S(χ(M))a,b of Example 4

0

0 0
1000

01

1

1

1 1

1

1

1

1

0
000 0

0

0
00 0 0

0 0
00

0
00 0 0

00
000

0
0

1

0 0
0

0
0

0

0
0

0

1

1

1

1
1
000

0
0
01 1 0 1 0

1
0

0 0 0
1
1

0 0 0

0

1
1

1 1
0
0

0
0
01 1

0 0 0
0
1

1
1

0 0 0
0

1
1

1

1 1 10
0
0
0

0
0
0
1011

1
1
111

0 0 0 0
0
0
0

0 1
1
0

0

0

0

0 1
1

1 1 1
1
1 1

1
111

0 0 0 0
0
0
0

0 0 0 0
0
0
0

0
1
0

010 1

0 1 0
0

0
1

0 1 0 1 0
1
0
1
0

1
0 0 0 1 0

1
0

1
1

1 1 10 0
1
0
0
0

0 0 0 0 0
1
1
1
1

1 1 1 1 0
0
0
0
0

Fig. 13. The computation of the minimal valuations of S(χ(M))a,b

The computation is represented in Fig. 13, by using a tree whose root is the
(a, b) subgrid of the valuation whose entries are all 0, and whose nodes at level k
are all the possible (a, b) subgrids of the valuations of the first k entries different
from 0 of S(χ(M))a,b.

On each matrix, the highlighted cells refer the correspondent entry 1 or −1
of S(χ(M))a,b which is being considered.

It is easy to check that any further addition of 1 or −1 entries in S(χ(M))a,b

does not increase the number of its possible minimal valuations. On the contrary,
there often appear non consistent configurations.

Binary Matrices Under the Microscope: A Tomographical Problem 15

Reconstruction(A, p, q)

Input: an integer matrix A and two integers p and q.

Output: a binary matrix M having A as (p, q) rectangular scan, if it exists,
else return FAILURE.

Procedure:
Step 1: for each 1 ≤ a ≤ p and 1 ≤ b ≤ q compute the sequence of valuations

V
(1)
a,b , . . . , V

(k)
a,b of S(χ(A))a,b, as shown in Example 4;

Step 2: sum in all possible ways an element from each sequence of valuations
(computed in Step 1), and let M1, . . .Mk′ be the obtained sequence of binary
matrices;

Step 3: compute the sequence of smooth matrices A1, . . . , Ak′ such that Ai =
A−R(Mi), for each 1 ≤ i ≤ k′;

Step 4: for each 1 ≤ i ≤ k′

Step 4.1 compute RecSmoothAll(Ai, p, q) and let M (1)
i , . . . ,M

(k′′)
i be the

output sequence;
Step 4.2: for each 1 ≤ j ≤ k′′ compute Ai + M

(j)
i = M . If M is a binary

matrix, then return M ;
Step 5: return FAILURE.

Lemma 9 assures that each sum performed in Step 2 always returns a binary
matrix. Furthermore, since the reconstruction algorithm exhaustively searches
all the possible solutions consistent with a given rectangular scan, then its cor-
rectness is assured.

However, one can ask whether such a search always produces an output in
an amount of time which is polynomial in the dimensions of the solution. The
answer is given by the following.

Theorem 5. The computational complexity of Reconstruction(A, p, q) is
polynomial in the dimension m× n of each solution.

Proof. The complexity of the algorithm can be computed from the complexities
of each one of its steps, in particular:

Step 1: for each 1 ≤ a ≤ p and 1 ≤ b ≤ q, S(χ(A))a,b can be computed
in O(m n). Lemma 11 assures that the number of valuations of S(χ(A))a,b is
O(m n), and that each of them can be reconstructed in O(m n), so the total
amount of time required by Step 1 is O((m n)2).

Step 2: an increasing in the complexity comes from this step: we start from
the sequences of valuations created in Step 1, whose number is p q at most,
and having O(m n) elements, and we proceed in summing an element from
each of them, in all the possible ways. Since each sum is performed in O(m n),
and the total number of sums is O((m n)p q), then the complexity increases to
O((m n)p q+1). The same amount of time is obviously required in Step 3.

Step 4: by Theorem 4, each call of RecSmoothAll takes O(mn) time. Since
O((m n)p q) calls are performed (one for each matrix obtained in Step 3), then
the total amount of time needed in Step 4 is again O((m n)p q+1), which is also
the complexity of the procedure. ��

16 A. Frosini and M. Nivat

A final example tries to clarify the reconstruction process:

Example 5. Let us follow the computation of Reconstruction(A, 3, 3), where
the rectangular scan A is depicted in Fig. 14.

A :

2 1 12 2 1

2 2 2 2 2 2

2 2 21 1 1

2 1 1 2 2 2

2 1 1 1 1 1

0

0

0

0 1 0 0

100

010

000

0 −1

−1

−1

(A) :χ

Fig. 14. The matrix A and the computation of χ(A)

Step 1: since χ(A) has some elements different from 0, then A is not smooth.
All the valuations of S(χ(A))a,b are computed:

χ χ χ χ1−1 10 1

0 0

0

0 0

1

1 0

0

1 0

0

0 0 0

1 10

0 00

1 1 0

0 10

0 0 0

1,3
1

−1 3,12,1 3,3
S((A)) : S((A)) :S((A)) : S((A)) :

0 1 0

000

1

0

0

0

0 0

10

V :1,3

(1)

V :1,3

(2)
V :2,1

(2)

V :2,1

(1)
V :3,1

(1)

V :3,1

(2)

3,3

(1)

V :3,3

(2)

V :

Fig. 15. All the valuations of S(χ(A))a,b which are different from the zero matrix

If (a, b) = (1, 1): the 2× 2 matrix S(χ(A))1,1 has all its elements equal to 0,
so its minimal valuation is the 7 × 8 matrix having all the elements equal to 0
(such matrix can be ignored since it gives no contribution to the final sum). The
same valuation can be found when (a, b) is set to (1, 2), (2, 2), (2, 3) and (3, 2).

On the other hand, for each (a, b) ∈ {(1, 3), (2, 1), (3, 1), (3, 3)}, the matrix
S(χ(A))a,b and its minimal valuations (the 7× 8 matrices below it) are depicted
in Fig. 15.

Steps 2 and 3: all the possible sums containing exactly an element from each
minimal valuations of (a, b) obtained in Step 1 are performed, and then their
rectangular scans are subtracted from A, obtaining a new sequence of smooth
matrices.

Binary Matrices Under the Microscope: A Tomographical Problem 17

The elements of such a sequence which have positive entries, and so which
can be used as input for the algorithm RecAllSmooth, are listed in Fig. 16.

Step 4: each matrix depicted in Fig. 16 is used as input of RecAllSmooth,
then Step 4.2 is performed until a solution is obtained. Fig. 17 shows an element
of the output of RecAllSmooth(A − R(V (1)

1,3 + V
(2)
2,1 + V

(2)
3,1 + V

(2)
3,3), 3, 3), and

the correspondent matrix M , solution of the starting reconstruction problem.

11

0

1 1 1 1

111111

0 0 0 0 0

0

00

00

00

000

0 0

01

1

0 0 1 1

110001

0 0 0 1 1

1

11

10

00

001

1 0

0

1

112111

0 0 1 0 0

0000 0

0 0 0 0 0

2 1 1

1

111

1 1

11

0 0 0

0

00

00

02

0

0 0 0

00

1 1

11

1 1

2

2

2

2 1

111112

00001 0

0 0 0 0 0

2

2

1

1 1

1 1

1 1

1 1

1

1

1

1

0 0 0 0 0

2

2

0

0 0 0 0 0

0000

1 1

111

1

1 1

11

(1)(1)(1)(1)

(2)(2)(2)(1) (1)(2)(1)(2)

(1)(1)(2)(1) (1)(2)(2)(1)
A − R (V + V + V +V)

(2)(2)(2)(2)

A − R (V + V + V +V)1,3 2,1 3,1 3,3 A − R (V + V + V +V)1,3 2,1 3,1 3,3

A − R (V + V + V +V)1,3 2,1 3,1 3,3 1,3 2,1A − R (V + V + V +V)3,1 3,3 1,3 2,1A − R (V + V + V +V)3,1 3,3

3,33,12,11,3

Fig. 16. The matrices having positive elements computed in Step 3

M’ :

1
1

1

1

1
M :

1 0 0
0 1 1 0
0 0 0 0 1
1 0 1

10 0 0
0 0 0 01
1 0 0

Fig. 17. The matrices M ′ and M whose rectangular scans are A − R(V (1)
1,3 + V

(2)
2,1 +

V
(2)
3,1 + V

(2)
3,3) and A, respectively

References

[1] Herman, G.T., Kuba, A., (eds.): Discrete Tomography: Foundations Algorithms
and Applications, Birkhauser Boston, Cambridge, MA (1999)

[2] Nivat, M.: Sous-ensembles homogénes de Z
2 et pavages du plan, C. R. Acad. Sci.

Paris, Ser. I 335 (2002) 83–86
[3] Ryser, H.: Combinatorial properties of matrices of zeros and ones, Canad. J. Math.

9 (1957) 371–377
[4] Tijdeman, R., Hadju, L.: An algorithm for discrete tomography, Linear Algebra

and Its Applications 339 (2001) 147–169.

18 A. Frosini and M. Nivat

Appendix A

A sketched proof of Lemma 11:
In this proof we assume that S(χ(M))a,b has dimension m×n, just to simplify

the notation. We order the (positions of the) non zero elements of S(χ(M))a,b

according to the numbering of its columns, i.e. from left to right, and, in the
same column, according to the numbering of its rows, i.e. from up to bottom,
and let p1, . . . , pt be the obtained sequence. We prove the thesis by induction on
the number t of elements of the sequence, i.e. we prove that the addition of new
nonzero elements in S(χ(M))a,b does not increase “too much” the number of its
possible valuations.

Since Remark 2 states that the presence of entries 2 or −2 in S(χ(M))a,b

does not increase the number of its possible valuations, then we are allowed to
focus our attention exactly on the elements having value 1 or −1.

Base t = 1: if p1 = (i, j) and S(χ(M))a,b[i, j] = 1, then the four possible
valuations are depicted in Fig. 18. Among them, only V1 and V2 are minimal:
they can be reached both from V3 and from V4 by deleting two rows or two
columns entirely filled with entries 1 (see Lemma 10).

If S(χ(M))a,b[i, j] = −1 a symmetrical result holds.

1

11

1

1 1

11

1

1

11

1

1 1

11

1 1

11

1

11

1

11

1

1 1

11

1
1S(V) :

χ
a,b

a,b

S(V) :
a,b

S((M)) :

a,b

a,b
S(V) :4

S(V) :3

2

Fig. 18. The four valuations when t = 1, p1 = (2, 2), and S(χ(M))a,b[2, 2] = 1

Step t→ t + 1: let S(χ(M))a,b have a sequence p1, . . . , pt+1 of nonzero points,
and let nt be the number of different minimal valuations of p1, . . . , pt, where nt

is linear in t, by inductive hypothesis.
In the sequel, we will show all the possible ways of extending V to the valu-

ation V ′ which includes the point pt+1.
The thesis will be achieved after proving that only a “small number” of

different configurations of V can be extended in more than one way, and then,
that the increment in the number of valuations nt, after adding a single point is
bounded by a constant, i.e. nt + k ≤ nt+1.

Furthermore, we assume that pt+1 = (i, j) and S(χ(M))a,b[i, j] = 1 (if
S(χ(M))a,b[i, j] = 1 then symmetrical results hold).

Binary Matrices Under the Microscope: A Tomographical Problem 19

Some pictures are supplied in order to make the different cases transparent.
A last remark is needed: since all the elements of S(χ(M))a,b whose position
is greater than pt+1 = (i, j) have value 0, then, for all 1 ≤ i′ ≤ m + 1 and
j < j1 ≤ n + 1, it holds S(V)a,b[i′, j + 1] = S(V)a,b[i′, j1].

Let us call

0-row: a row of S(V)a,b whose elements have all value 0;
1-row: a row of S(V)a,b whose element in column j + 1 has value 1;
10-row: a row of S(V)a,b which is neither 0-row nor 1-row.

0 0 00 0

0 0 0 0 0

0 0 0 0 0i

j

01 0

0 0

0 0

j

i

1 1

111

1 1 1

a)
0

i

j

0

0 0 0 0 0

1

11

10

10

1

c)

S(V) S(V’)

S(V)

a,b a,b

a,ba,b

a,b00 0

0 0

0 0

j

i

0 1

010

1 1 1

0

i

j

0

1 1 1 1 1

1

11

10

10

1

b)
S(V) S(V’)

Fig. 19. Two ways of extending S(V)a,b by adding one single point

So, let us examine some configurations of S(V)a,b:

i) if there exists a valuation V ′ such that S(V ′)a,b coincides with S(V)a,b in
the rows from i + 1 to m, and the positions in its first i rows are computed
in accordance with the imposed value S(V)a,b[i, j] = 1, then V ′ extends V
with the addition of pt+1, as depicted in Fig. 19 a);

ii) if, for all 1 ≤ i′ ≤ i, row i′ is a 1-row of S(V)a,b, then the valuation V can
be extended to V ′ by modifying its first i rows, as shown in Fig. 19 b);

iii) if the configuration of the first i rows of S(V)a,b is different from those of
i) and ii), then the valuation V can not be extended by modifying the first
i rows, as one can deduce from Fig. 19 c);

20 A. Frosini and M. Nivat

S(V’)a,bS(V)a,b S(V)a,b

j

0 0 0

b)

i
1

0 1

0 0 0 0 0

0

1 1 1

j

a)

0 0 0

j

ii
1 1

1 1

1 1

0

0

0

1

1

1

0

0 00 0 0 0 0

0001 1

0 1

Fig. 20. The way of extending a valuation S(V)a,b by modifying the rows greater than i

0 0 0

i

0 1 0 0 0

0001 1

0 0

1 0 0

0

0

0

0

S(V’)

0

i

0 1 0

01 1

0 0

0

1

000

0 1

00

0 0

1

0

1

0

j

j

1

1

11

1

1

0

1 1

11

1 1

1

S(V)

0 0 0

i

0 1 0 0 0

0001 1

0 0

j

0

1

000

0 1

00

0 0

1

0

1

0 S(V’)

2

1

a,b

a,b

a,b

Fig. 21. A configuration which admits two different valuations

Comment: let the valuation S(V)a,b be such that, for all 1 ≤ i′ ≤ i, row i′ is a
1-row, and, for all 1 ≤ j′ ≤ j, S(V)a,b[i′, j′] = 0. Acting as in case i), one can
extend V to V ′, but an immediate check reveals that such a V ′ is not minimal.

iv) if, for all i < i′ ≤ m, row i′ is a 0-row or a 10-row, then V can be extended
to V ′ by modifying the rows from i + 1 to m, as shown in Fig. 20 a);

v) finally, if, for all i < i′ ≤ m, row i′ is a 1-row, then the valuation V can not
be extended by modifying the rows from i + 1 to m (Fig. 20 b)).

Furthermore, there exist S(V)a,b whose configuration of the first j+1 columns
fit both in i) and in iv) (see Fig. 21), or both in ii) and in iv) at the same time
(see Fig. 22).

Binary Matrices Under the Microscope: A Tomographical Problem 21

S(V)a,b

S(V’)1 a,b

S(V’)2 a,b

0 0 0

i

0 0 0 0 0

0001 1

0 1

1 0 0

0

0

0

0

0

i

0 0 0

01 1

0 1

j

j

1

1

11

1

1

1

1 1

11

1 1

0 0 0

i

0 0 0 0 0

0001 1

0 1

j

1 1 1 1 1

1

11

11

11

11

1

1

1

1

11111

1

1 1 1 1

111

Fig. 22. A configuration which admits two different valuations. One of them is not
minimal

Since in both cases two new valuations extend V , it may arise the possibility
of the existence of some ad hoc configurations having a number of valuation
which is exponential in t.

This doubt vanishes as soon as we observe that

– in Fig. 21 only one valuation at a time admits again two different extensions
in a position greater than (i, j);

– in Fig. 22, valuation S(V ′
2)a,b is not minimal.

As a matter of fact, we have proved that, if nt is the number of different
configurations for a sequence of t nonzero points of S(χ(M))a,b, then it holds
nt + 1 ≥ nt+1. However, the proof is still uncomplete, since there are some
configurations not yet considered: they appear when we choose to extend V
with two points pt+1 and pt+2 at the same time.

Step t→ t+2: let us assume that pt+1 = (i, j), pt+2 = (i′, j′), S(V)a,b[i, j] = 1,
and S(V)a,b[i′, j′] = −1, and let us consider the following possible extension of
V which can not be obtained by adding one point at a time:

vi) if j = j′, for all i < i0 ≤ i′, row i0 is not a 1-row of S(V)a,b, and there exists
a 1-row below row i′ (this condition assures that this configuration can not
be achieved by adding the two points separately), then V can be extended to
the valuation V ′ which comprehends pt+1 and pt+2, by modifying the rows
from i+1 to i′, as shown in the matrix S(V ′)a,b of Fig. 23, i.e. it is created a
strip of entries 1 starting in column j and including the rows from i+1 to i′;

22 A. Frosini and M. Nivat

0 0 0

0 0 0 0 0

000

0

1

i

i’

j=j’

0 0 0 0 0

000

1 0 00

00

00

1

S(V)a,b

0 1 1

0 0 0 0 0

000

0

1

i

i’

0 0 0 0 0

000

1 1 10

00

00

1

j=j’

S(V’) a,b

Fig. 23. A particular configuration described by case vi)

If we assume S(V)a,b[i, j] = −1 and S(V)a,b[i′, j′] = 1 a result symmetrical to
vi) holds. Furthermore, in that case, there exists a second valuation which allows
a strip of entries 0 to be created when all the rows from i + 1 to i′ are 1-rows.

Our search for all the possible extensions of V is now complete: some of them
are showed with details, others are just left to the reader.

We observe that there exists S(V)a,b which fits in vi), and which allows a
second extension, achieved by adding pt+1 and pt+2 one by one, as shown in
Fig. 23. However, as one can immediately deduce from the same figure, only one
valuations at a time can present a configuration which admits again two different
extensions in a position greater than (i′, j′).

So, we still have the bound nt ≤ nt+2+1 to the number of different valuations
of p1, . . . , pt+2, and consequently the thesis. ��

On the Reconstruction of Crystals
Through Discrete Tomography

K.J. Batenburg1,2 and W.J. Palenstijn1

1 Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

{kbatenbu, wpalenst}@math.leidenuniv.nl

Abstract. We consider the application of discrete tomography to the
reconstruction of crystal lattices from electron microscopy images. The
model that is commonly used in the literature to describe this problem
assumes that the atoms lie in a strictly regular grid. In practice, this
is often not the case. We propose a model that allows for nonregular
atom positions. We describe a two-step method for reconstructing the
atom positions and types. For the first step, we give an algorithm and
evaluate its performance.

1 Introduction

Over the past ten years, the research field of discrete tomography has received
considerable attention [3]. Among the principal motivations for studying the
tomographic reconstruction of images which have a small discrete set of pixel
values is a demand from materials science. Advances in the field of electron
microscopy have made it possible to count the number of atoms in each column
of a crystal lattice along a small number of directions [2] (see Figure 1). For
this application the reconstruction problem consists of retrieving the individual
atom positions from a small number of projections.

Fig. 1. Atom grid
with hor. and vert.
projections

In the mathematical model that is commonly used in
the literature to describe the reconstruction problem, it
is assumed that the atoms lie in a strictly regular grid.
Each column of atoms corresponds to a single column of
pixels in the resulting image.

The number of atoms in each column is not measured
directly by the detector array of the microscope. Process-
ing of the raw measured data results in a reconstructed
exit wave of the crystal. The phase of the exit wave (see
Figure 2a) can be regarded as a projected image of the
crystal. Figure 2b shows the measured phase along a line
of projected atom columns. In the exit wave phase image
each atom column has a width of several pixels, typically
around 10.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 23–37, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

24 K.J. Batenburg and W.J. Palenstijn

The atom columns appear as spikes in the measured projection. For crystals
that consist of only one type of atom, the height of a peak depends (almost)
linearly on the number of atoms in the corresponding column. Therefore, the
number of atoms in a column can be found by dividing the peak height by the
projection height of a single atom and rounding to the nearest integer.

Fig. 2a. Fig. 2b.

Fig. 2. a) Exit wave reconstruction of a CdSe nanocrystal b) Measured phase along a
line in the crystal projection (marked in the left figure); courtesy of dr. Ch. Kisielowski,
NCEM

For a solid crystal without any irregularities the grid model corresponds well
to physical reality. Unfortunately, many crystals that are of interest in materials
science contain one or more irregularities, known as defects, in the regular grid
structure. Figure 3 shows examples of the various types of defects that may
occur in a crystal that contains two different atom types, indicated by light
and dark gray circles. The defects marked by a, c and d are examples of point
defects. Defect b is an example of an edge dislocation. Note that in most cases
the surrounding atoms have moved away from their grid positions.

Fig. 3. Overview of various crystal defects; courtesy of prof. dr. H. Föll

On the Reconstruction of Crystals Through Discrete Tomography 25

If a crystal contains defects, the atoms do not lie in straight columns, which
makes the method of counting atoms by looking at the peak heights inapplicable.

Fig. 4a. Fig. 4b. Fig. 4c.

Fig. 4. a) A single atom and its measured projection. b) The same atom shifted slightly
to the right. c) Two atoms for which the projection shows only one peak

Figure 4a shows a single atom and its projection as measured by the detector
array. Figure 4b shows the same atom shifted slightly to the right. Although the
displacement is less than the width of a detector cell, we can tell that the atom
has moved from the observed pattern. Clearly, when measuring a single atom,
assuming perfect, noiseless measurements, it is possible to determine its position
with greater accuracy than the actual detector width. Figure 4c shows two atoms
which are not vertically aligned. The measured data shows only a single peak.
Yet, by using the a priori knowledge that the peak is a superposition of two
atom projections, it is possible to recover the horizontal positions of both atoms
exactly by solving a least squares problem (see Section 3.2).

This raises the question if recovering the positions of the atoms is also possible
for larger atom configurations, consisting of many more atoms. If the configura-
tion contains several different atom types, it is not even clear if the number of
atoms of each type can be computed from the measured projection data.

When performing a tomographic reconstruction, projection data from several
directions is available. We want to reconstruct the measured set of atoms (i.e.,
the number of atoms, their horizontal and vertical coordinates and their types)
from the projections.

We propose a two-step method which first performs a reconstruction on each
projection separately. After the atom positions in the direction orthogonal to the
projection direction and the atom types have been determined for all separate
projections, the resulting discrete tomography problem is much simpler than the
original one. In this paper we focus on the first step.

Figure 5 shows the basic idea of the two-step approach. First the x-coordi-
nates of the atoms and their types are computed from the vertical projection.
Then the y-coordinates of the atoms, along with their types, are computed from
the horizontal projections. The process may be repeated if more projections are
available. Subsequently the resulting data is combined into a discrete tomogra-
phy problem. As the computation for each separate projection also yields the
types of the projected atoms, it may be possible to solve the tomography problem
for each atom type independently if the sample contains several atom types.

26 K.J. Batenburg and W.J. Palenstijn

Fig. 5a. Fig. 5b.

1 11 1 1 11 1 2 1

1

1
1
1

1

1

1

1

1

1

1

Fig. 5c.

Fig. 5. a) A set of atoms and two of its projections. b) Coordinates of the atoms,
reconstructed from the projections. c) The resulting discrete tomography problem

In this paper we explore to what extent the atom positions and their types
can be recovered from a single projection. We restrict ourselves to the processing
of 1-dimensional projections of 2-dimensional images. We present an algorithm
that computes the atom positions and their types. Our experimental results
demonstrate that even when many atoms are projected on top of each other it
is still possible to recover the positions and types of the individual atoms that
constitute the projection. The algorithm does not perform an exhaustive search
and is not guaranteed to find a solution. We evaluate its performance and show
that it is capable of finding accurate reconstructions for a varied set of test data.
The results show that even in the presence of a limited amount of noise the
algorithm performs well.

2 Preliminaries

Although the model that we study in this paper is quite flexible, we have to
make several simplifications in comparison with physical reality. In this section
we define our model and describe in what ways the model may deviate from
actual physical experiments.

We restrict ourselves to 2-dimensional images. Although generalization of
our methods to 3-dimensional images is not straightforward, we consider the
development of algorithms for 2D images as a necessary first step towards the
development of more complicated algorithms for the 3D case.

Figure 6a shows a schematic representation of the experimental setup that
we will study. Using an electron microscope, one can measure the effect of an
atom on a passing electron beam. The figure shows a single atom a, centered in
(xa, ya), and its effect on a vertical electron beam. The effect of the atom can
be described by the projection function fa(x), which gives the magnitude of the
effect for any given x. We assume the following properties of fa:

– fa is independent of the y-coordinate of the atom;
– fa is not the zero-function;

On the Reconstruction of Crystals Through Discrete Tomography 27

Fig. 6a. Fig. 6b. Fig. 6c.

Fig. 6. a) A single atom and its projection function. b) The projection of an atom as
measured by the detector array. c) A set of atoms and its measured projection

– there exists an r such that fa(x) = 0 if |x− xa| > r. The smallest such r is
the atom radius ra;

– fa is continuous;
– fa(xa + x) is independent of the atom position xa. In other words: when we

move the atom horizontally, its projection function shifts along with it;
– fa is nondecreasing for x ≤ xa;
– fa is symmetric, i.e., fa(xa − x) = fa(xa + x) for all x.

The first five properties are essential to the algorithm that we propose. The
remaining properties are assumed for computational convenience and efficiency
and are physically realistic. It is possible to remove these assumptions by adapt-
ing our algorithm if necessary.

We use the convention of representing atoms by circles in our figures. We
assume that the projection function of an atom is independent of the orientation
of the atom. In other words, an atom looks the same from all directions.

The detector array does not measure the projection function directly: each
detector cell measures the average value of the projection function on a certain
horizontal interval (see Figure 6b).

In practice, it is not possible to isolate a single atom. When the atom is part
of a larger crystal (see Figure 6c), it is only possible to measure the projec-
tion function ftot of the whole crystal. We assume that ftot is the sum of the
projection functions of all individual atoms that make up the crystal:

ftot(x) =
∑

atoms a

fa(x).

This assumption is not completely valid in practice. The projection functions
of the individual atoms do not add up linearly although the nonlinear effects

28 K.J. Batenburg and W.J. Palenstijn

are small. The method that we describe in this paper can also be used in the
nonlinear case, as long as adding an atom a will result in a sufficiently large
increase of ftot(x). We assume that the measurable effect of the atoms on the
electron beam is limited to the interval [0, w] measured by the microscope where
w is the width of the detector array. In other words, ftot(x) = 0 for x < 0
or x > w. It is possible to drop this assumption, i.e., to allow for a sample
which stretches beyond the detector array, but this will result in a severe loss of
accuracy near the edges.

The detector that measures the projection consists of nd consecutive detector
cells that have a fixed width wdet. We denote the measurement of detector cell
i = 0, 1, . . . , nd − 1 by mi. For noiseless measurements, mi is the integral of the
projection function over the interval [xi, xi + wdet]:

mi =
∫ xi+wdet

xi

ftot(x) dx

Note that since the detector cells are equally spaced, xi = iwdet.
We assume that the crystal consists of a small number of atom types, e.g.,

Cd, Se, Au, etc. Atoms of the same type are indistinguishable. Therefore, each
atom type has a single projection function modulo shifts. The atom types that
make up the crystal and their projection functions are known in advance. The
main problem that we study in this paper concerns the recovery of the individual
atoms from the collective projection:

Problem 1. (Reconstruction Problem) Given the detector measurements and a
set of atom types with their projection functions, determine a set A of atoms
(their types and x-coordinates), such that the euclidean distance between the
projection of A and the measured projection data is minimal.

It is possible that a solution to the reconstruction problem exists which is
quite different from the actual atom configuration. The simplest example of this
would occur if two atom types share the same projection function. If certain
projection functions are integral linear combinations of other projection func-
tions, similar problems occur. The samples that we consider are typically very
thin, around 10 atoms thick, so only linear combinations with equally small
coefficients can lead to such problems.

The detector measurements always contain a certain amount of noise. A high
noise level may also result in a solution to the reconstruction problem that is
different from the actual measured atom configuration.

We now choose a particular set of atom projection functions for demonstra-
ting the basic concepts of our model and our algorithm. We assume that the
atom projection functions are projections of circles, multiplied by a density.
Each atom type t has an associated pair (rt, ρt), the radius and density of the
atom. The projection function of an atom a of type t, centered in xa, is given by

fa(x) =
{

2ρt

√
r2
t − (x− xa)2 if x ∈ [xa − rt, xa + rt]

0 otherwise.

On the Reconstruction of Crystals Through Discrete Tomography 29

Put u =
√

r2
t − (x− xa)2. Then the function Fa, defined by:

Fa(x) =

⎧⎨⎩
0 if x ≤ xa − rt

ρt((x− xa)u + r2
t (arctan (x−xa

u) + π
2)) if x ∈ (xa − rt, xa + rt)

ρtπr
2
t if x ≥ xa + rt

is a primitive function of the projection function. Hence, the contribution mi(a)
of a to the value measured by detector cell i is given by

mi(a) =
∫ xi+wdet

xi

fa(x) dx = Fa(xi + wdet)− Fa(xi).

Our algorithm for solving the reconstruction problem searches for the atom
types and their x-coordinates from left to right. The interval [0, w] is split into
grid cells and each of the cells is assigned a number of atoms, possibly of different
types. We call such an assignment of atoms to grid cells a configuration. An
important step of the algorithm is to determine the minimum and maximum
contribution of an atom a to the measured value mi in detector i if a is assigned
to grid cell c = [lc, rc]. Figure 7 shows the maximum (bold) and minimum
(dashed) values that could be measured in each detector cell if a single atom lies
somewhere within the indicated interval from the left circle to the right circle.

Fig. 7. max. (bold)
and min. (dashed)
values measured in
each detector cell, for
a single atom

Because of the restrictions on fa (it is symmetric
around xa and nondecreasing for x ≤ xa), these values
can be easily determined. We denote the minimal con-
tribution of a to detector cell i by mi,min(a, c) and the
maximal contribution by mi,max(a, c).

For a given configuration s, let ca denote the cell in
which atom a lies. Then

mi,min(s) =
∑

atoms a ∈s

mi,min(a, ca)

is a lower bound on the value measured in detector i and

mi,max(s) =
∑

atoms a ∈s

mi,max(a, ca)

is an upper bound on the value measured in detector i. We use these bounds
extensively in the block phase of our algorithm (see Section 3.1). We say that a
configuration s is k-admissible if

mi,min(s) ≤ mi ≤ mi,max(s) for 0 ≤ i ≤ k and
mi,min(s) ≤ mi for i > k.

Suppose that we try to add atoms to s in order to obtain a configuration
which matches the measured data in all detector cells. If we require that the
additional atoms only affect the values measured in detector cells to the right of
cell k, then k-admissibility is a necessary condition for s to be extendable to a
fitting configuration.

30 K.J. Batenburg and W.J. Palenstijn

In a given configuration s, the position of each atom is determined up to the
width of a grid cell. During the fitting phase of our algorithm (see Section 3.2),
the coordinates of the atoms are fixed at real values that lie within their respec-
tive cells. We call the resulting assignment s̃ of coordinates to atoms an exact
configuration for s. For an exact configuration s̃, the simulated measurement
(the value that would be measured by the detector array for this configuration)
is given by

mi(s̃) =
∫ xi+wdet

xi

∑
a∈s̃

fa(x) dx.

We define the k-distance of an exact configuration s̃ to the projection data
as the square root of

∑k
i=1(mi −mi(s̃))2.

3 Algorithm

In this section we describe an algorithm for solving the reconstruction problem.
Our main goal is to demonstrate that it is indeed possible to recover the atom
types and their approximate positions from the projection data in many cases.
We use heuristics to limit the search space. It may happen that the algorithm
fails to find an optimal solution or even that it fails to find an approximate
solution. However, we demonstrate in Section 4 that our algorithm is capable of
finding high quality solutions for a diverse set of test cases.

The reconstruction problem faces us with the task of recovering both the
number of atoms of each type and the x-coordinates of all these atoms. The
x-coordinates are real values, so they can take an infinite number of different
values. In order to obtain a finite search space, we impose a (1-dimensional)
grid on the interval [0, w] and determine for each atom in which grid cell it lies,
instead of determining the exact atom positions. The imposed grid is typically
finer than the detector grid, e.g., twice as fine. We call this grid the fine grid. It
is relatively easy to calculate lower and upper bounds on the number of atoms
present in each grid cell.

We say that a grid cell c in the fine grid contains an atom a if the left side of
a, defined as xa − ra is in c. In this way, the projection of a has no effect on the
values measured by detector cells to the left of c. Our algorithm constructs atom
configurations incrementally from left to right. Once a configuration has been
constructed up to grid cell c, we can check if the configuration is k-admissible,
where k is the index of the last detector cell that is entirely left of the right
boundary of c.

The main loop of our algorithm iterates over the fine grid, from left to right,
in steps that comprise a number of fine grid cells. We call a group of fine cells
that constitute such a step a block. The size of a block is always a power of two
(see Section 3.1). We denote the number of blocks that cover the interval [0, w]
by nb.

The algorithm maintains a set S of configurations that partially (up to the
current block of fine grid cells) fit the measured data well. At the start of iteration

On the Reconstruction of Crystals Through Discrete Tomography 31

b, a configuration s ∈ S contains atoms up to block b − 1. New atoms are then
added to s in block b, forming a new configuration t, which is called a b-extension
of s.

When the end of the projection data has been reached, the set S contains
configurations that fit the measured data well on the interval [0, w]. Each config-
uration provides an estimate of the atom positions and their types. We remark
that the atom coordinates are not determined exactly; they are determined up
to grid cells in the fine grid. Figure 8 shows an outline of our algorithm. In the
next sections the various steps of the algorithm are described in more detail.

S−1 := {empty configuration};
for b := 0 to nb do
begin

Sb := ∅;
kb := index of last detector cell covered by blocks 0, . . . , b;
foreach s ∈ Sb−1 do
begin

foreach b-extension t of s which is kb-admissible (see Section 3.1) do
begin

fit t to the measured data (see Section 3.2);
if t fits the data well enough then

Sb := Sb ∪ {t};
end

end
cull Sb (see Section 3.3);

end

Fig. 8. Outline of the algorithm

3.1 Block Phase

When searching for b-extensions of a configuration s, we want to determine the
possible sets of atoms that the fine grid cells in b can contain such that the
corresponding b-extension still fits the measured data. We first determine all
such sets for the entire block, where we require the atoms to lie within the left
and right boundary of the block without restricting them to a single fine cell.
To this end, we extend the admissibility concept to the “coarse” grid of blocks,
i.e., we determine the minimal and maximal contribution of atoms contained in
the current block to the measured values mi.

We determine all sets of atoms that the current block can contain which
satisfy this “extended kb-admissibility”. Subsequently, the block grid is refined
by splitting the block into its left and right halves. As each atom must lie on one
of both sides, we form all partitions of the atom set into a left and a right half.
For each partition, we adjust the upper and lower bounds on the projection. If
these (narrower) bounds still satisfy the extended kb-admissibility, we recursively
split it into a new grid that is again twice as fine. We repeat this procedure until

32 K.J. Batenburg and W.J. Palenstijn

we have reached the fine grid level. Note that we always choose a power of two
as the block size.

As an example, we consider a single block of four fine grid cells in the recon-
struction of a crystal that consists of only one atom type (see Figure 9). The
root node of the tree represents the current block b. By using the lower and
upper bounds on the contribution of atoms in b to the measured data it has
been determined that block b must contain 7 atoms. These atoms can be split
in various ways among the left and right halves of b. Only two partitions satisfy
the finer admissibility bounds: 5 atoms left and 2 atoms right or 4 atoms left and
3 atoms right. By repeating this procedure we end up at the leaf nodes, which
represent assignments of the atoms to the four fine grid cells in the block.

Fig. 9. Admissible configurations are determined recursively, forming a tree of refine-
ments

3.2 Fitting Phase

In the block phase, candidate atom configurations are selected which satisfy the
admissibility criterion. However, admissibility is not a sufficient condition that
a configuration must satisfy to fit the measured data. The main problem with
the admissibility condition is that it considers all detector values separately. For
example, the measured effect of an atom can never be equal to its lower bound
for all detectors simultaneously.

For a given configuration s which has been constructed up to block b, the
fitting procedure constructs an exact configuration s̃ for which the atom positions
lie in the prescribed cells such that the kb-distance of s̃ to the measured data is
minimal:

minimize
kb∑

i=1

(mi −mi(s̃))2.

If the kb-distance of the resulting exact configuration is larger than a constant
D (the fitting cutoff), we can conclude that the configuration s is most likely
not a good partial solution to the reconstruction problem and it is discarded.

For solving this least squares problem, we use the Levenberg-Marquardt (LM)
algorithm [1, §4.7.3]. The LM algorithm requires an initial approximation to
the solution of the least squares problem, from which it iteratively moves to
a local optimum. For a configuration t that is a b-extension of a configuration
s, the x-coordinates of atoms that have been added in the current block b are
initialized randomly in a small interval around the center of their respective fine

On the Reconstruction of Crystals Through Discrete Tomography 33

cells. Atoms from previous blocks are initialized at the values found by the LM
algorithm when applied to s.

As the algorithm progresses, the number of atoms up to the current block
– and consequently the number of variables in the least squares problem – will
become increasingly large. It is very unlikely that the addition of a new block will
significantly affect the positions of atoms that are far to the left of the current
block. The positions of such atoms have already been determined by many prior
LM steps. In order to limit the number of variables in the least squares problem,
we fix the positions of these atoms. To be precise, all atoms in cells that are at
least H fine cells to the left of the start of the current block are fixed, where
H is a positive integer constant. Consequently, the terms of the least squares
problem that correspond to detectors that are solely affected by the fixed atoms
are also removed.

The LM algorithm uses the partial derivatives of mi(s̃) with respect to the
atom positions xa. These derivatives can be expressed easily in terms of the
projection function:

∂

∂xa
mi(s̃) = fa(xi)− fa(xi + wdet)

where xi is the left bound of detector cell i.
Although the LM algorithm will find a locally optimal solution of the least

squares problem, it will not necessarily find a global optimum. In its basic form,
the LM algorithm does not allow boundary constraints. We implemented the
boundary constraints by adding a penalty function for each atom to the sum of
squared differences. For an atom a that must lie within the interval [la, ra], the
penalty is defined as:

pa =

⎧⎨⎩
1000(la − xa)1.1 if xa < la
0 if la ≤ xa ≤ ra

1000(xa − ra)1.1 if xa > ra.

Note that the penalty function is continuously differentiable, which is a re-
quirement for the LM algorithm. The reason for using the penalty method over
other methods that use hard boundary constraints is that it provides more infor-
mation. When an atom a is slightly outside its bounds in the optimal solution,
this is a strong indication that a better configuration exists, for which all vari-
ables are within their bounds.

Strictly speaking, the formulation of the minimization problem that is solved
by the LM algorithm does not depend on the concept of configurations at all
(not taking the penalty functions into account). Without a proper start solution
and penalty functions, however, the problem will be extremely difficult to solve
analytically, as it has a huge number of local optima.

3.3 Culling Phase

As the algorithm proceeds from left to right, the number of states in Sb will
typically become larger and larger, unless we resort to culling the set after each
block.

34 K.J. Batenburg and W.J. Palenstijn

Although we do not make rigid assumptions on the horizontal positions of
the atoms, we expect that for crystals the atoms will tend to lie in columns,
resulting in separated peaks. It may happen that a single peak in the projection
data can be approximated well by several different atom configurations. Suppose
that such a peak is followed by one or more zero measurements. If we can extend
any of the partial atom configurations (up to the peak) to a configuration that
fits the whole projection, we can extend all the other configurations in exactly
the same way. Therefore, we delete almost all configurations s ∈ Sb for which

mi,min(s) = mi,max(s) = 0 for all detectors i to the right of b.

We keep only those configurations s for which the kb-distance of the corre-
sponding exact configuration s̃ to the measured data is minimal. Note that we
can store the deleted configurations so that we can retrieve alternative partial so-
lutions later if desired. This form of culling reduces the number of configurations
enormously between consecutive peaks.

Different configurations always result in different sets of boundary constraints
for the LM algorithm. This does not mean, however, that the corresponding
exact configurations cannot be very similar. For example, suppose that in the
measured atom configuration, an atom is near a fine cell boundary. There will
be two configurations that approximate the actual configuration very well: one
that places the atom in the cell to the left of the boundary and one that places
the atom to the right. After the fitting phase, the resulting exact configurations
will typically be almost identical.

Note that the penalty approach in the fitting phase allows atoms to move
slightly out of their boundaries. We define the boundary violation of an atom a
as the squared distance to its nearest cell bound if a lies outside its assigned cell
and zero otherwise.

To prevent the superfluous processing of nearly identical configurations, we
delete configurations for which the corresponding exact configuration is almost
identical to another one, retaining only the configuration for which the exact
configuration adheres best to its cell boundaries, i.e., for which the sum of the
boundary violations is minimal. We say that two exact configurations s̃ and s̃′

are almost identical if

– the number of atoms of each type is the same in s̃ and s̃′;
– for each pair of corresponding atoms between s̃ and s̃′ (when sorted by x-

coordinate) the distance between their respective x-coordinates is smaller
than a positive constant C.

This form of culling reduces the number of configurations significantly while
processing peaks in the projection data.

3.4 Noise

The algorithm that we described does not take noise into account. When working
with practical data, however, noise will always be present. We assume that we

On the Reconstruction of Crystals Through Discrete Tomography 35

have a good indication of the noise level in advance. It is not difficult to adapt
our algorithm to find solutions in the case of noise. Comparisons of mi,min or
mi,max with the projection data are made less strict, allowing a margin that
depends on the noise level. Additionally, the fitting cutoff D has to be increased
since solutions will fit the data less accurately.

4 Experimental Results

In this section we report reconstruction results of our algorithm for a set of
characteristic test images. As the purpose of these experiments is mainly to
show the feasibility of the approach, we do not provide large-scale statistical
data on the performance.

We implemented the algorithm in C++. For solving the nonlinear least
squares problems, we used the MINPACK implementation of the LM-algorithm.
We used a 1.4GHz Opteron machine with 2Gb of RAM.

In some of the tests we added noise to the projection data to simulate noisy
measurements. For each detector i a random sample r from a normal distribution
with average μ = 1 and variance σ2 is generated. The original measurement mi

for that detector is replaced by rmi. For each test the value of σ is indicated in
the table. If σ = 0 no noise was added.

For all tests, we set wdet = 1 and scaled all other quantities accordingly. We
used the circle projections, described in Section 2. We set the value of the constant
H (see Section 3.2) to 40 times the number of fine cells per detector. The constant
C (see Section 3.3) was set to 0.2 times the width of a fine cell. The fitting cutoff
D was typically set to 0.01 for test cases without noise, to 3 for test cases with
noise level σ = 0.01, to 5 for σ = 0.03, and to 10 for σ = 0.05. In cases where this
value of D did not result in a solution, we increased the fitting cutoff slightly.

The first test set is the atom configuration in Figure 3. Table 1 shows the
reconstruction results for two choices of atom radii. The atom densities are the
same for both tests and the data contains no noise. Each block of fine grid cells
has a size of two detector cells. The number of fine grid cells per detector cell is
indicated in the table. In the column “atoms(type)” the number of atoms of types
0 and 1 is listed. The column “type errors” indicates the number of atoms that
were classified as the wrong atom type in the reconstruction. The column “cell
errors” indicates the number of atoms that the algorithm placed in the wrong
cell. We call a cell error an “off by one error” if the cell in the reconstruction is
directly adjacent to the actual cell and an “off by > 1 error” if this is not the case.

For the next set of tests, we decomposed Figure 3 into several slices and
modified some slices to create additional test cases (see Figure 10). The slices
each have their own characteristics. Some contain two atom types, others only
one. Yet, we assume for the cases a, b, c, d, e, f and g that the slices contain two
atom types, so that the algorithm must find out by itself if only one atom type
occurs. The results are shown in Table 2. For the test cases c* and h we use 1
and 3 atom types respectively. For the values (r, ρ) of the three atom types we
used (5, 1), (4.5, 1.41) and (5.4, 1.37) respectively.

36 K.J. Batenburg and W.J. Palenstijn

Table 1. Reconstruction results for the atom configuration in Figure 3, using different
pairs of atom radii

atoms(type) (r0, ρ0) (r1, ρ1) fine cells runtime type cell errors
per det. (min) errors off by one off by > 1

Fig. 3 241(0) 8(1) (5, 1) (4.5, 1.41) 2 26 0 6 0
(7, 1) (6, 1.41) 1 78 0 6 0

Fig. 10. Test configurations with their projections

Table 2. Reconstruction results for the slices in Figure 10 using different noise levels

atoms(type) σ fine cells runtime type cell errors
per det. (min) errors off by one off by > 1

Fig. 10a 33(0) 1(1) 0 2 8 0 1 0
0.01 1 15 0 5 0

Fig. 10b 39(0) 0(1) 0 2 17s 0 0 0
0.01 1 13 0 6 0

Fig. 10c 66(0) 0(1) 0 2 2 0 0 0
0.01 1 27 0 9 0

Fig. 10c* 66 0.03 1 26s N/A 17 0
0.05 1 2 21 2

Fig. 10d 56(0) 6(1) 0 2 15 0 4 0
0.01 1 19 0 7 0

Fig. 10e 47(0) 1(1) 0 2 5 0 3 0
0.01 1 172 5 9 1

Fig. 10f 47(0) 1(1) 0 2 17s 0 0 0
0.01 1 91 0 4 0

Fig. 10g 20(0) 19(1) 0 2 1 0 0 0
0.01 1 35 0 7 0

Fig. 10h 13(0) 13(1) 13(2) 0 1 187 0 0 0

On the Reconstruction of Crystals Through Discrete Tomography 37

5 Discussion

The experimental results show that our algorithm is able to reconstruct all test
sets accurately when there is no noise. Noise is clearly a problem for our algo-
rithm. When reconstructing atom configurations for which we know in advance
that they contain only a single atom type, the tolerance for noise is much higher
than for the case of multiple atom types. Even for a noise level of σ = 0.05
the reconstruction is still quite accurate, considering that the size of a fine grid
cell is 1/10th the size of an atom. When there is more than one atom type the
runtime becomes prohibitively large for noisy data. For three atom types a noise
level of σ = 0.01 already resulted in a runtime that was unacceptably large (not
shown in the table). Our experiments suggest that for two atom types a noise
level around σ = 0.01 still allows accurate reconstruction in reasonable time. We
performed some additional experiments with projection data of thicker samples,
containing longer atom columns. The results suggest that the runtime increases
strongly when the column height increases.

6 Conclusions

In this paper we demonstrated that it is indeed possible to reconstruct the atom
types and their approximate x-coordinates from the measured projection data,
even in the presence of limited noise. For a noise level of σ = 0.01 we are able
to obtain quite accurate reconstructions even when the sample contains two
atom types. Our algorithm is not guaranteed to find the optimal solution of the
reconstruction problem, yet it provides good reconstruction results on our set of
characteristic test images. In future research we will address the second step in
the reconstruction procedure: solving the 2D tomography problem that results
after the individual projections have been processed by our algorithm.

References

1. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization, Academic Press, Lon-
don and New York, (1981)

2. Jinschek, J.R., Batenburg, K.J., Calderon, H., Van Dyck, D., Chen, F.-R.,
Kisielowski, Ch.: Prospects for bright field and dark field electron tomography on
a discrete grid, Microscopy and Microanalysis, Vol. 10, Supplement 3, Cambridge
Journals Online (2004)

3. Herman, G.T., Kuba, A. (ed.): Discrete Tomography: Foundations, Algorithms and
Applications, Birkhäuser Boston (1999)

Binary Tomography by Iterating Linear
Programs from Noisy Projections

Stefan Weber1, Thomas Schüle1,3,
Joachim Hornegger2, and Christoph Schnörr1

1 University of Mannheim, Dept. M&CS, CVGPR-Group,
D-68131 Mannheim, Germany
www.cvgpr.uni-mannheim.de

{wstefan, schuele, schnoerr}@uni-mannheim.de
2 Friedrich-Alexander University,

Erlangen-Nürnberg Dept. CS, D-91058 Erlangen, Germany
www5.informatik.uni-erlangen.de

joachim@hornegger.de
3 Siemens Medical Solutions, D-91301 Forchheim, Germany

www.siemensmedical.com

Abstract. In this paper we improve the behavior of a reconstruction al-
gorithm for binary tomography in the presence of noise. This algorithm
which has recently been published is derived from a primal-dual subgra-
dient method leading to a sequence of linear programs. The objective
function contains a smoothness prior that favors spatially homogeneous
solutions and a concave functional gradually enforcing binary solutions.
We complement the objective function with a term to cope with noisy
projections and evaluate its performance.

Keywords: Discrete Tomography, Combinatorial Optimization, Linear
Programming, D.C. Programming, Noise Suppression.

1 Introduction

Discrete Tomography is concerned with the reconstruction of discrete-valued
functions from projections. Historically, the field originated from several branches
of mathematics like, for example, the combinatorial problem to determine binary
matrices from its row and column sums (see the survey [1]). Meanwhile, however,
progress is not only driven by challenging theoretical problems [2, 3] but also by
real-world applications where discrete tomography might play an essential role
(cf. [4, chapters 15–21]).

The work presented in this paper is motivated by the reconstruction of vol-
umes from few projection directions within a limited range of angles. From the
viewpoint of established mathematical models [5], this is a severely ill-posed
problem. The motivation for considering this difficult problem relates to the ob-
servation that in some specific medical scenarios, it is reasonable to assume that

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 38–51, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Binary Tomography by Iterating Linear Programs from Noisy Projections 39

the function f to be reconstructed is binary-valued . This poses one of the essen-
tial questions of discrete tomography: how can knowledge of the discrete range
of f be exploited in order to regularize and solve the reconstruction problem?

1.1 Motivation

Consider the 32 × 32 image on the left side of figure 1 which shows a black
rectangle. Given the horizontal and the vertical projection, see figure 2, it is
obviously easy to recover the original object from these projections.

Now let us assume that for some reason in each projection the ray in the
middle does not measure the correct value, in fact it measures a longer value in
the first (figure 3) and a smaller one in the second case (figure 4). The question
arises how does a reconstruction algorithm based on linear programming (see
section 3) behave on such disturbed data? In the first case (figure 3) there is

Fig. 1. Consider the following binary reconstruction problem: The horizontal and the
vertical projection of the left image, 32 × 32, are given, see figure 2. For some reason
one ray in both projections does not measure the correct value, but a higher in the
first (figure 3) and a smaller one in the second case (figure 4). The higher measurement
does not bother the reconstruction algorithm at all since there are other constraints
which are previously met. However, in the second case the constraint with the smaller
value is fulfilled before all others and hence the algorithm reacts sensitive to this kind
of error, as can be seen in the right image

no problem at all since the constraints of other rays are met first. Only the con-
straint of the wrong projection ray is not fulfilled entirely, means the inequality
constraint, see equation (5), is “less than” for a given solution. Anyhow, the
reconstruction algorithm will deliver the correct solution. Unfortunately, in the
second case (figure 4) the opposite is true. The constraint of the wrong measure-
ment is met first and hinders the other constraints from being fulfilled entirely.
This is shown in the right image of figure 1 where the reconstruction problem
was solved with (ILP) (one iteration; α = 0.0), see section 3.3. Even for α > 0
which enforces more homogeneous reconstructions the gap is not filled up due
to the hard constraints.

40 S. Weber et al.

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Pr
oj

ec
tio

n
va

lu
e

Horizontal projection

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35

Pr
oj

ec
tio

n
va

lu
e

Vertical projection

Fig. 2. Correct horizontal (left) and vertical projection (right) of the image shown on
the left side of figure 1

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Pr
oj

ec
tio

n
va

lu
e

Horizontal projection

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35

Pr
oj

ec
tio

n
va

lu
e

Vertical projection

Fig. 3. First error case: The detector at position 15 measures a longer value in both
projections

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Pr
oj

ec
tio

n
va

lu
e

Horizontal projection

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35

Pr
oj

ec
tio

n
va

lu
e

Vertical projection

Fig. 4. Second error case: The detector at position 15 measures a lower value in both
projections

The motivation of this paper is to overcome this systematic drawback that
occurs in case of noisy projection data. This is done by the modification of our
(ILP) algorithm which we will describe in section 4.1.

Binary Tomography by Iterating Linear Programs from Noisy Projections 41

2 Problem Statement

The reconstruction problem we consider here is represented by a linear system
of equations Ax = b. Each projection ray corresponds to a row of matrix A, and
its projection value is the corresponding component of b. The entries of A are
given as the length of the intersection of a particular pixel (voxel in the 3D case)
and the corresponding projection ray (see Fig. 5). Each component xi ∈ {0, 1}
indicates whether the corresponding pixel (belongs to the reconstructed object,
xi = 1, or not, xi = 0 (see Fig. 5). The reconstruction problem is to compute the
binary indicator vector x from the under -determined linear system of projection
equations:

Ax = b, x = (x1, ..., xn)� ∈ {0, 1}n (1)

x9x8x7

x4

x1 x2 x3

x5
x6

a3

a4
a5

a6

a7

bi

Fig. 5. Discretization model leading to the algebraic representation of the reconstruc-
tion problem: Ax = b, x ∈ {0, 1}n

3 Related and Prior Work

In order to take advantage of a continuous problem formulation and numeri-
cal interior point methods, Fishburn et al. [6] considered the relaxation xi ∈
[0, 1], i = 1, . . . , n, and investigated the following linear programming approach
for computing a feasible point:

min
x∈[0,1]n

〈0, x〉, Ax = b (2)

In particular, the information provided by feasible solutions in terms of ad-
ditivity and uniqueness of subsets S ⊂ Zn is studied in [6].

3.1 Best Inner Fit (BIF)

Gritzmann et al. [7] introduced the following linear integer programming prob-
lem for binary tomography:

max
x∈{0,1}n

〈e, x〉, e := (1, . . . , 1)�, Ax ≤ b , (3)

42 S. Weber et al.

and suggested a range of greedy approaches within a general framework for local
search. Compared to (2), the objective function (3), called best-inner-fit (BIF)
in [7], looks for the maximal set compatible with the measurements. Further-
more, the formulation of the projection constraints is better suited to cope with
measurement errors and noise.

3.2 Regularized Best Inner Fit (BIF2)

In [8, 9], we studied the relaxation of (3) xi ∈ [0, 1],∀i, supplemented with a
standard smoothness prior enforcing spatial coherency of solutions∑

〈i,j〉
(xi − xj)

2 (4)

Here, the sum runs over all 4 nearest neighbors of the pixel grid (6 neighbors
in the 3D case). In order to incorporate this prior into the linear programming
approach (3), we used the following approximation by means of auxiliary vari-
ables {z〈i,j〉}:

min
x∈[0,1]n,{z〈i,j〉}

−〈e, x〉+ α

2

∑
〈i,j〉

z〈i,j〉 (5)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

3.3 Iterated Linear Programming (ILP)

In [10], we added to the relaxation in (5) a concave functional which is minimal
at the vertices of the domain [0, 1]n enforcing binary solutions.

μ

2
〈x, e− x〉 =

μ

2

∑
i

xi − x2
i , (6)

The strategy is to choose an increasing sequence of values for μ and to min-
imize for each of them (7).

min
x∈[0,1]n,{z〈i,j〉}

−〈e, x〉+ α

2

∑
〈i,j〉

z〈i,j〉 +
μ

2
〈x, e− x〉 (7)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

Problem (7) is no longer convex, of course, but can be reliably minimized
with a sequence of linear programs. This will be explained in section 4.1.

4 Noise Suppression

In case of noisy projection information we cannot consider the entries of the
right-hand side vector b as fixed anymore, see section 1.1. Instead, the algorithm
should take errors into account and suppress effects on the reconstruction as
much as possible.

Binary Tomography by Iterating Linear Programs from Noisy Projections 43

4.1 Iterated Linear Programming with Soft Bounds (ILPSB)

According to the chosen discretization scheme, section 2 and equation (3.1), each
ray is represented by an equation of the form a�

i x ≤ bi, where ai is the i-th row
of matrix A. In order to handle false projections, we introduce the error variables
γi leading to the modified equations a�

i x + γi = bi, γi ∈ R. Since we do not
wish to perturb the projection equations arbitrarily, we include the term

∑
i λi

into the objective function, where:

λi :=
{

τ0γi if γi ≥ 0
− τ1γi else , τ0 > 0, τ1 > 0 (8)

The parameters τ0 and τ1 allow to assign different weights to positive and neg-
ative deviations from the measurement bi. Choosing τ0 > τ1 prefers an approxi-
mation of the best inner fit constraints, Ax ≤ b. Consider again a�

i x + γi = bi,
in order to met equality it is favorable to set more xi instead of compensat-
ing with the expensive γi. Conversely, the choice of τ0 < τ1 approximates the
best outer fit constraints. Finally, if τ0 = τ1 = τ the term

∑
i λi results in

τ
∑

i |γi| = τ ||Ax − b||1. Hence, instead of (7), we consider the following opti-
mization problem:

min
x∈[0,1]n,{z〈i,j〉}

α

2

∑
〈i,j〉

z〈i,j〉 +
μ

2
〈x, e− x〉+ β

m∑
i=1

λi (9)

subject to

Ã

(
x
γ

)
= b , Ã :=

⎛⎜⎝ a11 . . . a1,n 1
...

. . .
...

. . .
am,1 . . . am,n 1

⎞⎟⎠
0 ≤ xi ≤ 1, γi ∈ R,

λi ≥ τ0γi, λi ≥ −τ1γi,

z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

Compared to (ILP), equation (7), we can skip the term −〈e�x〉 in the objec-
tive function of equation (9) since minimizing λi forces x to satisfy the projection
equations.

Further, the regularization parameter β controls the error tolerance.

4.2 Optimization

As the original (ILP) approach (section 3.3), this problem is not convex. To
explain our approach for computing a minimizer, we put

z := (x�, . . . , z〈i,j〉, . . . , λ
�)� (10)

and rewrite all constraints from equation (9), in the form

Âz ≤ b̂ , (11)

44 S. Weber et al.

Using the notation

δC(z) =

{
0 , z ∈ C

+∞ , z �∈ C

for the indicator functions of a convex set C, problem (9) then reads:

min
z

f(z) ,

where (cf. definition (10))

f(z) =
α

2

∑
〈i,j〉

z〈i,j〉 + β

m∑
i=1

λi +
μ

2
〈x, e− x〉+ δK(b̂− Âz) , (12)

= g(z)− h(z) , (13)

K = Rn
+ is the standard cone of nonnegative vectors, and

g(z) =
α

2

∑
〈i,j〉

z〈i,j〉 + β

m∑
i=1

λi + δK(b̂− Âz) , (14)

h(z) =
μ

2
〈x, x− e〉 . (15)

Note that both functions g(z) and h(z) are convex, and that g(z) is non-
smooth due to the linear constraints.

To proceed, we need the following basic concepts [11] defined for a function
f : Rn → R and a set C ⊂ Rn:

dom f =
{
x ∈ Rn

∣∣ f(x) < +∞
}

effective domain of f

f∗(y) = sup
x∈Rn

{
〈x, y〉 − f(x)

}
(conjugate function)

∂f(x) =
{
v
∣∣ f(x) ≥ f(x) + 〈v, x− x〉 , ∀x

}
subdifferential of f at x

We adopt from [12, 13] the following two-step subgradient algorithm for min-
imizing (13):

Subgradient Algorithm:
Choose z0 ∈ dom g arbitrary.
For k = 0, 1, . . . compute:

yk ∈ ∂h(zk) (16)

zk+1 ∈ ∂g∗(yk) (17)

The investigation of this algorithm in [13] includes the following results:

Proposition 1 ([13]). Assume g, h : Rn → R be proper, lower-semicontinuous
and convex, and

dom g ⊂ domh , domh∗ ⊂ dom g∗ . (18)

Then

Binary Tomography by Iterating Linear Programs from Noisy Projections 45

(i) the sequences {zk}, {yk} according to (16), (17) are well-defined,
(ii)

{
g(zk)− h(zk)

}
is decreasing,

(iii) every limit point z∗ of {zk} is a critical point of g − h.

Reconstruction Algorithm.
We apply (16), (17) to problem (9). Condition (18) holds, because obviously
dom g ⊂ domh, and g∗(y) = supz

{
〈z, y〉 − g(z)

}
<∞ for any finite vector y.

(16) reads

yk = ∇h(zk)

= μ(xk − 1
2
e) (19)

since
∂h(z) =

{
∇h(z)

}
if h is differentiable [11]. To compute (17), we note that g is proper, lower-
semicontinuous, and convex. It follows [11] that

∂g∗(y) =
{
z
∣∣ g∗(y) ≥ g∗(y) + 〈z, y − y〉, ∀y

}
(20)

= argmaxz

{
〈y, z〉 − g(z)

}
, (21)

which is a convex optimization problem. Hence, (17) reads:

zk+1 ∈ argminz

{
g(z)− 〈yk, z〉

}
Inserting yk from (19), we finally obtain by virtue of (14), (11), and (10):

Reconstruction Algorithm (μ Fixed).
Choose z0 ∈ dom g arbitrary.

For k = 0, 1, ..., compute zk+1 as minimizer of the linear program:

min
x∈[0,1]n,{z〈i,j〉},λ∈Rm

≥0

−
〈
μ(xk − 1

2
e), x

〉
+

α

2

∑
〈i,j〉

z〈i,j〉 + β

m∑
i=1

λi (22)

subject to

Ã

(
x
γ

)
= b

0 ≤ xi ≤ 1, γi ∈ R,

λi ≥ τ0γi, λi ≥ −τ1γi,

z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

In practice, we start with μ = 0 and repeat the reconstruction algorithm for
increasing values of μ, starting each iteration with the previous reconstruction zk.
This outer iteration loop terminates when ∀i, min{xi, 1− xi} < ε. Throughout
all experiments in section 5, (ILP) or (ILPSB), μ was increased by 0.1.

Note that for μ = 0, we minimize (5), whereas for μ > 0 it pays to shift in (22)
the current iterate in the direction of the negative gradient of the “binarization”
functional (6). While this is an intuitively clear modification of (5), convergence
of the sequence of minimizers of (22) due to proposition 1 is not obvious.

46 S. Weber et al.

5 Experimental Evaluation

For evaluation purposes, we took three parallel projections, 0◦, 45◦, and 90◦, of
the 64 × 64 image shown in figure 6(a). In case of noiseless projections (ILP)
and (ILPSB) are able to find the correct reconstruction within 10 iterations,
figure 6(b)-(d).

We independently added for each projection direction a value δbi ∼ N (0, σ)
to the respective measurement bi in order to simulate the presence of noise.
Roughly speaking, in the experiments with σ = 1.0 a projection value can differ
between ±2 from its correct value and in case of σ = 2.0 even between ±4.
Relative to the image size, 64 × 64, the choice of σ seems to be reasonable for
real application scenarios.

(a) Original (b) Iteration 1.

(c) Iteration 8. (d) Iteration 10.

Fig. 6. (a) Shows the original image, 64×64, from which we have taken three parallel
projections, 0◦, 45◦, and 90◦. (b)-(d) In case of noiseless projections (ILP), α = 0.25,
and (ILPSB), α = 0.25 and β = 1.0, are able to find the correct solution within 10
iterations

Binary Tomography by Iterating Linear Programs from Noisy Projections 47

Fig. 7. Each histogram was created from 255 (64 (horizontal rays) + 64 (vertical rays) +
(127 (diagonal rays))) samples of different normal distributions, μ = 0.0 (in both cases),
σ = 1.0 (left) and σ = 2.0 (right). In order to simulate noise, we added independently
for each projection direction a value δbi ∼ N (0, σ) to the respective measurement bi

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

||
x c

or
re

ct
 -

 x
k ||

1

Iteration k

alpha=0.25
alpha=0.50
alpha=0.75
alpha=1.00

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

||
x c

or
re

ct
 -

 x
k ||

1

Iteration k

beta=0.1
beta=0.2
beta=0.3
beta=0.4

Fig. 8. Experiments with σ = 1.0: Plots the difference between the original image and
the solution at iteration k for (ILP)(left) and (ILPSB)(right). The tables 1 and 2
give the final numerical values of these experiments

0

20

40

60

80

100

0 5 10 15 20 25 30

U
nd

ec
id

ed
 p

ix
el

s
(n

ei
th

er
 0

 n
or

 1
)

(%
)

Iteration k

alpha=0.25
alpha=0.50
alpha=0.75
alpha=1.00

0

20

40

60

80

100

0 5 10 15 20 25 30

 U
nd

ec
id

ed
 p

ix
el

s
(n

ei
th

er
 0

 n
or

 1
)

(%
)

Iteration k

beta=0.1
beta=0.2
beta=0.3
beta=0.4

Fig. 9. Experiments with σ = 1.0: Plots the number of undecided pixels, i.e. pixels
that are neither 0 nor 1, at iteration k for (ILP)(left) and (ILPSB)(right). For the
final numerical values see the tables 1 and 2

48 S. Weber et al.

In order to find a suitable choice of α we decided to check (ILP) with α ∈
{0.25, 0.5, 0.75, 1.0}. In case of noiseless projections, α = 0.25 is a good choice.
However, in combination with noisy projections our experiments show that α
should be set higher (α ∈ [0.5, 0.75]). The (ILP) approach achieved best results
with α = 0.75 (σ = 1.0) and α = 0.5 (σ = 2.0).

We checked (ILPSB) for different choices of β. In case of σ = 1.0 we set the
parameters to τ1 = 1.0, τ0 = 3.0, α = 0.5 and for σ = 2.0 to τ1 = 1.0, τ0 = 5.0,
α = 1.0. In our experiments best performance was achieved with β = 0.2. In
both cases (ILPSB) reached better final results than (ILP).

Numerical results of our experiments are given in table 1 and plots are shown
in the figures 8, 9, 10, and 11. Images of intermediate and the final reconstruction
are presented in figure 12.

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

||
x c

or
re

ct
 -

 x
k ||

1

Iteration k

alpha=0.25
alpha=0.50
alpha=0.75
alpha=1.00

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

||
x c

or
re

ct
 -

 x
k ||

1

Iteration k

beta=0.2
beta=0.3
beta=0.4
beta=0.5

Fig. 10. Experiments with σ = 2.0: Difference between the original image and the
solution at iteration k for (ILP)(left) and (ILPSB)(right). For the final numerical
values see the tables 1 and 2

Table 1. Summary of the (ILP) results for different α and σ. The quality of the recon-
struction (third column) was simply measured by the difference between the original
and the solution, i.e. ||xcorrect − xsolution||1. Further, we measured the number of pix-
els that have not been decided, i.e. that are neither 0 nor 1 (fourth column). The best
result of (ILP) was obtained with α = 0.75 in case of σ = 1.0 and α = 0.5 for σ = 2.0.
Plots of this experiments are shown in the figures 8(left), 9(left), 10(left), and 11(left)

α σ difference undecided
0.25 1.0 124.45 1.00 %
0.50 1.0 156.75 0.63 %
0.75 1.0 112.24 0.49 %
1.00 1.0 172.59 1.03 %
0.25 2.0 240.83 0.98 %
0.50 2.0 142.73 0.90 %
0.75 2.0 159.67 1.25 %
1.00 2.0 215.96 0.93 %

Binary Tomography by Iterating Linear Programs from Noisy Projections 49

0

20

40

60

80

100

0 5 10 15 20 25 30

U
nd

ec
id

ed
 p

ix
el

s
(n

ei
th

er
 0

 n
or

 1
)

(%
)

Iteration k

alpha=0.25
alpha=0.50
alpha=0.75
alpha=1.00

0

20

40

60

80

100

0 5 10 15 20 25 30

 U
nd

ec
id

ed
 p

ix
el

s
(n

ei
th

er
 0

 n
or

 1
)

(%
)

Iteration k

beta=0.2
beta=0.3
beta=0.4
beta=0.5

Fig. 11. Experiments with σ = 2.0: Number of undecided pixels at iteration k

for (ILP)(left) and (ILPSB)(right). For the final numerical values see the tables 1
and 2

Table 2. (ILPSB) results for different α and σ. The third column shows the difference
between original and solution, ||xcorrect−xsolution||1, and the fourth column the number
of undecided pixels. The (ILPSB) approach yields best results for β = 0.2. In both
cases these results were better than the best results achieved by (ILP), see table 1.
Plots of this experiments are shown in the figures 8(right), 9(right), 10(right), and
11(right)

β σ difference undecided
0.1 1.0 191.00 0.00 %
0.2 1.0 68.04 0.05 %
0.3 1.0 93.02 0.05 %
0.4 1.0 104.87 0.10 %
0.2 2.0 119.51 0.17 %
0.3 2.0 232.75 0.20 %
0.4 2.0 220.80 0.20 %
0.5 2.0 194.44 0.59 %

6 Conclusion

In this paper we presented the (ILPSB) approach which is a modification of
(ILP) with noise suppression. For evaluation purposes, noise was simulated by
sampling normal distributions with μ = 0.0 and σ ∈ {1.0, 2.0}. In order to
compare both approaches we measured the difference between the solution and
the original image. Further, we considered the number of pixels that were not
decided, i.e. neither 0 nor 1. In our experiments (ILPSB) achieved better results
than (ILP) under both criteria.

50 S. Weber et al.

(ILP) Iteration 1. (ILP) Iteration 10. (ILP) Iteration 50.

(ILPSB) Iteration 1. (ILPSB) Iteration 10. (ILPSB) Iteration 50.

(ILP) Iteration 1. (ILP) Iteration 10. (ILP) Iteration 50.

(ILPSB) Iteration 1. (ILPSB) Iteration 10. (ILPSB) Iteration 50.

Fig. 12. First row: σ = 1.0, (ILP) with α = 0.75. Second row: σ = 1.0, (ILPSB)
with β = 0.2. Third row: σ = 2.0, (ILP) with α = 0.5. Fourth row: σ = 2.0, (ILPSB)
with β = 0.2

Binary Tomography by Iterating Linear Programs from Noisy Projections 51

References

1. Kuba, A., Herman, G.: Discrete tomography: A historical overview. In Herman,
G.T., Kuba, A., eds.: Discrete Tomography: Foundations, Algorithms, and Appli-
cations. Birkhäuser (1999) 3–34

2. Gardner, R., Gritzmann, P.: Discrete tomography: Determination of finite sets by
x-rays. Trans. Amer. Math. Soc. 349 (1997) 2271–2295

3. Gritzmann, P., Prangenberg, D., de Vries, S., Wiegelmann, M.: Success and fail-
ure of certain reconstruction and uniqueness algorithms in discrete tomography.
Int. J. Imag. Syst. Technol. 9 (1998) 101–109

4. Herman, G., Kuba, A., eds.: Discrete Tomography: Foundations, Algorithms, and
Applications. Birkhäuser Boston (1999)

5. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction.
SIAM, Philadelphia (2001)

6. Fishburn, P., Schwander, P., Shepp, L., Vanderbei, R.: The discrete radon trans-
form and its approximate inversion via linear programming. Discr. Appl. Math.
75 (1997) 39–61

7. Gritzmann, P., de Vries, S., Wiegelmann, M.: Approximating binary images from
discrete x-rays. SIAM J. Optimization 11 (2000) 522–546

8. Weber, S., Schnörr, C., Hornegger, J.: A linear programming relaxation for binary
tomography with smoothness priors. In: Proc. Int. Workshop on Combinatorial
Image Analysis (IWCIA’03). (2003) Palermo, Italy, May 14-16/2003.

9. Weber, S., Schüle, T., Schnörr, C., Hornegger, J.: A linear programming approach
to limited angle 3d reconstruction from dsa projections. Special Issue of Methods
of Information in Medicine 4 (2004) (in press).

10. Weber, S., Schnörr, C., Schüle, T., Hornegger, J.: Binary tomography by iterating
linear programs. Technical report 5/2004, University of Mannheim (2004)

11. Rockafellar, R.: Convex analysis. 2 edn. Princeton Univ. Press, Princeton, NJ
(1972)

12. Dinh, T.P., Elbernoussi, S.: Duality in d.c. (difference of convex functions) opti-
mization subgradient methods. In: Trends in Mathematical Optimization, Int. Se-
ries of Numer. Math. Volume 84. Birkhäuser Verlag, Basel (1988) 277–293

13. Dinh, T.P., An, L.H.: A d.c. optimization algorithm for solving the trust-region
subproblem. SIAM J. Optim. 8 (1998) 476–505

Hexagonal Pattern Languages

K.S. Dersanambika1,�, K. Krithivasan1, C. Martin-Vide2,
and K.G. Subramanian3,��

1 Department of Computer Science and Engineering,
Indian Institute of Technology, Madras

Chennai - 600 036, India
dersanapdf@yahoo.com
kamala@iitm.ernet.in

2 Rovira I Virgili University,
Pl. Imperial Tarraco 1, 43005 Tarragona, Spain

cmv@correu.urv.es
3 Department of Mathematics,

Madras Christian College, Chennai - 600 059, India
kgsmani@vsnl.net

Abstract. Hexagonal tiling systems, hexagonal local picture languages
and hexagonal recognizable picture languages are defined in this paper.
Hexagonal Wang tiles and systems are also introduced. It is noticed that
the family of hexagonal picture languages defined by hexagonal Wang
systems coincides with the family of hexagonal picture languages recog-
nized by hexagonal tiling system. Similar to hv-domino systems describ-
ing rectangular arrays, we define xyz-domino systems and characterize
hexagonal picture languages using this. Unary hexagonal picture lan-
guages are also considered and we analyze some of their properties.

1 Introduction

Recently, searching for a sound definition of finite state recognizability for pic-
ture languages, so that the new definition of the recognizable picture languages
inherits many properties from the existing cases, in [3, 4], local and recogniz-
able picture languages in terms of tiling systems were introduced and studied.
Subsequently hv-local picture languages via domino systems were defined in [6]
and recognizability of a picture language, defined in terms of domino systems is
proved to be equivalent to recognizability defined by tiling systems. Informally
a picture language is defined as local by sensing the presence of a specified set
of square tiles in each picture of the language and requiring no other square tile.
Recognizability is defined by projection of local properties. The chapter on two
dimensional languages in [4] gives account of these details. On the other hand,

� This work is partially supported by University Grants Commission, India.
�� Work partially supported by Spanish Ministry for Education, Culture and Sport,

grant No.SAB 2001-0007.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 52–64, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Hexagonal Pattern Languages 53

in [8] Wang systems, that are labelled Wang tiles, are introduced as a new for-
malism to recognize rectangular picture languages and are proved to be again
equivalent to recognizability defined by tiling systems.

It is very natural to consider hexagonal tiles on triangular grids that corre-
spond to rectangular tiles on rectangular grids. In fact motivated by the studies
of [3, 4, 6, 8], in this paper we define hexagonal local picture languages and hexag-
onal recognizable picture languages. In fact we require certain hexagonal tiles
only to be present in each hexagonal picture of a hexagonal local picture lan-
guage. This leads on to the notion of hexagonal tiling system defining hexagonal
recognizable picture languages.

We also define hexagonal Wang tiles and hexagonal Wang systems and show
the equivalence between hexagonal tiling system and hexagonal Wang system.
Similar to hv-domino systems[6], we define xyz-domino systems and characterize
hexagonal picture languages using these systems. Unary hexagonal picture lan-
guages are also considered and we analyze some properties of hexagonal picture
languages over one letter alphabet.

2 Preliminaries

We review here the notions of hexagonal pictures and hexagonal picture lan-
guages [10]. For notions relating to formal language theory we refer to [9]. Let
Σ be a finite alphabet of symbols.

A hexagonal picture p over Σ is a hexagonal array of symbols of Σ. The set of
all hexagonal arrays of the alphabet Γ is denoted by Γ ��H . A hexagonal picture
language L over Γ is a subset of Γ ��H .

Example 1. A hexagonal picture over the alphabet {a,b,c,d} is shown in Figure 1.

a a a
a b d c

b c c a c
a b d a

a a d

Fig. 1. A hexagonal picture

Definition 1. If x ∈ Γ ��H , then x̂ is the hexagonal array obtained by surround-
ing x with a special boundary symbol # �∈ Γ .

Example 2. A hexagonal picture over the alphabet {a,b,c,d,e,f} surrounded by
#, is shown in Figure 2.

With respect to a triad of triangular axes x,y,z the coordinates of each ele-
ment of the hexagonal picture in Fig 1 is shown in Figure 3.

We now define the notion of projection of a hexagonal picture and of a hexag-
onal picture language. Let Γ and Σ be two finite alphabets and Π : Γ → Σ be
a mapping which we call, a projection.

54 K.S. Dersanambika et al.

#
a b c

a d b a
b c d c b

c d e f
a b c

#

Fig. 2. A hexagonal picture surrounded by #

b c c a c

a b d c

a a a

a b d a

a a d

�
�

��

�
���

�
���

�
��

�
��

�
��

�
��

�
��

(0,0,0) (0,0,1) (0,0,2)

(1,0,0) (0,1,0) (0,1,1) (0,1,2)

(2,0,0) (1,1,0) (0,2,0) (0,2,1) (0,2,2)

(2,1,0) (1,2,0) (1,2,1) (1,2,2)

(2,2,0) (2,2,1) (2,2,2)

�
�

�
��

�
���

x y

z

Fig. 3. Coordinates of elements of hexagonal picture of Fig. 1

Definition 2. Let p ∈ Γ ��H be a hexagonal picture. The projection by mapping
Π of picture p is the picture p′ ∈ Σ��H such that p′(i, j, k) = Π(p(i, j, k)) for all
1 ≤ i ≤ l− 1, 1 ≤ j ≤ m− 1 and 1 ≤ k ≤ n− 1, where (l,m, n) is called the size
of the hexagonal picture.

Definition 3. Let L ⊂ Γ ��H be a hexagonal picture language. The projection
by mapping Π of L is the language L1 = {p′ | p′ = Π(p),∀p ∈ L} ⊆ Σ��H .

Remark 1. As in the case of a hexagonal picture we will denote by Π(L) the
projection by mapping Π of a hexagonal picture language L. That is L1 = Π(L).

3 Recognizability of Hexagonal Pictures

In this section, the main notions of hexagonal local and hexagonal recognizable
picture languages are introduced. For this purpose, we first define a hexagonal tile.

A hexagonal picture of the form shown in Figure 4 is called a hexagonal tile
over an alphabet{a,. . . ,g}.

Given a hexagonal picture p of size (l,m, n), for g ≤ l, h ≤ m and k ≤ n. we
denote by Bg,h,k(p) the set of all hexagonal blocks (or hexagonal subpictures) of
p of size (g, h, k). B2,2,2 is in fact a set of hexagonal tiles.

Hexagonal Pattern Languages 55

d

b c

a

e f
g��

��

��

��

or

a

b c

d

ef

g
��

��		

��

Fig. 4. Two hexagonal tiles

3.1 The Family HLOC

Definition 4. Let Γ be a finite alphabet. A hexagonal picture language L ⊆
Γ ��H is called local if there exists a finite set � of hexagonal tiles over Γ ∪ {#}
such that L = {p ∈ Γ ��H | B2,2,2(p̂) ⊆ �}.

The family of hexagonal local picture languages will be denoted by HLOC.

Example 3. Let Γ = {a} be an alphabet and let � be a set of hexagonal tiles
over Γ . The hexagonal tiles of � are shown in the Figure 5.

The language L = L(�) is the language of hexagonal pictures an element of
which is shown in Figure 6 The language L is indeed a hexagonal local picture
language. Note that the hexagonal picture language over one letter alphabet
with all sides of equal length is not local.

We give another example of a hexagonal local picture language.

Example 4. Consider the hexagonal tiles as in Figure 7.
The language L = L(Δ) is the language of hexagonal pictures of size l =

m = n a member of which is shown in Figure 8.

Applying a coding that replaces 0 and 1 by a, we obtain hexagonal pictures
over {a} with equal sides.

a

#

a

aa

#
��

��		

��
, a

#

#

aa

a
��

��		

��
, a

a #

#

#a

a
��

��		

��
, a

a a

#

##

a
��

��		

��
, a

a a

a

##

#
��

��		

��
,

a

a

a

a#

#
��

��		

��
, a

#

a

aa

a
��

��		

��
, a

a #

#

aa

a
��

��		

��
,

a

a a

#

#a

a
��

��		

��
, a

a a

a

##

a
��

��		

��
, a

a a

a

a#

#
��

��		

��
, a

a

a

aa

#
��

��		

��
, a

a a

a

aa

a
��

��		

��

Fig. 5. Hexagonal tiles of Example 3

56 K.S. Dersanambika et al.

#
a a a a

a a a a a
a a a a a a

a a a a a
a a a a

#

Fig. 6. A hexagonal picture over {a}

1

#

0

00

#
��

��		

��
, 0

#

0

10

1
��

��		

��
, 0

#

0

01

0
��

��		

��
, 0

#

0

00

0
��

��		

��
, 0

#

#

00

0
��

��		

��
, 0

0 #

#

00

0
��

��		

��
,

0

0 0

0

00

0
��

��		

��
, 0

0 0

0

10

1
��

��		

��
, 1

0 0

0

00

0
��

��		

��
, 0

1 0

1

01

0
��

��		

��
, 0

1

0

10

#
��

��		

��
, 0

0

1

00

#
��

��		

��
,

0

0 1

0

00

1
��

��		

��
, 0

1 0

1

00

0
��

��		

��
, 0

0 #

#

01

0
��

��		

��
, 0

0 #

#

10

1
��

��		

��
, 0

0 1

0

00

0
��

��		

��
, 0

1 0

0

01

0
��

��		

��
,

0

0 1

0

10

0
��

��		

��
, 0

0

0

00

#
��

��		

��
, 0

0

0

0#

#
��

��		

��
, 0

0 0

1

00

0
��

��		

��
, 0

0 0

0

00

1
��

��		

��
, 1

0 #

#

#0

0
��

��		

��
,

0

0 1

#

#0

1
��

��		

�� ,
0

0 0

1

01

0
��

��		

�� ,
0

0 0

0

10

0
��

��		

�� ,
0

0 0

0

0#

#
��

��		

�� ,
0

0 0

1

0#

#
��

��		

�� ,
0

1 0

#

#0

0
��

��		

�� ,

0

0 0

#

#0

0
��

��		

��
,

0

1 0

0

00

0
��

��		

��
,

0

0 1

0

1#

#
��

��		

��
,

1

0 0

0

##

#
��

��		

��
,

0

0 1

0

##

1
��

��		

��
,

0

1 0

0

##

0
��

��		

��
,

0

0 0

0

##

0
��

��		

��

,

0

0 0

#

##

0
��

��		

��

,

0

#

#

01

0
��

��		

��

,

0

0 #

#

10

1
��

��		

��

,

0

0

1

0#

#
��

��		

��

,

0

1 0

#

##

0
��

��		

��

.

Fig. 7. Hexagonal Tiles of Example 4

Hexagonal Pattern Languages 57

#
1 0 0

0 0 1 0
0 1 0 0 1

0 0 1 0
1 0 0

#

Fig. 8. A Hexagonal Picture of L in Example 4

3.2 The Family HREC

We now introduce the family of hexagonal recognizable picture languages using
the notion of hexagonal local picture languages introduced in section 3.1 and the
notion of projection of a language.

Definition 5. Let Σ be a finite alphabet. A hexagonal picture language L ⊆
Σ��H is called recognizable if there exists a hexagonal local picture language
L′ (given by a set � of hexagonal tiles) over an alphabet Γ and a mapping
Π : Γ → Σ such that L = Π(L′).

The family of hexagonal recognizable picture languages will be denoted by
HREC.

Definition 6. A hexagonal tiling system T is a 4-tuple (Σ,Γ,Π, θ), where Σ
and Γ are two finite sets of symbols, Π : Γ → Σ is a projection and θ is a set
of hexagonal tiles over the alphabet Γ ∪ {#}.

Definition 7. The hexagonal picture language L ⊆ Σ��H is tiling recognizable
if there exists a tiling system T = (Σ,Γ,Π, θ) such that L = Π(L(θ)).

The language consisting of hexagonal arrays of equal sides over a one letter
alphabet {a} is recognizable but not local.

3.3 Hexagonal Wang Systems

Now, we introduce labelled hexagonal Wang tiles. A labelled hexagonal Wang
tile is a 7-tuple, consisting of 6 colors chosen from a finite set of colors Q, and a
label. The colors are placed at upper left (UL), upper right (UR), Left (L), right
(R), lower left (LL), lower right (LR) positions of the label(Figure 9).

Here hexagonal Wang tiles are used to recognize hexagonal picture languages.
A hexagonal Wang tile can be represented as in Figure 10.

where p, q, r, s, t and u are colors and a is a label taken from a finite alphabet.
Two hexagonal Wang tiles may be adjacent if and only if the adjacent colors are
the same.

Definition 8. A hexagonal Wang system is a triplet W = (Σ,Q, T), where Σ
is a finite alphabet, Q is a finite set of colors and T is a set of labelled Wang
tiles T ⊆ Q6 ×Σ.

58 K.S. Dersanambika et al.

����

����
label

UL UR

RL

LL LR

Fig. 9.

����

����

a

p q

ru

t s

Fig. 10.

We now introduce to the notion of hexagonal tiling in a hexagonal Wang
system (HWS).

Definition 9. Let W = (Σ,Q, T) be a hexagonal Wang system. A hexagonal
pictures H over T , of size (l,m, n) is a hexagonal tiling if it satisfies the follow-
ing conditions:

H(0,0,n) =
����

����

a

B B

Bu

t s

H(0,m,n) =
����

����

a

p B

Bu

t B

H(l,m,n) =
����

����

a

p q

Bu

B B

H(l,m,0) =
����

����

a

p q

rB

B B

H(l,0,0) =
����

����

a

B q

rB

B s

Hexagonal Pattern Languages 59

H(0,0,0) =
����

����

a

B B

rB

t s

H(0,0,k) =
����

����

a

B B

ru

t s
; k = 1, 2, . . . , n− 1

H(0,j,n) =
����

����

a

p B

Bu

t s
; j = 1, 2, . . . ,m− 1

H(i,m,n) =
����

����

a

p q

Bu

t B

; i = 1, 2, . . . , l − 1

H(l,m,k) =
����

����

a

p q

ru

B B

; k = 1, 2, . . . , n− 1

H(l,j,0) =
����

����

a

p q

rB

B s
; j = 1, 2, . . . ,m− 1

H(i,0,0) =
����

����

a

B q

Br

t s
; i = 1, 2, . . . , l − 1

H(i,j,k) =
����

����

a

p q

r

st

u ;
i = 0, 1, 2, . . . , l − 1
j = 1, 2, . . . ,m
k = 0, 1, 2, . . . , n− 1

We obtain the following theorems.
We denote by L(X), the family of hexagonal picture languages recognizable

by X systems, X ∈ {HWS,HTS}.

60 K.S. Dersanambika et al.

Theorem 1. L(HWS) is closed under projection.

Theorem 2. The classes of hexagonal picture languages recognizable
by hexagonal tiling and hexagonal Wang systems are equal. That is, L(HWS) =
L(HTS).

3.4 Hexagonal Domino System

Now we consider another formalism to recognize hexagonal pictures which is
based on domino systems introduced by Latteux et al [6]. Here we consider
dominos of the following types.

a b ���
�

�
���

�
� ��

a

b �
�

���
�

�
���
��a

b

Definition 10. Let L be a hexagonal picture language. The language L is xyz-
local if there exists a set� of dominos as defined above, over the alphabet Σ∪{#}
such that

L = {w ∈ Σ��H | All domino tiles relating to w are ⊆ �}

We write L = L(�), if L is xyz-local and � is a set of dominos satisfying the
condition in the definition.

Definition 11. A hexagonal domino system is a 4-tuple D = (Γ,Σ,�, Π),
where Σ and Γ are two finite alphabets, � is a set of dominos over Γ and
Π : Γ → Σ is a projection.

A hexagonal picture language L is xyz-domino recognizable if there exists a
domino system D such that L = Π(L(D)). The class of hexagonal languages
recognizable by domino systems is denoted by L(HDS).

Theorem 3. HREC = L(HDS).

4 Hexagonal Pictures Over an Alphabet of One Symbol

In this section we analyze some properties of hexagonal picture languages over
an alphabet of one symbol. Let Σ = {0}. A hexagonal picture over Σ can be
described only by its size (l,m, n) or by a triplet (al−1, bm−1, cn−1) ∈ {a}� ×
{b}� × {c}�. For example a picture of size (4, 5, 3) in {a}� × {b}� × {c}� is an
hexagonal array and is denoted by (a3, b4, c2). We use the notation similar to
the one given in [8].

Hexagonal Pattern Languages 61

Example 5. Let us consider the following hexagonal arrays of one symbol.

0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

The set {a}� × {b}� × {c}� is a monoid, so that we can consider the family
of rational subsets of {a}� × {b}� × {c}�.

Infact the operation ◦ on {a}� × {b}� × {c}� defined as follows. If x and y
are two hexagonal arrays of sizes (l,m, n) and (l′,m′, n′) respectively. x ◦ y is a
hexagonal array of size (l + l′ − 1,m + m′ − 1, n + n′ − 1).

Definition 12. Let M be a monoid. The class of rational parts Rat(M) is the
smallest family of languages R ⊆ P(M), where P(M) denotes the set of all
subsets of M.

1. Φ ∈ R,{a} ∈ R for all a ∈M
2. If L1,L2 ∈ R then L1 ∪ L2 ∈ R and L1 ◦ L2 ∈ R.
3. If L ∈ R then L� =

⋃
n≥0 L

n ∈ R.

where ◦ is the concatenation operator and � is the star operator [5]. For more
details about rational relations, one can refer to [1, 2]. Rational subsets of a
monoid can be recognized using automata over monoids.

Definition 13. Let M be a monoid. An automaton over M , A = (Q,M,E, I, F)
is a direct graph whose edges are labelled by elements of M . Q is a finite set
of states, I ⊆ Q is the initial states. F ⊆ Q is the set of final states and
E ⊆ Q×M ×Q is a finite set of labelled edges.

If (p,m, q) ∈ E, we also write pm→ q. A path Π in A is a finite sequence of
labelled edges

Π = P0 m1−→p1 m2−→p2 m3−→ · · · mn−→pn

A path is successful if p0 ∈ I and pn ∈ F . The set of all the sequences m
over M such that there exists a successful path in A labelled by m is denoted
by L(A).

If M = {a}� × {b}� × {c}�, the label of edges are triplets of words. Such an
automaton can be viewed as an automaton with three tapes and is called 3 tape
automaton and is denoted by (3-TA).

Any 3-TA is equivalent to a 3-TA in normal form in which the labels of the
edges are (a, ε, ε), (ε, b, ε), (ε, ε, c), i.e. E ⊆ (Q× (a, ε, ε)×Q) ∪ (Q× (ε, b, ε)×
Q) ∪ (Q× (ε, ε, c)×Q). A 3-TA in normal form at any step changes its reading

62 K.S. Dersanambika et al.

either a letter of the first tape or a letter of second tape or a letter of third
tape. A triplet of words is accepted by a 3-TA if starting from an initial state
after reading all the symbols in the first, second and third tapes, the automaton
reaches a final state.

We call L(3− TA) the class of rational languages recognized by a 3-TAs,
L(3−TA) = {L ⊆ {a}�×{b}�×{c}� | ∃ A ∈ 3−TA : L = L(A) for some 3−
TA, A}.

An example of 3-TA is the following.

Example 6. Let L = {(an, bn, cn) | n ≥ 0}. The language L is recognized by
the automaton A = (Q, {a}� × {b}� × {c}�, E, I, T), where Q = {p0, p1, p2, p3},
I = {p0}, T = {p3} and

E = {(p0, (a, ε, ε), p1), (p1, (ε, b, ε), p2), (p2, (ε, ε, c), p3), (p3, (a, ε, ε), p1)}

We can describe a successful path for (al−1, bm−1, cn−1) using a hexagonal
picture A of size (l,m,n) is defined by

1. Case (1)

p (a, ε, ε)−→ q and the 3− TA is in a cell with coordinates (x, y, z), it goes to a
cell with coordinates (x′, y′, z′) where
(a) If z = 0, then (x′, y′, z′) = (x + 1, y, 0).
(b) If z �= 0, x = 0 and y �= m then (x, y′, z′) = (0, y + 1, z − 1).
(c) If z �= 0, x = 0 and y = m then (x′, y′, z′) = (1,m, z).
(d) If z �= 0 and x �= 0, then (x′, y′, z′) = (x + 1, y, z).

2. Case (2)

p (ε, b, ε)−→ q and the 3− TA is in a cell with coordinates (x, y, z), it goes to a
cell with coordinates (x′, y′, z′) where
(a) If y = m, then (x′, y′, z′) = (x + 1,m, z + 1).
(b) If y �= m, then (x′, y′, z′) = (x, y + 1, z).

3. Case (3)

p (ε, ε, c)−→ q and the 3− TA is in a cell with coordinates (x, y, z), it goes to a
cell with coordinates (x′, y′, z′) where
(a) If x = 0, then (x′, y′, z′) = (0, y, z + 1).
(b) If x �= 0, z = 0, y �= m then (x′, y′, z′) = (x− 1, y + 1, 0).
(c) If x �= 0, z = 0 and y = m then (x′, y′, z′) = (x,m, 1).
(d) If x �= 0, and z �= 0 then (x′, y′, z′) = (x, y, z + 1).

For example taking the language of Example 6 a successful path for(a3, b3, c3) is

(p0, (a, ε, ε), p1) (p1, (ε, b, ε), p2) (p2, (ε, ε, c), p3)
(p3, (a, ε, ε), p1) (p1, (ε, b, ε), p2) (p2, (a, ε, ε), p3)
(p3, (a, ε, ε), p1) (p1, (ε, b, ε), p2) (p2, (a, ε, ε), p3)

Hexagonal Pattern Languages 63

That is represented by

A = {

p0

p1

p2 p3

p1

p2 p3

p1

p2 p3

}

Theorem 4. L(3− TA) = Rat({a}� × {b}� × {c}�).

We denote by HREC the family of parts of {a}� × {b}� × {c}� that are
recognizable as sets of hexagonal pictures over an alphabet of one letter.

Theorem 5. Rat({a}� × {b}� × {c}�) ⊆ HREC

To prove this theorem we use 3-TA’s (for Rat({a}�×{b}�×{c}�)) and Wang
system(for HREC).

Theorem 6. L(3− TA) ⊆ L(HWS)

5 Conclusion

In this paper, inspired by the work of [3], notions of local and recognizable
hexagonal picture languages are introduced. Equivalence of this recognizability
to two other kinds of recognizability is brought out. That is , Hexagonal Wang
systems and xyz-domino systems are introduced and it it is noticed that they
are equivalent to hexagonal tiling systems. Unary hexagonal picture languages
are also considered and some of their properties are obtained.

Acknowledgement. The authors are thankful to the referees for their useful com-
ments.

References

[1] J. Berstel. Transductions and context-free languages. Teubner, stuttgart, 1979.
[2] S. Eilenberg. Automata,Languages and Machines, volume A. Academic Press,

1974.
[3] D. Giammarresi and A. Restivo. Two diamentional finite state recognizability.

fundamenta informaticae, 25(3,4):399–422, 1966.
[4] D. Giammarresi and A. Restivo, ”Two-dimensional Languages”. in Hand book

of Formal languages, eds. A.Salomaa et al., volume 3, Springer-Verlag, Berlin,
1997, pp.215-269.

64 K.S. Dersanambika et al.

[5] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory Languages and
Computation. Addision-Wesley, Reading, 1979.

[6] M. Latteux and D. Simplot. Recognizable picture languages and domino tiling.
Theoretical computer science, 178:275–283, 1997.

[7] M. Mahajan and K. Krithivasan. Hexagonal cellular automata. In R.Narasimhan,
editor, A erspective in Theoretical Computer Science, volume 16 of Series in Com-
puter Science, pages 134–164. World Scientific, Singapur, 1989.

[8] L.D. Prophaetis and S.Varricchio. Recognizability of rectangular pictures by wang
systems. Journel of Automata, Languages and combinatorics, 2(4):269–288, 1997.

[9] A. Salomaa. Formal Languages. Academic Press,Inc, 1973.
[10] G. Siromoney and R. Siromoney. Hexagonal arrays and rectangular blocks. Com-

puter Graphics and Image Processing, 5:353–381, 1976.
[11] K.G. Subramaniam. Hexagonal array grammars. Computer Graphics and Image

Processing, 10(4):388–394, 1979.

A Combinatorial Transparent Surface Modeling
from Polarization Images�

Mohamad Ivan Fanany1, Kiichi Kobayashi1, and Itsuo Kumazawa2

1 NHK Engineering Service Inc., 1-10-11 Kinuta Setagaya-ku Tokyo, Japan
2 Imaging Science and Engineering, Tokyo Institute of Technology

fanany@nes.or.jp

Abstract. This paper presents a combinatorial (decision tree induc-
tion) technique for transparent surface modeling from polarization im-
ages. This technique simultaneously uses the object’s symmetry, brewster
angle, and degree of polarization to select accurate reference points. The
reference points contain information about surface’s normals position
and direction at near occluding boundary. We reconstruct rotationally
symmetric objects by rotating these reference points.

1 Introduction

The simplest way to reconstruct a rotationally symmetric object is by rotating its
silhouette [1]. If the object is transparent, however, finding its silhouette is very
difficult due to lack of body reflection and inter-reflection effect. On the other
hand, current techniques for transparent surface modeling are neither efficient
nor effective in dealing with rotationally symmetric transparent objects. Because
it relies on complicated light setting aimed to illuminate the whole surface of
the object and it suffered much from undesirable inter-reflection effects.

In this study, we pursue a way to obtain accurate reference points that when
they are rotated will give accurate surface. To the best of our knowledge, no
proposed methods elaborating the extraction of such reference points. The in-
duction of accurate reference points is difficult because it is sensitive to the light
wave length, surface’s microstructure, bias index, and noise. The key ideas of our
method are summarized as follows. First, it is a decision tree induction technique
that simultaneously uses object’s symmetry, brewster angle, and degree of polar-
ization (DOP) to extract accurate reference points. This technique directly solves
the ambiguity problem in determining correct incident angle. Second, it is not
necessary to illuminate the whole surface of the object, but only the area near
the object’s occluding boundary. Third, it gives approximate initial condition
for faster iterative relaxation by rotating the normal positions and directions. In
this paper, we investigate the effectiveness of this method in reconstructing an

� This work is supported by the National Institute of Information and Communications
Technology (NICT) of Japan.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 65–76, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

66 M.I. Fanany, K. Kobayashi, and I. Kumazawa

Fig. 1. Transparent objects to be reconstructed

ideal cylindrical acrylic object and a more complicated object such as a plastic
coca-cola bottle filled with water shown in Figure 1.

2 Related Works

Transparent surface modeling is a challenging and important problem in com-
puter vision and graphics communities. Despite recent advances in opaque sur-
face modeling, transparent surface modeling relatively has not received much
attention. Only recently, some prospective techniques for modeling transpar-
ent or specular surface based on polarization images have emerged [2–5]. These
techniques, however, commonly face two fundamental difficulties. First, since
transparent object has only surface reflection and little body reflection, we have
to acquire as much the surface reflection as possible to infer the whole surface
area. Second, since the correspondence between the degree of polarization and
the obtained incident angle or surface normal is not one to one, we have to solve
the ambiguity of selecting the correct value. The first difficulty, namely lack of
surface reflection problem, is previously addressed by introducing very compli-
cated light settings such as continuous spherical diffuser illuminated with many
point light sources located around the sphere. Such light setting (referred to as
photometric sampler firstly proposed by Nayar, et al., [6]) has two limitations: it
restricts the object’s diameter to be sufficiently small compared to the diffuser’s
diameter and it suffered much from undesirable inter-reflections. The second dif-
ficulty, namely the ambiguity problem, is previously solved by introducing other
sources of information such as thermal radiation [3], or new view image [2]. The
necessity of such additional information that is not readily available leads to
even more impractical and time consuming implementation.

Combinatorial Transparent Surface Modeling 67

Many transparent objects around us exhibit some form of symmetry. For
opaque objects, symmetry is well known of giving a powerful concept which fa-
cilitates object characterization and modeling. For instance, the implicit redun-
dancy in symmetric models guides reconstruction process [7, 8], axes of symmetry
provide a method for defining a coordinate system for models [9], and symme-
tries give meaningful hints for shape classification and recognition [10, 11]. For
transparent objects, however, the significance of symmetry is largely unknown.
Because the symmetry is obscured by highlights, lack of body reflection, and
inter-reflections. In fact, these obscuring factors make the methods aimed for
opaque surface fail to deal with transparent objects even if the objects are sim-
pler such as those which have symmetrical properties.

Decision trees represent a simple and powerful method of induction from
labeled instances [12]. One of the strength of decision tree compares to other
methods of induction is that it can be used in situations where considerable
uncertainty is present and the representation of the instances is in terms of
symbolic or fuzzy attributes [13]. In this paper, we implement a practical decision
tree induction technique based on polarization analysis, while at the same time,
we avoid the difficulties faced in current transparent surface modeling techniques.
Our decision tree directly resolves the ambiguity problem and produces more
accurate reference vectors.

3 Polarization Analysis

A more thorough discussion on how to obtain surface normals of transparent sur-
face from polarization analysis of reflected light based on Fresnel equation could
be found in [5, 2]. When unpolarized light is incident on dielectric transparent
surface with an oblique angle, it will be partially polarized. The total intensity
of the reflected light received by camera after passing a polarizer filter is

Is = Imax + Imin, (1)

where

Imax =
F⊥

F⊥ + F‖
, Imin =

F‖
F⊥ + F‖

. (2)

The intensity reflectance F‖ and F⊥ are referred to as the Fresnel reflection
coefficients. They are defined as

F‖ =
tan2(φ− φ

′
)

tan2(φ + φ′)
,

F⊥ = − sin2(φ− φ
′
)

sin2(φ + φ′)
, (3)

where φ and φ
′

are respectively incident and refraction angles. There is φ that
can make F‖ = 0, that is φ = φb which is called as Brewster angle. The φb is
given by φ + φ

′
= π/2 and Snell’s law as

68 M.I. Fanany, K. Kobayashi, and I. Kumazawa

φb = arctan(n), (4)

where n is the bias index.
The degree of polarization (DOP) is defined as

ρ =
Imax − Imin

Imax + Imin
. (5)

For unpolarized light Imax = Imin = 1
2Is hence ρ = 0. When φ = φb (Brew-

ster angle), then F‖ = 0. Hence Imin = 0 so ρ = 1. Combining Equations (2),
(3), and (5), we can rewrite the DOP as

ρ =
2 sinφ tanφ(n2 − sin2 φ)1/2

n2 − sin2 φ + sin2 φ tan2 φ
. (6)

Thus, theoretically if we know the object’s bias index n and ρ, we can esti-
mate φ, which in turn will give the surface normal N (α, ζ), where α is azimuth
and ζ is zenith angles. But practically, it is difficult due to the following fac-
tors: ambiguity of estimated (see [5, 2]), relation between light wave length and
surface’s microstructure, and noise.

4 Light Source Setting

In this study, we use five linear extended light sources (see Figure 2) putted in
parallel with respect to the rotational axis of the object to be reconstructed. Such
configuration is aimed to extract the boundary normal vectors. A set of reference
vectors can later be chosen from these boundary normal vectors. Then we can
infer the whole surface seen from the camera by rotating these reference vectors.
Theoretically, we can use only one linear extended light source. But practically,
there is no guarantee that using only one source would provide adequate number
of boundary normal vectors due to noise and complexity of the object shape. So
we suggest to use more than one light source. Considering such placement of the
camera with respect to the light sources and the object, the only possible surface
reflections are occurred in the left half area near occluding boundary. Contrary,
the lights coming from the right half area of the surface received no polarization
since most of these lights are actually transmitted instead of reflected.

Thus, if we take the simple cylindrical object and put it in this light setting,
we perceive two different highlight areas, i.e., A and B, as shown in Figure 3(a).
The highlights in A come from the reflection of light by near occluding boundary
areas. Whereas, the highlights in B come from the transmission of light by the
back surface. Hence, if we analyze the degree of polarization (DOP) image in
Figure 3(b), we find that the DOP of area A is relatively high, but in the contrary,
the DOP in B is relatively too small to be observed. Realizing such condition,
we could expect that correct surface normal extractable in A. Therefore, we can
rotate the surface normal obtained in A and override the surface normal in B.

The advantages of this light setting are as follows. First, it is simpler because
no diffuser is needed. Second, no restriction on the diameter of the object to be

Combinatorial Transparent Surface Modeling 69

Fig. 2. Light source setting

Fig. 3. The polarization image (a) and DOP image (b) of cylinder object put in our
light setting

70 M.I. Fanany, K. Kobayashi, and I. Kumazawa

reconstructed relative to the diameter of diffuser. Third, less inter-reflection is
incorporated in our light setting. In omni-directional light source using diffuser,
such inter-reflection shown to cause inaccurate reconstruction [2].

5 Reference Points Selection

Equation (5) allows us to measure the DOP by rotating a polarization filter
placed in front of camera. By rotating the polarization filter, we obtain a sequence
of images of an object. We measure from 0 to 180 degrees at 5 intervals. From this
process, we obtain 37 images. We observe variance of intensity at each pixel of
the 37 images. By using the least-squares minimization, we fit a sinusoidal curve
to those intensities and then determine the maximum and minimum intensities,
Imax and Imin. For example we can observe the intensities and its fitted curves
(Figure 4) of two pixels in one scanned line. We observe that smaller degree of
polarization ρ is more sensitive to noise, so we expect accurate surface’s normal
cannot be produced in these areas.

Fig. 4. Curve fitting of intensities of smaller ρ (left) and higher ρ (right)

Using our light source setting mentioned in Section 4 we will observe DOP
image as shown in Figure 3. Since the DOP is high on specular area (the area A
in Figure 3), we expect that accurate surface’s normal N (α, ζ) in this area can
be extracted. α is extracted by measuring the polarization rotation angle θ that
give Imax. ζ is extracted from Equation (6) after we know the ρ (DOP) from
Equation (5) and bias index n. In this study, we used Hi-Vision camera with
long focal length and observe the zoomed in object. Thus we can assume that
we observe orthographic projection image where ζ = φ (see light reflection from
the top of rotationally symmetric object in Figure 5). In addition, we also use
normal density filter to reduce undesirable noise.

In a scanned line L in the DOP image there will be a set of points P =
{p1, p2, · · · , pk} where the ρ(p1), ρ(p2), · · · , ρ(pk) ≥ ρth, where ρth is a given

Combinatorial Transparent Surface Modeling 71

Fig. 5. Inferencing the zenith ζ and height h from orthographic image

DOP threshold. We call P as a set of valid points. Since the ρ(pi) are great
we can expect to find good candidate of reference vectors there. But this does
not guarantee that the extracted reference vectors or points are the ones with
correct normal direction (in this case it is ζ, since α is measured independently
by observing θ) and position (in this case, it is the height h = R/ cos ζ (see
Figure 5).

This study pursue a way to extract such accurate reference vectors for rota-
tion. We investigate three different ways to do this. First, the simplest way is by
taking the point pk where ρ(pk) > all other points in P . Second, take the repre-
sentational average of vector position h̄ and direction ζ̄ where h̄ = Σh(pi)/#P
(i = 0, 1, . . . ,#P ; where #P is the cardinality of the set P) and ζ̄ = Σζ(pi/#P).
These two simple ways tend to generate reference vectors with wrong h and ζ.
In the first way, the ambiguity problem is not addressed and then inconsistent ζs
may be generated even though the candidate vector’s pixel positions are closed.
In the second way, in addition to not resolving the ambiguity problem, it aver-
ages these inconsistent candidate vectors. According to our observation the error
that can be caused by the second way might be almost 0.5R.

After observing these two failed methods, we propose the third way, that
is a decision tree induction algorithm shown in Figure 6. In this decision tree,
the observed specular reflections are obtained on the half left surface area of
the rotational symmetric object. When the the observed specular reflection are
obtained from the half right area of the object, the second level subtree (ζ <
φb and ζ ≥ φb) should be interchanged. This decision tree directly solve the
ambiguity problem by incorporating the object symmetry, brewster angle and
DOP. The method is easier to understand by direct observation on how this is
applied on real data sample (see Subsection 5.1).

Furthermore, the surface obtained by rotating the reference points can be
used as approximate initial condition for faster relaxation to recover surface’s

72 M.I. Fanany, K. Kobayashi, and I. Kumazawa

Fig. 6. Decision tree induction of referencing accurate reference points

height from gradient or needle map (Please refer to [14], pages 48–49). We can
also further imposes smoothing constraint to the resulted azimuths α and zeniths
ζ (see [15]).

5.1 Direct Observation

As an example, we analyze the polarization image of cylindrical acrylic object
(Fig. 3. b). The size of the image is 280 pixels width and 540 pixels height.
According to a catalogue [16], the refractive index for acrylic object 1.48 ∼ 1.50.
If we take the n = 1.5 then the Brewster angle is φb = 0.983 radian. The DOP
histogram of this image is shown in Figure 7. Let us take three arbitrary scanned
lines by setting the DOP threshold to ρth = 0.68. We obtain two candidate
vectors on a scanned line at y = 4, four vectors at y = 10, and three vectors at
y = 140. The azimuth and zenith angles are measured in radian. We list these
candidate vectors as follows.

y = 4: \\
c = 0, az = 1.5468788, ze = 0.6981317, dop = 0.6918033 \\
c = 1, az = 1.5468788, ze = 1.2566371, dop = 0.6819789 \\
y = 10: \\
c = 0, az = 1.5468788, ze = 1.2566371, dop = 0.6822431 \\
c = 1, az = 1.5468788, ze = 0.7155850, dop = 0.7058824 \\
c = 2, az = 1.6341454, ze = 0.6981317, dop = 0.6917808 \\
c = 3, az = 1.6341454, ze = 1.2566371, dop = 0.6830189 \\

Combinatorial Transparent Surface Modeling 73

y = 140: \\
c = 0, az = 1.5468788, ze = 0.6981317, dop = 0.7000000 \\
c = 1, az = 1.5468788, ze = 1.2391838, dop = 0.7213623 \\
c = 2, az = 1.5468788, ze = 0.7155850, dop = 0.7077922 \\

Each scanned line is processed independently. At scanned line y = 4, we dis-
card the candidate c = 1 because its zenith angle is greater that Brewster angle.
At y = 10, we discard the candidates c = 0 and c = 3, and select the c = 1. At
y = 140, we discard c = 1, even though its DOP is the greatest among the three
candidates, and we select c = 2. At these three scanned lines, we end up with
three reference vectors give two different zenith angles: 0.6981317, 0.7155850.
These two angles give height estimates h = 0.77R and h = 0.75R, which are
reasonably close.

Fig. 7. The DOP histogram of Fig. 3(b)

6 Experiments

In this paper, we investigate the effectiveness of our method in reconstructing
a simple cylindrical acrylic object and a more complicated object such as a
coca-cola bottle filled with water. Beside more complex, the coca-cola bottle
also contains concavities. The normal reconstruction for the two objects are
shown in Figure 8. Even though we observe that the generated normals are not
perfectly smooth, the estimated height from this normals shown in Figure 9 are
acceptable. This reconstructed shapes are the results of relaxation procedure

74 M.I. Fanany, K. Kobayashi, and I. Kumazawa

Fig. 8. Reconstructed normals

([14]) by putting the shape and normals from our rotation procedure as initial
conditions. By doing so, the relaxation process converges faster (in average, it
needs only about 12 iterations) to a smoother and more accurate surface.

We tried to evaluate quantitatively the error generated by our methods. For
the acrylic cylindrical object we measured its diameter as 3.0 cm. For the coca-
cola bottle we measured several diameters of its parts. The average error for the
cylindrical object is 0.038 cm, while for the coca-cola bottle is 0.147 cm.

7 Conclusion

In this paper, we present a simple decision tree induction for transparent surface
modeling of rotationally symmetric objects. This decision tree allows practical
induction of accurate reference vectors for rotation. The experiment results also
show that our light configuration, which allows the decision tree induction is
reasonably efficient and effective for reconstructing rotationally symmetric ob-
jects. The significance of this study are as follows. First, this will open ways for
more practical surface reconstruction based on simple decision tree. Second, the
reconstructed object could provide initial estimation that further expanded to
deal with concavity and inter-reflection. Even though our method is limited to
work on rotationally symmetric objects, it can also further used for non sym-

Combinatorial Transparent Surface Modeling 75

Fig. 9. Reconstructed shapes

metric objects by extracting the symmetries contained in such non symmetric
objets. In our view, doing so might be more efficient rather than directly deal
with non-symmetric objects.

References

1. Szeliski, R.: From images to models (and beyond): a personal retrospective. In
Vision Interface ’97, Kelowna, British Columbia. Canadian Image Processing and
Pattern Recognition Society, (1997) 126-137.

2. Miyazaki, D., Kagesawa, M., Ikeuchi, K.: Transparent Surface Modeling from a
Pair of Polarization Images. IEEE Trans. On PAMI, Vol. 26, No. 1, January (2004)
73–82.

3. Miyazaki, D., Saito, M., Sato, Y., Ikeuchi, I.: Determining Surface Orientations of
Transparent Objects Based on Polarization Degrees in Visible and Infrared Wave-
length. J. Opt. Soc. Am. A, Vol. 19, No. 4, April (2002) 687–694.

4. Rahmann, S., Centerakis, N.: Reconstruction of Specular Surfaces Using Polariza-
tion Imaging, Proc. IEEE Conf. Computer Vision and Pattern Recognition, (2001)
246–253.

5. Saito, M., Sato, Y., Ikeuchi, K., Kashiwagi, H.: Measurement of surface orientation
of transparent objects by use of polarization in highlight. J. Opt. Soc. Am. A/Vol.
16, No. 9 September (1999) 2286–2293.

76 M.I. Fanany, K. Kobayashi, and I. Kumazawa

6. Nayar, S. K., Ikeuchi, K., Kanade, T.: Determining Shape and Reflectance of Hy-
brid Surface by Photometric Sampling. IEEE Trans. Robotics and Automation,
Vol. 6, No. 4, August, (1990) 418–431.

7. Mitsumoto, H., Tamura, S., Okazaki., K, Fukui, Y.: Reconstruction using mirror
images based on a plane symmetry recovery method. IEEE Trans. on PAMI, Vol.
14, (1992) 941–946.

8. Zabrodsky, H., Peleg, S., Avnir., D.; Symmetry as a continuous feature. IEEE
Trans. on PAMI, Vol. 17, (1995) 1154–1156.

9. Liu, Y., Rothfus, W., Kanade, T.: Content-based 3d neororadiologic image re-
trieval: Preliminary results. IEEE International Workshop on Content-based Ac-
cess of Image and Video Databases, January, (1998) 91 - 100.

10. Leou, J., Tsai, W.: Automatic rotational symmetry determination for shape anal-
ysis. Pattern Recognition 20, (1987) 571–582.

11. Wolfson, H., Reisfeld, D., Yeshurun, Y.: Robust facial feature detection using sym-
metry. Proc. of Int. Conf. on Pattern Recognition. (1992) 117–120.

12. Quinlan, J.R.: Induction of decision trees. Machine Learning, Vol. 1 (1986) 81–106.
13. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets System, Vol.

69, (1995) 125–139.
14. Horn, B. K. P.: Height and Gradient from Shading. International Journal of Com-

puter Vision, 5:1, (1990) 37–75.
15. Miyazaki, D., Tan, R. T., Hara, K., Ikeuchi, K.: Polarization-based Inverse Render-

ing from Single View. Proc. International Symposium on CREST Digital Archiving
Project, Tokyo (2003) 51–65.

16. http://www.boedeker.com/acryl_p.htm

Integral Trees: Subtree Depth and Diameter

Walter G. Kropatsch1, Yll Haxhimusa1, and Zygmunt Pizlo2

1,� Vienna University of Technology, Institute of Computer Aided Automation,
PRIP 183/2, Favoritenstr, 9, A-1040 Vienna, Austria

{krw, yll}@prip.tuwien.ac.at
2,�� Department of Psychological Sciences, Purdue University, West Lafayette,

IN 47907-1364
pizlo@psych.purdue.edu

Abstract. Regions in an image graph can be described by their span-
ning tree. A graph pyramid is a stack of image graphs at different gran-
ularities. Integral features capture important properties of these regions
and the associated trees. We compute the depth of a rooted tree, its
diameter and the center which becomes the root in the top-down decom-
position of a region. The integral tree is an intermediate representation
labeling each vertex of the tree with the integral feature(s) of the sub-
tree. Parallel algorithms efficiently compute the integral trees for subtree
depth and diameter enabling local decisions with global validity in sub-
sequent top-down processes.

1 Introduction

Viola and Jones introduced the ‘Integral Image’ [1] as an intermediate repre-
sentation for the image to compute rapidly rectangular features. Each pixel of
an integral image stores the sum of values of a window defined by the left up-
per image corner and the pixel in the lower right corner. The computation of
the integral image is linear and the computation of the sum of any rectangular
window uses only four pixels of the integral image. Its effectiveness has been
demonstrated in people tracking [2]. Rotated windows and articulated move-
ments of arms and legs cause still problems. We follow the strategy to adapt the
data structure to the data and compute features on the adapted structures.

On a graph, vertices take the role of pixels in images. Image graphs are
embedded in the plane and can take many different forms: the vertices of the
‘neighborhood graph’ correspond to pixels and are connected by edges if the
corresponding pixels are neighbors. In the ‘region-adjacency-graph’ vertices cor-
respond to regions in the image and edges connect two vertices if the two corre-
sponding regions share a common boundary. Graphs of different granularity can

� Supported by the FWF under grants P14445-MAT, P14662-INF and FSP-S9103-
N04.

�� Supported by ECVision and by the Air Force Office of Scientific Research.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 77–87, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

78 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

be related through the concept of dual graph contraction [3] giving rise to graph
pyramids representing the regions of an image at multiple resolutions.

We start by further motivating the research by similar problems and solutions
in the k−traveling salesperson problem and other visual problems. Section 2
transfers the classical parallel algorithm for computing the distance transform
of a discrete binary shape from the discrete grid to the plane graph G. We then
formulate an algorithm which computes a spanning tree of a given shape by
successively removing edges that connect a foreground face with the background
(section 3). This is similar to the distance transform and to well-known shrinking
and thinning algorithms. However, in contrast to those algorithms, the goal is
not to prune the branches of a skeleton of the shape but to determine its ‘internal
structure’. This internal structure is used in section 4 to determine the diameter
and the center of the spanning tree. The diameter of a graph is the longest among
the shortest paths between any pair of vertices. Its determination involves the
search for the shortest path between any pair of vertices. This is much less
complex if the graph is a tree. This is one of the reasons why we first search for
a tree spanning the graph and find then the diameter of this tree. Partly as a
by-product we compute the maximal path lengths of all branches of the subtrees
and the respective diameters (section 5.1). These ‘integral features’ describe a
property of a complete subtree. That is why we chose the name ‘integral tree’
in analogy to integral image. Integral trees can be used in many ways. We will
show first experimental results for a top-down decomposition of the spanning
tree into a disjoint set of subtrees with balanced diameters (section 5).

1.1 Further Motivation: TSP and Visual Problem Solving

Let us consider the traveling salesperson problem (TSP) in which n cities must be
visited in the shortest time. Suppose that the regulation allows an agent to travel
to at most 10 cities. The solution to this problem requires many agents, breaking
the original TSP problem into k TSP problems. A simple solution is to cover
the vertices of the graph with k−tours and to balance the load of the agents,
for example by minimizing the maximal tour, or by minimizing the diameter
of the subgraph. The TSP is that of finding a shortest tour (minimum length)
that visits all the vertices of a given graph with weights on edges. The problem
is known to be computationally intractable (NP-hard) [4]. Several heuristics
are known to solve practical instances [4]. The TSP has been generalized to
multiple salespersons (k−TSP), allowing each salesperson to visit n/k out of n
cities. Another closely related problem is the multiple minimum spanning tree
(k−MST) problem, where k trees are generated where each tree contains a root,
and the size of the largest tree in the forest is minimized. Our goal is to generate
a spanning forest that consists of k trees with roots, such that the diameters of
the trees are balanced, i.e. none of the diameters of trees in the forest is greatly
larger than the other tree diameter.

More recently, pyramid algorithms have been used to model the mental mech-
anisms involved in solving the visual version of the TSP [5], as well as other types
of visual problems [6]. Humans seem to represent states of a problem by clus-

Integral Trees: Subtree Depth and Diameter 79

ters (recursively) and determine the sequence of transformations from the start
to the goal state by a top-down sequence of approximations. This approach
leads to algorithms whose computational complexity is as low as that of the
mental processes (i.e. linear), producing solution paths that are close to
optimal. It follows that pyramid models may provide the first plausible
explanation of the phenomenon of the directedness of thought and
reasoning [7].

It is important to emphasize that by “pyramid algorithms” we mean any
computational tool that performs image analysis based on multiple representa-
tions of the image forming a hierarchy with different scales and resolution, and
in which the height (number) of a given level is a logarithmic function of the
scale (and resolution) of the operators. Multiresolution pyramids form a sub-
set of the general class of exponential pyramid algorithms. Pyramid algorithms,
which incorporate a wider class of operators, are adequate models for the Gestalt
rules of perceptual organization such as proximity, good continuation, common
fate [8]. They also provide an adequate model of Weber’s law and the speed-
accuracy tradeoff in size perception, as well as of the phenomenon of mental
size transformation [9]. In the case of size processing, modeling visual processes
involves both bottom-up (fine to coarse) and top-down (coarse to fine) analyses.
The top-down processing seems also critical in solving the image segmentation
problem, which is a difficult inverse problem. This problem has received much
attention in psychological literature, and is known as figure-ground segregation
phenomenon [10].

2 Distance Transform

Let G(V,E) denote a graph embedded in the plane and G(F, E) its dual. Al-
gorithm in Fig. 1 labels each vertex of the graph G(V,E) with the (shortest)
distance dmin : V �→ {0, 1, . . . ,∞} from the background. Assume that the ver-
tices of the graph describe a binary shape and the edges determine the vertice’s
neighbors. It is the translation of the parallel algorithm [12] from grids to graphs.
Distances of vertices on the boundary to the background are initialized to 1. Edge
lengths l(e) > 0 in Algorithm Fig. 1 accomodate the fact that lengths other than
1 can appear. On square grids diagonal connections could be weighted by

√
2 or

by appropriate chamfer distances [11]. In contracted graphs edges correspond to
paths connecting two vertices. In such cases the length of the contracted edge
could hold the length of the corresponding path. The integral property resulting

1. Initialize distances dmin(v) :=
{

1 if v is on the boundary
∞ otherwise

2. repeat ∀v ∈ V in parallel:
dmin(v) := min(dmin(v), min{l(e) + dmin(w)|(v, w) ∈ E or (w, v) ∈ E})

Fig. 1. Algorithm: Parallel distance transform on a graph

80 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

from the distance transform is that the boundary of the shape can be reached
from any vertex v with a path of length dmin(v) at most.

3 Determine the Spanning Tree

The smallest connected graph covering a given graph is a spanning tree. The
diameter of a tree is easier and more efficient to determine than of a graph in
general. In addition elongated concave shapes force the diameter to run along
the shape’s boundary, which is very sensitive to noise.

3.1 Minimal Spanning Tree

The greedy algorithm proceeds as follows: fist it computes distance transform
dmin; then computes edge weights w(e) = −dmin(u)dmin(v) for all edges e =
(u, v); and finally finds minimal spanning tree using Kruskal’s greedy algorithm.
Skeletons based on morphology or distance transform give usually better results
but the subsequent algorithms were able to cope with these deficiences.

3.2 Spanning Skeleton

The construction of the spanning tree is related to the computation of the dis-
tance transform and the skeleton of the shape. It operates on the dual graph
G = (F, E) consisting of faces F separated by dual edges E. Let us denote
B ⊂ F the background face(s) and by degb(f) := |{(f, b) ∈ E}| the number of
edges connecting a face f ∈ F with the background B. Algorithm in Fig. 2 uses
dual graph contraction [3] to successively remove edges connecting the interior
of the shape with the background B while simplifying the boundary by removing
unnecessary vertices of degree one and two. In our case dual removal of an edge
e merges face f with the background face b and corresponds to contracting edge
e = (f, b) in the dual graph G. The result is a set of contraction kernels used

to build the graph pyramid up to the apex. The searched spanning tree is the
equivalent contraction kernel (V,Eeck), Eeck ⊂ E [13] of the apex.

1. dually contract vertices of degree 1 and 2 in G; (the connecting edges correspond
to self-loops and multi-edges in the dual graph G.)

2. dually remove all edges e ∈ E (in parallel) if
– edge e = (f, b) ∈ E, b ∈ B separates
– a foreground face f ∈ F \ B from the background
– in a unique way: degb(f) = 1.

3. for all faces f ∈ F multiply connected with the background, degb(f) > 1, do:
(a) select an edge e = (f, b) ∈ E ⊂ (F \ B) × B and
(b) dually remove e from E.

4. repeat steps 1 – 3 until F = ∅
5. spanning skeleton is the equivalent spanning tree of the surviving vertex of G.

Fig. 2. Algorithm: Spanning Skeleton

Integral Trees: Subtree Depth and Diameter 81

3.3 Discussion and Computational Complexity

In Step 1 of the algorithm we distinguish two cases: i) If the vertices of degree less
than 3 are adjacent to the background B a complete subtree externally attached
to the shape is removed after a number of (sequential) steps corresponding to
the length of the longest branch of the tree, and ii) vertices of degrees 1 and
2 may also exist inside the shape if they are not adjacent to the background.
They are removed similar to the external tree in the very first step. As before
the complexity depends on the longest branch. Since the dual contraction of all
trees is independent of each other, the parallel complexity is bound by the longest
branch of any tree. Step 2 removes all edges on the boundary of the graph as long
as the non-background face is not multiply connected to the background. They
are all independent of each other and hence can be removed in one single parallel
step. Step 3 removes one of the edges of faces which are multiply connected to
the background. Since vertices of degree 2 have been eliminated in step 1 this can
only happen at ‘thin’ parts of the graph (where the removal of 2 or more such
edges would disconnect the graph). Only one edge need to be removed to allow
the face to merge with the background. Since different faces multiply connected
to the background are independent of each other all dual removals can be done
in one single parallel step.

The total number of steps needed to complete one iteration of steps 1-3
depends on the longest branch of a tree in step 1 and needs two additional steps.
The branches contracted in step one become part of the final spanning tree hence
in total, all steps 1 need at most as many steps as the longest path through the
tree (i.e. its diameter). The number of iterations is limited by the thickness of
the graph since at each iteration one layer of faces adjacent to the background
is removed. Hence we conclude that the parallel complexity of the algorithm in
the worst case is O(diameter(G) + thickness(G)).

4 Diameter and Integral Tree of Depths

Given a (spanning) tree adapted to the shape we would like to measure distances
between any vertices of the tree. Algorithm in Fig. 3a labels each vertex with
the length dmax of the longest tree branch away from the center. The result is
the same as produced by [14] but it differs by its parallel iterated and local
operations. Given the (spanning) tree T = (V,Eeck) algorithm Subtree Depth
computes the vertex attribute dmax in O(|diameter|/2) parallel steps. If the tree
is cut at any edge e = (u, v), dmax(v) gives the depth of the remaining tree which
includes vertex v. It has the integral property that any leaf of the subtree can be
reached along a path not longer than dmax(v). The function max2{M} returns
the second largest value of the argument set M , i.e. max2(M) := max(M \
{max(M)}).1

1 If set M has less than two elements, then the function is not defined in general. If,
however, it appears as a member of a set like in min(·) or max(·) then it can simply
be ignored or, formally, replaced by the empty set: max2(∅) = max2{x} = ∅.

82 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

1. Initialize distances dmax(v) :={
0 if v is a leaf, degT (v) = 1
∞ otherwise

2. repeat for all vertices v ∈ V in
parallel:
dmax(v) :=
min(dmax(v), max2{l(e) +
dmax(w)|(v, w) ∈ Eeck or (w, v) ∈
Eeck})

c → · · · → v
→ w

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

→ s1 · · · → l1

→ u

⎧⎨
⎩

→ s2 · · · l2
→ s3 · · · l3
→ s4 · · · l4

→ sn · · · → ln

a b

Fig. 3. a) Algorithm: Subtree Depth and b) subdivision of the Subtree Depth

4.1 Center and Diameter of the Spanning Tree

The sample result is shown in Fig. 4b. Each vertex is labeled with two values,
the first being the subtree depth. The diameter is the longest path2 through
the tree and consists of the two sub-paths v0, v1, . . . , v9 and w9, w8, . . . , w0 with
dmax(vi) = dmax(wi) = i, i = 0 . . . 9. Its length is 19. There is one edge (v9, w9) of
which both ends have (maximal) depth 9. This is the center of the tree with
the (integral) property that all leafs (i.e. all vertices!) of the tree can be reached
in maximally dmax(v9) = 9 steps. The diameter of this tree is obviously 19, an
odd number. All trees with an odd diameter have a central edge. Trees with
an even diameter have a single maximum dmax-value, e.g. a vertex is the center.
Similar information is contained in the subtree depth of the other vertices: Given
the center of the tree, we can orient the edges such that they either point towards
the center or away from the center. Let us assume in the following that all edges
of the tree are oriented towards the center.

4.2 Computational Complexity of Algorithm Subtree Depth

We consider the number of repetitions of step 2 and the number of steps required
to compute max2. First we note that the algorithm stops if the function dmax(v)
does not change after updating of step 2. It starts with vertices of subtree depth
0 and increases the distance values at each (parallel) iteration. Hence step 2
need not be repeated more than half the diameter times. To compute the dmax-
value in step 2 all the neighbors of a vertex need to be considered. Hence this
is bounded by the degree of the vertex. In summary the parallel computational
complexity is O(diameter ∗maximal vertex degree).

5 Decomposing the Spanning Tree

In [14] we presented an algorithm to decompose a spanning tree into subtrees
such that the diameter of each subtree is maximally half the diameter of the

2 Edge length l(e) = 1 is used in all examples.

Integral Trees: Subtree Depth and Diameter 83

Table 1. Degrees of the contraction kernels

’Bister’

level\deg 0 1 2 3 4 5 6 8 δ

0 → 1 1653 759 1
1 → 2 2340 24 2
2 → 3 2124 48 24 6
3 → 4 1779 99 8 8 8 10
4 → 5 1111 199 21 22 19
5 → 6 451 244 8 18 8 25
6 → 7 75 174 16 4 8 32
7 → 8 13 48 16 8 43
8 → 9 3 8 2 8 50

9 → 10 1 2 62
10 → 11 1 120

’Disc’

level\deg 0 1 2 3 4 5 6 8 δ

0 → 1 821 380 1
1 → 2 1165 12 2
2 → 3 1057 24 12 6
3 → 4 877 52 4 4 4 10
4 → 5 529 110 8 10 19
5 → 6 229 116 4 8 4 25
6 → 7 37 86 8 2 4 32
7 → 8 5 24 8 4 43
8 → 9 4 1 4 50

9 → 10 1 62

original tree. Recursively continued until the subtrees have a diameter ≤ 2, this
strategy creates a hierarchy of log(diameter) height. The only parameter used
for this decomposition is the length of the diameter and the center of the tree.

We studied the relation between the shape (two sample examples are shown
in Fig. 5a,b, for more examples see [15]) and the resulting graph pyramid. Table 1
lists the observed properties of the contraction kernels used at level k to produce
level k+1 (k → k+1). For every level the histogram of kernel’s degrees is given
together with the largest diameter δ of all subtrees at the respective levels. The
similarity of the substructure ‘Disc’ to ‘Bister’ is obvious and not surprising.
The length of the diameter and the center appear to be very robust whereas the
fine substructures are sensitive to noise. In particular we observe many spurious
branches (deg(v) = 0) and high splitting degrees. This can be avoided to a large
extend and optimized using subtree diameters.

5.1 The Integral Tree of Diameters

Subtree depths dmax are upper bounds for reaching any vertex in the outer
subtree. Consider the following configuration sketched in Fig. 3b): c denotes the
center, li are the leafs, v, w, u, si are intermediate vertices. dist(x, y) denotes
the distance between vertices x and y. The depth of the center c is not shorter
than the distance to any leaf3: dmax(c) ≥ dist(c, li). The actual distance between
the center and any vertex v is also bounded: dist(c, v) ≤ dmax(c) − dmax(v).
Along the tree’s diameter-path the above inequalities are equalities. Assume we
cut the tree between vertices v and w. The diameter of the outer subtree of w
goes either through w or it connects two subbranches excluding w. If it goes
through w its length is the sum of the subtree depth of w and the length of
its second longest subbranch. The length of a subbranch is the length of the
edge connecting the branch to w plus the subtree depth of the first son in this
subbranch: δ(w) = dmax(w) + max2{l((w, s)) + dmax(s)|(w, s) ∈ Eeck}.

3 Odd diameters create a central edge splitting the tree in two subtrees for which the
above inequalities hold.

84 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

1. Initialize diameters δ(v) := dmax(v)
2. repeat ∀v ∈ V in parallel:

δ(v) := max(max{δ(s)|(v, s) ∈ Eeck},
max2{dmax(v) + l((v, s)) + dmax(s)|
(v, s) ∈ Eeck})

�
�

�
�

�
�

�
�

�
�

�
�

�0,0

�0,0

�1,1

�2,3

�3,3

�4,5

�1,2

�0,0

�0,0

�0,0

�0,0

�5,7

�0,0

�6,7

�7,7

�3,4

�0,0

�0,0

�8,9

�0,0

�2,2

�4,4

�0,0

�0,0

�9,9

�1,1

�5,6

�6,7

�7,10

�8,10

�9,10

�0,0

�0,0

�0,0

�2,2

�0,0

�1,1

a b

Fig. 4. a) Algorithm: Subtree Diameters δ, and b) Integral trees of depths and diam-
eters dmax, δ

The max2-function is well defined because dmax(w) > 0 implies a degree
deg(w) ≥ 2. If the diameter of subtree w does not go through w it connects two
leafs through a vertex, e.g. u : l2 · · · s2 ← u → s4 · · · l4. In this case vertex u
calculates the diameter as w above and propagates the length of the diameter
up to vertex w. The diameters of all subtrees can be computed similar to the
Subtree Depth: Algorithm Fig. 4a generates diameters δ (2nd values in Fig. 4b).

5.2 Using Integral Trees for Decomposition

The integral features of depth dmax and diameter δ should enable us to decide
locally where it is best to split the spanning tree. Criteria could be a good balance
of diameter lengths, a small degree of the top contraction kernels (“a hand has 5
fingers”) or more object specific properties that could be known to the system.

Let us consider what happens if we cut the tree at a certain distance from
the center by removing the cut-edge. A cut-edge (v, w) is selected if the depth
of the outer tree is smaller than a threshold dT , dmax(v) < dT ≤ dmax(w) (‘cut-
edge condition’). Note that the threshold dT can depend on the length of the
overall diameter δ(c). After cutting, the longest possible diameter of the outer
tree δmax is twice the subtree depth of dmax(v) (this was used in [14]). This can
be improved using the actual diameters δ(v) calculated by algorithm subtree-
diameters (Fig. 4b). If all edges satisfying the cut-edge condition are rigorously
removed the depth of the remaining central tree is reduced by the subtree depth
of new leaf dmax(w) = dT . Consequently the diameter of the central tree shrinks
by the double amount δnew(c) = δold(c)−2dT . Table in Fig. 5 lists the different
diameters and degrees for all possible cut-depths dT . The decomposition should
first split the ‘important’ components and not be too much influenced by spurious
subtrees. The degree of the contraction kernel corresponds exactly to the number
of cut-edges. While the ‘cut-degree’ counts all rigorously created new subtrees
including trees with very small depth and diameter (0 in table in Fig. 5), the
‘min’-value gives the degree after re-connecting all cut-edges to the central tree
which do not increase the largest diameter of all outer and the inner trees. The
remaining subtree diameters are bold faced in table in Fig. 5.

Integral Trees: Subtree Depth and Diameter 85

Table of Cuts through example tree Fig. 4b
cut diameters of outer trees and center tree deg((CK))
dT δmax δleft δ(c) δright cut min
9 16 9 1 10 2 2
8 14 0, 7 3 10 3 2
7 12 0, 7 5 0, 7, 2 5 3
6 10 0, 7, 0 7 0, 0, 6, 0 , 2 8 6
5 8 0, 0, 2, 5, 0 9 0, 0, 4, 0, 0, 2 11 6
4 6 0, 0, 2, 0, 3, 0, 0 11 0, 0, 4, 0, 0, 2 13 5
3 4 0, 0, 2, 0, 3, 0, 0 13 0, 0, 0, 2, 0, 0, 2 14 3
2 2 0, 0, 2, 0, 1 ,0, 0, 0 15 0, 0, 0, 1, 0, 0, 1 15 3
1 0 0, 0, 0, 0, 0, 0, 0, 0, 0 17 0, 0, 0, 0, 0, 0, 0 16 2

a

b

Fig. 5. Two example a) Bister(2 × 1581 + 9 pixel) and b) Disc (1581 pixel) used in
experiments and Table of Cuts

5.3 Experiment: Two Connected Balls (‘Bister’)

The example of Fig. 5a consists of two large balls connected by a thin curve. Bister
et.al. [16] used a similar example to demonstrate the shift variance
of regular pyramids. The goal of this experiment, refered to as ‘Bister’, is to
check whether the simple decomposition expressed by the above description
could be derived from the integral tree. Table 2 lists the different subtree depths
and diameters in the example ‘Bister’ (see subtree depth and diameters of
central part in Fig. 6). This shows clearly that the diameters of the two cir-
cles (62) propagate up to the center which receives diameter 120. Cutting the
path which connects the two large circles produces three subtrees (degree of
contraction kernel 2) of which both outer subtrees have diameter 62 from
cut-edge with subtree depths (59,60) down to (36,37). With smaller subtree
depth the degrees of the contraction kernels start to grow since extra branches
of the two circles are cut. We continued the table down to cut-edge (29,30)
where the diameter of the center-tree becomes larger than any of the outer
trees. We also note that no spurious branches can be integrated in this first level
decomposition.

�

�

�

��

�

�

�

��

�

� �· · · �

�

�

�

�

�

�

�

�

�

��

�

� � �

�
28,48

�
29,50

�
21,21

�
29,50

�
20,20

�
30,60

�
31,60

�
32,62

�
20,20

�
28,48

�
29,50

�
21,21

�
33,62

�
34,62

�
19,19

�
27,47

�
20,20

�
20,20

�
35,62

�
19,19

�
19,19

�
36,62

�
25,44

�
37,62

�
18,18

�
59,62

�
60,120

�
59,62

�
58,62

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

� � �×

�
28,48

�
29,50

�
21,21

�
29,50

�
20,20

�
30,60

��
31,62

�
30,60

�
20,20

�
28,48

�
29,50

�
21,21

�
29,50

�
28,48

�
19,19

�
27,47

�
20,20

�
20,20

�
27,47

�
19,19

�
19,19

�
26,44

�
25,44

Fig. 6. Center part of left circle of example Bister before and after cut

86 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

Table 2. Cuts through spanning tree of example ‘Bister’

cut diameters of outer trees and center tree deg((CK))
dT δmax δleft δ(c) δright cut
60 118 62 0 62 2
59 116 62 2 62 2

· · ·
37 72 62 46 62 2
36 70 44, 62 48 44, 62 4
35 68 44,19, 62 50 44,19, 62 6
34 66 44,19,19, 62 52 44,19,19, 62 8
33 64 44,19,19, 62, 20 54 44,19,19, 62, 20 10
32 62 44,19,19,20,50, 60, 20 56 44,19,19,20,50, 60, 20 14
31 60 44,19,19,20,50,21, 60, 21,20 58 44,19,19,20,50,21,60,21,20 18
30 58 44,19,19,20,50,21,50,20,50,21,20 60 44,19,19,20,50,21,50,20,50,21,20 22

· · ·

6 Conclusion

We have introduced integral trees that can store integral features or properties.
Efficient parallel algorithms have been presented for computing: i) the boundary
distance dmin of a binary shape; ii) the depth of all subtrees dmax; and iii) the
diameter δ of the outer subtrees. These integral features are not just sums over all
elements of the subtree but capture properties of the complete substructure. The
integral trees have been used to decompose the spanning tree of the shape top-
down. The decomposition can use following optimization criteria: i) balance the
diameters of the subtrees more efficiently than cutting at a fixed distance from
the center or the leafs; unfortunately this often generates contracktion kernels of
high degree; ii) set the degree n of the contraction kernel beforehand and find the
n subtrees with largest integral feature, e.g. diameter. iii) define the optimization
criterium which can be solved using local information provided by the integral
tree and some global properties like global size or diameter proportion that are
propagated during the top-down process. In future research we plan to apply
integral tree for new solutions of the TSP problem as well in tracking.

References

[1] Viola, P., Jones, M.: Robust Real-time Face Detection. International Journal of
Computer Vision 57 (2004) 137–154

[2] Beleznai, C., Frühstück, B., Bischof, H., Kropatsch, W.G.: Detecting Humans in
Groups using a Fast Mean Shift Procedure. OCG-Schriftenreihe 179, (2004)71–78.

[3] Kropatsch, W.G.: Building Irregular Pyramids by Dual Graph Contraction. IEE-
Proc. Vision, Image and Signal Processing 142 (1995) pp. 366–374

[4] Christofides, N.: The Traveling Salesman Problem. John Wiley and Sons (1985)
[5] Graham, S.M., Joshi, A., Pizlo, Z.: The Travelling Salesman Problem: A Hierar-

chical Model. Memory & Cognition 28 (2000) 1191–1204
[6] Pizlo, Z., Li, Z.: Graph Pyramids as Models of Human Problem Solving. In: Proc.

of SPIE-IS&T Electronic Imaging, Computational Imaging, (2004) 5299, 205–215
[7] Humphrey, G.: Directed Thinking. Dodd, Mead, NY (1948)

Integral Trees: Subtree Depth and Diameter 87

[8] Pizlo, Z.: Perception Viewed as an Inverse Problem. Vis. Res. 41 (2001) 3145–3161
[9] Pizlo, Z., Rosenfeld, A., Epelboim, J.: An Exponential Pyramid Model of the

Time-course of Size Processing. Vision Research 35 (1995) 1089–1107
[10] Koffka, K.: Principles of Gestalt psychology. Harcourt, NY (1935)
[11] Borgefors, G.: Distance Transformation in Arbitrary Dimensions. Computer Vi-

sion, Graphics, and Image Processing 27 (1984) 321–145
[12] Borgefors, G.: Distance Transformation in Digital Images. Computer Vision,

Graphics, and Image Processing 34 (1986) 344–371
[13] Kropatsch, W.G.: Equivalent Contraction Kernels to Build Dual Irregular Pyra-

mids. Springer-Verlag Advances in Computer Vision (1997) pp. 99–107
[14] Kropatsch, W.G., Saib, M., Schreyer, M.: The Optimal Height of a Graph Pyra-

mid. OCG-Schriftenreihe 160, (2002) 87–94.
[15] Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z.: Integral Trees: Subtree Depth and

Diameter. Technical Report No. 92, PRIP, Vienna University of Technology (2004)
[16] Bister, M., Cornelis, J., Rosenfeld, A.: A Critical View of Pyramid Segmentation

Algorithms. Pattern Recognition Letters 11 (1990) pp. 605–617

Supercover of Non-square and Non-cubic Grids

Troung Kieu Linh1, Atsushi Imiya2, Robin Strand3, and Gunilla Borgefors3

1 School of Science and Technology, Chiba University,
2 IMIT, Chiba University, Yayoi-cho 1-33, Inage-ku,

Chiba 263-8522, Japan
3 Centre for Image Analysis, Lagerhyddsvagen 3,

SE-75237 Uppsala, Sweden

Abstract. We define algebraic discrete geometry of hexagonal- and
rhombic-dodecahedral- grids on a plane in a space, respectively. Since, a
hexagon and a rhombic-dodecahedron are elements for tilling on a plane
and in a space, respectively, a hexagon and a rhombic-dodecahedron
are suitable as elements of discrete objects on a plane and in a space,
respectively. For the description of linear objects in a discrete space,
algebraic discrete geometry provides a unified treatment employing dou-
ble Diophantus equations. In this paper, we introduce supercove for the
hexagonal- and rhombic-dodecahedral- grid-systems on a plane and in a
space, respectively.

1 Introduction

In this paper, we deal with discrete linear objects of non-square and non-cubic
gris on a plane and in a space, respectively [1–6] and, for these grid systems, we
introduce discrete algebraic geometry. Algebraic discrete geometry [7–10] allows
us to describe linear manifolds, which are collections of unit elements, in two-
and three- dimensional discrete spaces as double Diophantus inequalities.

A hexagon on a plane has both advantages and disadvantages as an elemental
cell of discrete objects [1–3]. The area encircled by a hexagon is closer to the
area encircled by a circle to compare the area encircled by a square. Although
the dual lattice of square grid is the square grid, the dual grid of hexagonal grid
is the triangle grid. Therefore, for the multi-resolution analysis we are required
to prepare two types of grids.

From the application in omni-directional imaging systems in computer vision
and robot vision [11, 12], the spherical camera model is recently given much in-
terests. Though square grid yields a uniform tilling on a plane, it is not suitable
as a grid element on the sphere. The hexagonal grid system provides a uniform
grid both on the sphere [11, 13, 14] on a plane [1–4]. This property of the hexago-
nal grid system allows us to use it as a grid system for the numerical integration
on the sphere. A sphere is a Riemannian manifold with constant positive curva-
ture. Spherical surface, which is the finite closed manifold with positive constant
curvature, and plane, which is the manifold with zero curvature, have geomet-
rically similar properties [15, 16]. The next step of the discrete geometry is the
construction of discrete algebraic geometry on the Riemannian manifolds.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 88–97, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Supercover of Non-square and Non-cubic Grids 89

2 Hexagonal Grid System on a Plane

We first define hexagonal grids on two-dimensional Euclidean plane (x, y).

Definition 1. For integers α and β, we call the region⎧⎪⎨⎪⎩
y0 − 1 ≤ y ≤ y0 + 1
2x0 + y0 − 2 ≤ 2x + y ≤ 2x0 + y0 + 2
2x0 − y0 − 2 ≤ 2x− y ≤ 2x0 − y0 + 2
{x0 = 3α, y0 = 2β} ∨ {x0 = 3(α + 1

2), y0 = 2(β + 1
2)}

(1)

the hexagonal grid centred at (x0, y0). Simply, we call it the hexel at x0 = (x0, y0).

The supercover in the hexagonal grid is defined as:

Definition 2. The supercover in the hexagonal grid system is a collection of all
hexagons which cross with a line.

Figure 1 shows an example of the supercover in the hexagonal grid system
on a plane1.

y

x

(x0 ,y0)L

Fig. 1. Supercover in the Hexagonal Grids: Note that these hexagons are not regular

Since the vertices of a hexagon are (x0 − 1, y0), (x0 + 1, y0), (x0 − 1
2 , y0 + 1),

(x0 + 1
2 , y0 + 1), (x0 − 1

2 , y0 − 1), and (x0 + 1
2 , y0 − 1), the distances from these

vertices to the centre of the hexel at the point (x0, y0)are

D = {di}6i=1

= {r−1(d− a), r−1(d + a), r−1(d + b− 1
2
a),

r−1(d + b +
1
2
a), r−1(d− b− 1

2
a), r−1(d− b +

1
2
a)},

(2)

where d = x0a+ y0b+ μ and r =
√
a2 + b2. Therefore, if a line ax+ by + μ = 0,

for integers a, b, and μ, crosses with a hexagon centred at (x0, y0), we have the
relation,

0 ≤ |x0a + y0b + μ| ≤ max{|a| , 1
2
|a|+ |b|}, (3)

1 Note that our hexels are not regular hexagons. If we select β =
√

3
2 n, for an integer

n, the hexel becomes a regular hexagon.

90 T.K. Linh et al.

since the relation
min{di} ≤ 0 ≤ max{di} (4)

implies a double inequality

−max{|a| , 1
2
|a|+ |b|} ≤ x0a + y0b + μ ≤ max{|a| , 1

2
|a|+ |b|}. (5)

These relations lead to the next theorem.

Theorem 1. For integers a, b, α, and β, the supercover of a line ax+by+μ = 0
on the hexagonal grid system is a collection of hexels whose centres lie in the set

{(x, y) | x = 3α, y = 2β, |ax + by + μ| ≤ max{|a| , 1
2
|a|+ |b|}}

∪{(x, y) | x = 3(α +
1
2
), y = 2(β +

1
2
), |ax + by + μ| ≤ max{|a| , 1

2
|a|+ |b|}}

(6)

Definition 3. If all elements in a collection of girds P are elements of the
supercover of a line, we call that the elements of P are collinear.

This definition leads to the definitions of recognition and reconstruction of a
supercover.

Definition 4. For a collection of grids P , the process to examine collinearity of
elements of a collection of grids is recognition of a supercover. The computation
of the parameters of the line from collinear grids is the reconstruction of line.

These definitions of recognition and reconstruction imply that the computa-
tion of parameters of a line from sample hexels achieves both recognition and
reconstruction. Therefore, we develop an algorithm for the computation of pa-
rameters of a line from a supercover in the hexagonal grid system.

For integers α and β, let

P = {(xi, yi)|xi = 3α, yi = 2β, i = 1, 2, · · · , N}⋃
{(xi, yi)|xi = 3(α +

1
2
), yi = 2(β +

1
2
), i = 1, 2, · · · , N} (7)

be the centroids of the hexels. Furthermore, let a b and μ be the parameters of
the line ax + by + μ = 0, which should be reconstructed. If an element xi in P
is an elements of the supercover of line ax + by + μ = 0, and, if, for simplicity,
we assume that both a and b are positive, the parameters satisfy one of the four
system of inequalities,

case1 : a ≥ 2b > 0, 0 ≤ |axi + byi + μ| ≤ a (8)
case2 : a ≥ 2b > 0, 0 ≤ |axi − byi + μ| ≤ a (9)

case3 : 0 < a < 2b, 0 ≤ |axi + byi + μ| ≤ 1
2
a + b (10)

case4 : 0 < a < 2b, 0 ≤ |axi − byi + μ| ≤ 1
2
a + b. (11)

Supercover of Non-square and Non-cubic Grids 91

We show the reconstruction algorithm for the case 1. Assuming that, all
sample hexels are elements of supercover of line ax + by + μ = 0 for a ≥ 0 and
b ≥ 0, we have the relations⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(xi + 1)a− yib ≤ μ ≤ −(xj − 1)a− yjb
Xija + Yijb ≥ 0
a− 2b ≥ 0
a, b > 0
i �= j, i, j = 1, 2, · · · , N.

, (12)

where Xij = xi − xj + 2 and Yij = yi − yj . This expression allows us to use the
algorithm for the reconstruction of Euclidean lines from a collection of pixels.

3 Rhombic-Dodecahedral Grid System in a Space

Setting x0 = (x0, y0, z0) to be the centroid of a rhombic-dodecahedron in the
three-dimensional lattice points Z3 shown in 8, 14 vertices are

(x0, y0, z0 − 1), (x0, y0, z0 + 1),
(x0, y0 − 1, z0), (x0, y0 + 1, z0),
(x0 − 1, y0, z0), (x0 + 1, y0, z0),
(x0 + 1

2 , y0 − 1
2 , z0 − 1

2), (x0 + 1
2 , y0 − 1

2 , z0 + 1
2),

(x0 + 1
2 , y0 + 1

2 , z0 − 1
2), (x0 + 1

2 , y0 + 1
2 , z0 + 1

2),
(x0 − 1

2 , y0 − 1
2 , z0 − 1

2), (x0 − 1
2 , y0 − 1

2 , z0 + 1
2),

(x0 − 1
2 , y0 + 1

2 , z0 − 1
2), (x0 − 1

2 , y0 + 1
2 , z0 + 1

2),

(13)

and the inside of the polyhedron is defined by the system of inequalities,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x0 + y0 − 1 ≤ x + y ≤ x0 + y0 + 1
x0 − y0 − 1 ≤ x− y ≤ x0 − y0 + 1
y0 + z0 − 1 ≤ y + z ≤ y0 + z0 + 1
y0 − z0 − 1 ≤ y − z ≤ y0 − z0 + 1
x0 + z0 − 1 ≤ x + z ≤ x0 + z0 + 1
x0 − z0 − 1 ≤ x− z ≤ x0 − z0 + 1.

(14)

This system of inequalities also defines 12 faces of the rhombic-dodecahedron.
The grid digitised by rhombic-dodecahedra has the following properties.

Property 1. The rhombic-dodecahedral grids whose centres satisfy x0+y0+z0 =
2n and x0 +y0 +z0 = 2n+1 are elements of a spatial tilling. We call these grids
the even grid and odd grid, respectively.

Property 2. If these polyhedra share faces and vertices, we call two polyhedra
are connected by 12- and 18- connectivities as shown in figure 2 and 3, respec-
tively. The even grid and odd grid induce 12- and 18-connectivities, respectively.

92 T.K. Linh et al.

Property 3. The even grid and odd grid share faces and vertices, two rhombic-
dodecahedra share vertices

(xA + 1
2 , yA − 1

2 , zA − 1
2), (xA + 1

2 , yA − 1
2 , zA + 1

2),
(xA + 1

2 , yA + 1
2 , zA − 1

2), (xA + 1
2 , yA + 1

2 , zA + 1
2),

(xA − 1
2 , yA − 1

2 , zA − 1
2), (xA − 1

2 , yA − 1
2 , zA + 1

2),
(xA − 1

2 , yA + 1
2 , zA − 1

2), (xA − 1
2 , yA + 1

2 , zA + 1
2),

(15)

as shown in Figure 5 or cross each other as shown in Figure 7.

Fig. 2. Adjacent Points of
Tow Connected Rhombic-
dodecahedron Fig. 3. 12-connectivity

Fig. 4. 18-connectivity

Fig. 5. Vertices of Con-
nected Odd and Even
Grids

Fig. 6. Connected Odd
and Even Rhombic-
dodecahedral Grids

Fig. 7. Crossing Odd
and Even Rhombic-
dodecahedral Grids

The supercover in the rhombic-dodecahedral grid system is the collection of
all rhombic-dodecahedral grids which cross with a plane. For a plane ax+by+cz+
μ = 0, the distances from the plane to 14 vertices of the rhombic-dodecahedron
whose centre is at (x0, y0, z0) are

D = {di} , i = 1, 2, ..., 14

= {d0 −
c

r
, d0 +

c

r
, d0 −

b

r
,

d0 +
b

r
, d0 −

a

r
, d0 +

a

r
,

d0 +
1
2a−

1
2b−

1
2c

r
, d0 +

1
2a−

1
2b + 1

2c

r
, d0 +

1
2a + 1

2b−
1
2c

r
,

d0 +
1
2a + 1

2b + 1
2c

r
, d0 +

− 1
2a−

1
2b−

1
2c

r
, d0 +

− 1
2a−

1
2b + 1

2c

r
,

d0 +
− 1

2a + 1
2b−

1
2c

r
, d0 +

− 1
2a + 1

2b + 1
2c

r
} (16)

Supercover of Non-square and Non-cubic Grids 93

where d0 = ax0+by0+cz0+μ√
a2+b2+c2 . If this rhombic-dodecahedron and the plane cross,

we have the relations

min{di} ≤ 0 ≤ max{di} , i = 1, 2, · · · , 14. (17)

Equation (16) implies

min{di} = d0 −
1
r

max{|a|, |b|, |c|, 1
2
(|a|+ |b|+ |c|)}

max{di} = d0 +
1
r

max{|a|, |b|, |c|, 1
2
(|a|+ |b|+ |c|)} (18)

Therefore, eq. (17) becomes

0 ≤ |d0| ≤
1√

a2 + b2 + c2
max{|a|, |b|, |c|, 1

2
(|a|+ |b|+ |c|)}. (19)

Therefore, we have the equation

0 ≤ |ax0 + by0 + cz0 + μ| ≤ max{|a|, |b|, |c|, 1
2
(|a|+ |b|+ |c|)}. (20)

These analysis lead to the theorem.

Theorem 2. The supercover of plane ax + by + cz + μ = 0 in the rhombic-
dodecahedral grid is the collection of the rhombic-dodecahedra which satisfy the
condition

|ax + by + cz + μ| ≤ max{|a|, |b|, |c|, 1
2
(|a|+ |b|+ |c|)}, (21)

for x + y + z = 2n or x + y + z = 2n + 1 where a, b, c, μ, and n are integers.

From these inequalities, if a point xi = xi, yi, zi) is an element of the su-
percover of plane ax + by + cx + μ = 0, where a, b, c, and μ are integers, the
parameters a, b, c, and μ satisfy one of the following four double inequalities,

case1 : 0 ≤ |axi + byi + czi + μ| ≤ |a| (22)
case2 : 0 ≤ |axi + byi + czi + μ| ≤ |b| (23)
case3 : 0 ≤ |axi + byi + czi + μ| ≤ |c| (24)

case4 : 0 ≤ |axi + byi + czi + μ| ≤ 1
2
(|a|+ |b|+ |c|), (25)

for x + y + z = 2n or x + y + z = 2n + 1. These equations can be solved
using the same method with the recognition and reconstruction of supercover
and Euclidean plane, respectively, in cubic grids.

94 T.K. Linh et al.

4 Line Recognition in Rhombic-Dodecahedral Grid
System

As shown in Figure 8, the projection of a rhombic-dodecahedron onto the Oxy,
Oyz, and Ozx planes are squares whose edges are parallel to x± y = 0, y± z =,
and z ± x = 0, respectively. We call these squares of projections of a rhombic-
dodecahedron the diamond squares. For the reconstruction of Euclidean lines
in the rhombic-dodecahedral grid system, we develop an algorithm for the line
reconstruction for the diamond grid system whose edges are parallel to x±y = 0.

x

y

z

O

Fig. 8. Projection of a rhombic-dodecahedron to the planes OxyandOxz

Definition 5. For integers x0 and y0, the diamond square centred at the point
x0 = (x0, y0) is defined by the system of inequalities{

x0 − y0 − 1 ≤ x− y ≤ x0 − y0 + 1
x0 + y0 − 1 ≤ x + y ≤ x0 + y0 + 1 (26)

as shown in Figure 9.

(x0 , y0)

Fig. 9. Diamond Square
Fig. 10. Line which crosses with
Diamond Square

Definition 6. The supercover in the diamond square grid system is a collection
of all diamond squares which cross with a line ax + by + μ = 0, where a, b, and
μ are integers.

For a line L : ax + by + μ = 0, where a, b, and μ are integers as shown in
Figure 10, if the condition

{a(x0 − 1) + by0 + μ ≤ 0 ≤ a(x0 + 1) + by0 + μ}
∨{a(x0 + 1) + by0 + μ ≤ 0 ≤ a(x0 − 1) + by0 + μ}
∨{ax0 + b(y0 − 1) + μ ≤ 0 ≤ ax0 + b(y0 + 1) + μ}
∨{ax0 + b(y0 + 1) + μ ≤ 0 ≤ ax0 + b(y0 − 1) + μ} (27)

Supercover of Non-square and Non-cubic Grids 95

is satisfied a diamond square crosses with line L. Therefore, if the system of
double inequalities

−max{|a|, |b|} ≤ |ax0 + by0 + μ| ≤ max{|a|, |b|} (28)

is satisfied, the diamond square centred at (x0, y0) crosses with line L.
Since there are two classes of diamond squares x0 + y0 = 2n and x0 + y0 =

2n+ 1, there exist two types of supercovers for the diamond square grid system
as shown in Figures 11 and 12. We call these two types of diamond grids the even
diamond grid and the odd diamond grid. These analysis lead to the theorem.

x

y

L

Fig. 11. Supercover on the Even
Diamond Grids

x

y

L

Fig. 12. Supercover on the Odd
Diamond Grids

Theorem 3. The supercover of the line L : ax + by + μ = 0, for integers a, b,
and μ, is the collection of the diamond squares

−max{|a|, |b|} ≤ |ax + by + μ| ≤ max{|a|, |b|}, (29)

for x + y = 2n or x + y + 2n + 1.

Next, we develop an algorithm for the reconstruction Euclidean line from the
supercover of the diamond square grid system. Let

P = {(xi, yi) ∈ Z2|xi + yi = 2n, i = 1, 2, · · · , N} (30)

or
P = {(xi, yi) ∈ Z2|xi + yi = 2n + 1, i = 1, 2, · · · , N} (31)

be sequence of sample points. If the centroid (x0, y0) of a diamond square is an
element of the supercover of a line ax + by + μ = 0, and for simplicity, if we
assume a is positive, the parameters of the line ax + by + μ = 0 satisfy one of
four double inequalities,

case1 : a ≥ b > 0, 0 ≤ |axi + byi + μ| ≤ a (32)
case2 : a ≥ b > 0, 0 ≤ |axi − byi + μ| ≤ a (33)
case3 : 0 < a < b, 0 ≤ |axi + byi + μ| ≤ b (34)
case4 : 0 < a < b, 0 ≤ |axi − byi + μ| ≤ b (35)

For the case 1, if all sample points are centroids of the diamond square in the
supercover of ax + by + μ = 0, we have the following inequalities,

96 T.K. Linh et al.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(xi + 1)a− yib ≤ μ ≤ −(xj − 1)a− yjb
Xija + Yijb ≥ 0
a− b ≥ 0
a, b > 0
i �= j, i, j = 1, 2, · · · , N.

(36)

where Setting Xij = xi − xj + 2 and Yij = yi − yj .

5 Conclusions

We have introduced algebraic discrete geometry for the hexagonal grid system
and the rhombic-dodecahedral grid system on a plane and in a space, respec-
tively. Furthermore, we have introduced algebraic discrete geometry of the dia-
mond square grid system on the plane. This diamond square grid is define as the
projection of the rhombic-dodecahedral grid system on to the planes perpendic-
ular to the axes of the orthogonal coordinate system.

References

1. Her, I., Geometric transformations on the hexagonal grid IEEE, Trans. Image
Processing, 4, 1213-1222, 1995.

2. Liu, Y.-K, The generation of straight lines on hexagonal grids, Computer Graphic
Forum, 12, 27-31, 1993.

3. Stauton, R. C., An analysis on hexagonal thinning algorithms and skeletal shape
representation, Pattern Recognition, 29, 1131-1146, 1996

4. Middleton, L., Sivaswamy, J., Edge detection in a hexagonal-image processing
framework, Image and Vision Computing, 19, 1071-1081, 2001.

5. McAndrew, A., Osborn, C., The Euler characteristic on the face-centerd cubic
lattice, Pattern Recognition Letters, 18, 229-237, 1997.

6. Saha, P. K., Rosenfeld, A., Strongly normal set of convex polygons or polyhedra,
Pattern Recognition Letters, 19, 1119-1124, 1998.

7. Schramm, J.M., Coplanar tricubes, LNCS, 1347, 87-98, 1997.
8. Vittone, J., Chassery, J. M., Digital naive planes understanding, Proceedings of

SPIE, 3811, 22-32, 1999.
9. Reveilles, J.-P., Combinatorial pieces in digital lines and planes, Proceedings of

SPIE, 2573, 23-34, 1995.
10. Andres, E., Nehlig, P., Francon, J., Supercover of straight lines, planes, and trian-

gle, LNCS, 1347, 243-254, 1997.
11. Kimuro, K., Nagata, T., Image processing on an omni-directional view using a

hexagonal pyramid, Proc. of JAPAN-USA Symposium on Flexible Automation, 2,
1215-1218, 1992.

12. Benosman, R., Kang, S.-B. eds., Panoramic Vision, Sensor, Theory, and Applica-
tions, Springer-Verlag, New York, 2001.

13. Shar, K., White, D., Kimerling, A. J., Geodesic discrete global grid systems, Car-
tography and Geographic Information Systems, 30, 121-134, 2003.

Supercover of Non-square and Non-cubic Grids 97

14. Randall, D. A., Ringler, T. D., Heikes, R. P., Jones, P., Baumgardner, J., Cli-
mate modeling with spherical geodesic grids, IEEE, Computing in Science and
Engineering 4, 32-41, 2002.

15. Morgan, F., Riemannian Geometry:A beginner’s Guide, Jones and Bartlett Pub-
lishers, 1993.

16. Zdunkowski, W., Boot, A., Dynamics of the Atmosphere, Cambridge University
Press, 2003.

17. Stijnman, M. A., Bisseling, R. H., Barkema, G. T., Partitioning 3D space for
parallel many-particle simulations” Computer Physics Communications, 149, 121-
134, 2003.

18. Ibanez,L., Hamitouche, C., Roux C., Ray tracing and 3D object representation in
the BCC and FCC grids, LNC, 1347, 235-241, 1997.

Calculating Distance with Neighborhood
Sequences in the Hexagonal Grid

Benedek Nagy

Department of Computer Science, Institute of Informatics,
University of Debrecen,

Debrecen, Hungary
Research Group on Mathematical Linguistics,

Rovira i Virgili University,
Tarragona, Spain

nbenedek@inf.unideb.hu

Abstract. The theory of neighborhood sequences is applicable in many
image-processing algorithms. The theory is well examined for the square
and the cubic grids. In this paper we consider another regular grid, the
hexagonal one, and the distances based on neighborhood sequences are
investigated. The points of the hexagonal grid can be embedded into
the cubic grid. With this injection we modify the formula which calcu-
lates the distances between points in the cubic space to the hexagonal
plane. Our result is a theoretical one, which is very helpful. It makes the
distances based on neighborhood sequences in the hexagonal grid appli-
cable. Some interesting properties of these distances are presented, such
as the non-symmetric distances. It is possible that the distance depends
on the ordering of the elements of the initial part of the neighborhood
sequence. We show that these two properties are dependent.

Keywords: Digital geometry, Hexagonal grid, Distance, Neighborhood
sequences.

1 Introduction

Digital geometry is a part of theoretical image processing. In digital geometry
the spaces we work with, consist of points with integer coordinates only. Con-
sequently, we define distance functions, which take integer values. First, mainly
the square grid was investigated, since this is the most usual space in image
processing. Nowadays other regular and non-regular grids obtain more and more
attention. In many applications the hexagonal and the triangular grids fit nicely
and give better results. On the square grid one of the first results was the in-
troduction of chessboard and cityblock motions (as neighborhood relations),
defined in [14]. In [15, 2] the concept of (periodic) neighborhood sequences were
introduced in the n dimensional digital space, which gives us the possibility to
mix the possible motions. In [4] the authors extended this theory to infinite se-
quences, which need not to be periodic. In this paper we use similar generalized

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 98–109, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Calculating Distance with Neighborhood Sequences in the Hexagonal Grid 99

neighborhood sequences. In [2] a formula can be found which give the distance
of two points using a given periodic neighborhood sequence. In [13] there is a
formula to compute the distance of arbitrary points by arbitrary neighborhood
sequences. In these grids, each coordinate value of a point is independent of the
others. In 3 dimensions we use 3 coordinates. In [1] the distances in the cubic
grid were analyzed using periodic neighborhood sequences.

The neighborhood criteria of the hexagonal grid can be found in [3, 9]. The
symmetric coordinate frame we are using in this paper is presented in [11]. The
neighborhood sequences have been introduced for this grid in [9, 12].

Note that in this paper the nodes of the hexagonal grid are used. In literature
there is a mix of the grid notation. Since the triangular and the hexagonal grids
are dual, in image processing the term triangular grid may used for this grid, see
for instance [7]. In computer graphics the grids usually defined as we use here,
see for example [5].

In this paper, – after explaining the basic concepts of the three-dimensional
cubic grid and the hexagonal grid – we show the connection of them. Using the
mapping of the hexagonal grid into the cubic one we visualize some concepts
of the hexagonal plane. With the help of this injection, we modify the formula
from [13] to calculate distances in the hexagonal grid. We present the formula,
which give the distance of the points of the hexagonal grid in section 5. After
this we note some interesting properties of distances based on neighborhood
sequences in the hexagonal grid and we show that there is a strong connection
between non-symmetric distances and the property that the distance depends
on the ordering of the used elements of neighborhood sequences.

2 Distance Functions in the Cubic Grid

The cubic grid is well-known and often used in image processing, see e.g. [1, 6].
In this space there are 3 kinds of neighborhood criteria. We use some definitions
from [2, 4].

Definition 1. Let p and q be two points in the cubic grid. The i-th coordinate
of the point p is indicated by p(i) (i = 1, 2, 3), and similarly for q. The points p
and q are m-neighbors (m = 1, 2, 3), if the following two conditions hold:

– |p(i)− q(i)| ≤ 1, for 1 ≤ i ≤ 3,
– |p(1)− q(1)|+ |p(2)− q(2)|+ |p(3)− q(3)| ≤ m.

Using these neighborhood criteria the neighborhood sequences are defined in
the following way.

The sequence B = (b(i)), i ∈ N with b(i) ∈ {1, 2, 3}, is called a neighborhood
sequence. If for some l ≥ 1, b(i) = b(i + l) holds for every i, then B is called
periodic, with a period l. In this case we use the short form B = (b(1), . . . , b(l)).

Let p and q be two points. The point sequence Π : p = p0, p1, . . . , ph = q,
where pi−1 and pi are b(i)-neighbors for 1 ≤ i ≤ h – is called a B-path from
p to q. The length of this path is h. The B-distance from p to q is defined as
the length of a shortest path, and is denoted by d(p, q;B).

100 B. Nagy

In digital geometry several shortest paths may exist between two points. The
distance functions defined above using neighborhood sequences are not neces-
sarily metrics. In [8] a necessary and sufficient condition is presented for neigh-
borhood seqences to define metrics on Zn.

In [2] a complex formula was presented which determine distance between
two points in the n dimensional digital space using any periodic neighborhood
sequence. The formula strongly uses the periodic property. In [13] a general for-
mula can be found which give the result using arbitrary neighborhood sequence.
Moreover, in [13] there is a formula especially for the three dimensional case. We
recall it:

Proposition 1. The B-distance of points p and q in the cubic grid is given by

d(p, q;B) = max{|w(1)|, d2, d3},

where

d2 = max

⎧⎨⎩i

∣∣∣∣∣∣w(1) + w(2) >
i−1∑
j=1

b(2)(j)

⎫⎬⎭ and

d3 = max

⎧⎨⎩i

∣∣∣∣∣∣w(1) + w(2) + w(3) >
i−1∑
j=1

b(j)

⎫⎬⎭ ,

w(1), w(2), and w(3) are the values |p(i)− q(i)| sorting by non-increasing (i.e.
the multiset {w(1), w(2), w(3)} contains the same elements as {|p(1)−q(1)|, |p(2)−
q(2)|, |p(3) − q(3)|}, moreover w(1) ≥ w(2) ≥ w(3)) and the values b(2)(j) =
min {2, b(j)} .

3 The Hexagonal Grid

In this part we recall some important concepts about the hexagonal grid. Usually,
we define three types of neighbors on this grid, as Figure 1 shows (see [3, 9, 11]).
Each point has three 1-neighbors, nine 2-neighbors (the 1-neighbors, and six
more 2-neighbors), and twelve 3-neighbors (nine 2-neighbors, and three more
3-neighbors). We use three coordinate values to represent the points of the grid,
see Figure 2.

We would like to give some other definitions and notations. We recall some
of them from the literature mentioned earlier. The procedure of assigning coor-
dinate values to a point is given in [11]. We have two types of points according
to the sum values of the coordinates. If the sum is 0, then the parity of the point
is even; if the sum is 1, then the point has odd parity.

One can see that if two points are 1-neighbors, then their parities are different.
One can check that the formal definition (Definition 1 in Section 2) determines

the same neighbors in the hexagonal grid as shown in Fig 1. In the hexagonal
grid we use the concepts of neighborhood relations, neighborhood sequences and
using a neighborhood sequence B the B-path and B-distance from a point p to

Calculating Distance with Neighborhood Sequences in the Hexagonal Grid 101

Fig. 1. Types of neighbors on the hexagonal grid

Fig. 2. Coordinate values on the hexagonal grid

a point q in the same way as in the cubic grid (see Definition 1 in the previous
section).

As we will see in Section 6, the distance defined by the number of steps of
a shortest path can be non-symmetric on the hexagonal grid. It means that there

102 B. Nagy

are points and a neighborhood sequence such that the length of the sortest paths
depend on the direction.

Definition 2. The difference w = (w(1), w(2), w(3)) is defined for any two
points p and q, in the following way: v(i) = p(i) − q(i). Ordering the values
v(i) by their absolute values non-increasing way, such that |w (1) | = max |v(i)|,
|w (3) | = min |v(i)| and w(2) has the third value among the values v(i). (So,
the triplet w contains exactly the same values as v such that |w(1)| ≥ |w(2)| ≥
|w(3)|.)

If w(1) + w(2) + w(3) = 0, then the parity of w is even, else it is odd.

Note, that the definition above slightly differs on the hexagonal grid and on
the cubic grid. On hexagonal grid we use signed values.

We know that the distance from p to q depends on their difference w (includ-
ing the values w(ij) = q(i) − p(i), so it is the difference of q and p) and their
parities.

The following definition and fact are from [12].

Definition 3. Let B and C be two neighborhood sequences. Then C is the mini-
mal equivalent neighborhood sequence of B, if the following conditions hold:

– d(p, q;B) = d(p, q;C) for all points p, q, and
– for each neighborhood sequence D, if d(p, q;B) = d(p, q;D) for all points p,

q, then c(i) ≤ d(i) for all i.

Proposition 2. The minimal equivalent neighborhood sequence C of B is uni-
quely determined, and is given by

– c(i) = b(i), if b(i) < 3,
– c(i) = 3, if b(i) = 3 and there is no j < i such that c(j) = 3,

– c(i) = 3, if b(i) = 3 and there are some c(l) = 3 where l < i, and
i−1∑

k=j+1
c(k)

is odd, where j = max{l|l < i, c(l) = 3},
– c(i) = 2, otherwise.

The concept of the minimal equivalent neighborhood sequences shows that it
is possible that both theoretically and practically we cannot change all the three
coordinate values to step closer to the endpoint even if there is an element 3 in
the neighborhood sequence.

4 The Connection Between the Cubic and the
Hexagonal Grids

In this section, based on [10], we map the points of the hexagonal plane to the
cubic grid. It is natural, because we use 3 coordinate values to represent points
in both cases. Let us see what the points of hexagonal grid represent in the cubic
grid (Fig. 3). There are 2 parallel planes (according to the parities of points).

Calculating Distance with Neighborhood Sequences in the Hexagonal Grid 103

Fig. 3. The points of the hexagonal grid as the points of two parallel planes in the
cubic grid

As we can see the considered points of the cubic grid are in the planes in
which the sum of coordinate values are 0 (black boxes) or 1 (white boxes).

Therefore we state the following:

Proposition 3. The hexagonal grid forms two planes in Z3.

In Fig. 3 we connect the nodes which are 1-neighbors to obtain the hexagonal
grid. In this way the neighborhood relations of the points are the same in these
two grids.

In the hexagonal grid, we have some difficulties in changing the coordinate
values. Such difficulties do not occur in case of the triangular, square and cubic
grids. In the hexagonal grid, when moving from a point to one of its neighbors, we
have to care of the parity of these points. Namely, we can change the coordinates
of a point in such a way that the sum of the coordinate values must be 0 or
1. The concept of minimal equivalent neighborhood sequence implies that we
cannot step out the two possible planes of the cubic grid in our minimal path.
We have to face only the step by the first element 3 in the minimal equivalent
neighborhood sequence as we detail below.

5 Formula to Calculate Distance in the Hexagonal Grid

In this section we use the previous mapping and modify the formula of Proposi-
tion 1 from Section 2 to our case. We will use the minimal equivalent neighbor-
hood sequence C instead of the original neighborhood sequence B.

104 B. Nagy

Now, let us check when it is better to modify all the coordinate values (in a
3-step) than modify only two of them.

At a step by an element 3 of the neighborhood sequence from the point pi−1
it is worth modifying all the three coordinate values if and only if one of the
following conditions holds

– the parity of pi−1 is odd and we need to decrease two coordinates, and
increase only one value to go to q: the difference of q and pi−1 has two
positive and a negative value;

– the parity of pi−1 is even and we need to increase two coordinate values, and
decrease only one of them: the difference of q and pi−1 has two negative and
a positive value.

Using these cases, we have the following fact:

Proposition 4. Let the index of the first occurrence of the element 3 in the
neighborhood sequence B be k. Then the previous cases are equivalent to the
following possibilities at the first element 3 of B:

– the parity of p is even,
k−1∑
i=1

b (i) is even and we need to decrease two coordi-

nates, and increase only one value to go to q;

– the parity of p is odd,
k−1∑
i=1

b (i) is odd and we need to decrease two coordinates,

and increase only one value to go to q;

– p is odd,
k−1∑
i=1

b (i) is even and we need to increase two coordinate values, and

decrease only one of them to direction to q;

– the parity of p is even,
k−1∑
i=1

b (i) is odd and we need to increase two coordinate

values, and decrease only one of them.

From the concept of minimal equivalent neighborhood sequences it is obvious
that by building a shortest path from the point p to q, it is worth modifying
all coordinate values only when there is an element 3 in the minimal equivalent
neighborhood sequence of B. Therefore we must use it instead of B, in our
calculation. Moreover it is possible (depending on the coordinate values of p and
q), that we can use the first element 3 as a value 2 (in the cases that we do not
listed above). For this case we will use the concept of reduced minimal equivalent
neighborhood sequence, which is defined in the following way:

Definition 4. The reduced minimal equivalent neighborhood sequence
C ′ of B is given by:

– c′(k) = 2, where k is the index of the first element 3 of B;
– c′(i) = c(i), for all other values of i, where c(i) the correspondent element of

the minimal equivalent neighborhood sequence C of B.

Calculating Distance with Neighborhood Sequences in the Hexagonal Grid 105

Now we are introducing some notation for our formula.
Let p and q be given points and B be a given neighborhood sequence.
Let z1 = 1 if the parity of p is even and z1 = −1 if the parity of p is odd.

Set z2 = 1 if
k−1∑
i=1

b (i) is even and z2 = −1 if
k−1∑
i=1

b (i) is odd.

Let z3 be the sign of the product w(1)w(2)w(3), i.e. if the difference of q and
p has two negative and a positive value then z3 = 1 and if the difference of q
and p has two positive and a negative value then z3 = −1; when w(3) = 0 then
z3 = 0.

Let C and C ′ be the minimal and the reduced minimal equivalent neighbor-
hood sequences of B.

Finally – using the abbreviations defined above – we can state our formula
in its final form:

Theorem 1. The distance from the point p to q with a given neighborhood se-
quence B can be calculated as:

d(p, q;B) = max{|w(1)|, d2, d
′
3} if z1z2z3 = 1;

and the distance

d(p, q;B) = max {|w(1)| , d2, d3} in other cases;

where

d2 = max

⎛⎝i

∣∣∣∣∣∣ |w(1)|+ |w(2)| >
i−1∑
j=1

c(2)(j)

⎞⎠ ,

with c(2)(j) = min {2, c(j)}, and

d
′
3 = max

⎧⎨⎩i

∣∣∣∣∣∣ |w(1)|+ |w(2)|+ |w (3)| >
i−1∑
j=1

c
′
(j)

⎫⎬⎭ ,

finally

d3 = max

⎛⎝i

∣∣∣∣∣∣ |w(1)|+ |w(2)|+ |w (3)| >
i−1∑
j=1

c (j)

⎞⎠ .

When the neighborhood sequence does not contain the element 3 the results
are the same and both are correct:

d(p, q;B) = max
{
|w(1)| , d2, d

′
3

}
= max {|w(1)|, d2, d3}.

The previous formulae are our main results.

106 B. Nagy

6 On Properties of Distances

In this section, using our formulae we show some interesting properties of these
distances. For instance, they may be non-symmetric.

Example:
Let r = (0, 0, 0) and s = (−2, 1, 1) be two points, and B1 = (3, 1, 1) be a
neighborhood sequence.

The minimal equivalent neighborhood sequence of B1 is:
C1 = (3, 1, 1, 2, 1, 1, 2, 1, 1, ...) with repeating part (2, 1, 1).

Let us calculate the value of d(s, r;B1).
The value of w is (2,−1,−1) in this case. z1z2z3 = 1, so

d(s, r;B1) = max
{
|w(1)| , d2, d

′
3

}
= 3.

Now let us calculate d(r, s;B1).
In this case w is (−2, 1, 1). Then

d(r, s;B1) = max(2, 2, 2) = 2.

Thus this distance function is not symmetric. (Check Fig. 4.)
The non-symmetric distance functions are exotic in the field of digital ge-

ometry. In [12] there is a necessary and sufficient condition for a neighborhood
sequence to give metric.

Watching the formula for calculating distance we state the following inter-
esting and important property.

Fig. 4. Non-symmetric distance between the points r = (0, 0, 0) and s = (−2, 1, 1)
with B1 = (3, 1, 1) and a distance not satisfying the triangle inequality using also point
t = (−1, 0, 1) with B2 = (2, 1, 1)

Calculating Distance with Neighborhood Sequences in the Hexagonal Grid 107

A distance d(p, q;B) > k depends on the order of the first k elements of B
if and only if there is a permutation of these elements such that using it as the
initial part of the neighborhood sequence the distance function is not symmetric.

We show how the property above can be used. Let B be a neighborhood
sequence for which the distance is not symmetric for all points p and q. So
let p and q be two points that d(p, q;B) �= d(q, p;B). We can assume that
d(p, q;B) = k < d(q, p;B) = l. If we reorder the first k element of B in reverse
order (resulted the neighborhood sequence Br) then we get that d(q, p;Br) = k.
(We have a shortest path from q to p which is the symmetric pair of the original
shortest path between p and q.) We note here that in the square and cubic grids
the distance does not depend on the permutation of the used element of B.

Now, we are showing an example, when the B-distance fails on the triangular
inequality.

Let r = (0, 0, 0), s = (−2, 1, 1) and t = (−1, 0, 1) be three points, and B2 =
(2, 1, 1) be a neighborhood sequence.

It is easy to compute that d(r, t;B2) = 1, d(t, s;B2) = 1 and d(r, s;B2) = 3.
(Check on Fig. 4 as well.)

Therefore d(r, t;B2) + d(t, s;B2) < d(r, s;B2).
Now we are presenting interesting examples for the fact, that the B-distances

on the hexagonal grid are highly depend on the used neighborhood sequence and
the parities and relative direction of the points. They have the following property.

Let r = (0, 0, 0), s = (−2, 1, 1), p = (−1, 2,−1) and u = (−1, 2, 0) be four
points, and B3 = (3, 1), B4 = (1, 3) be two neighborhood sequences. Then one
can compute, that:

d(r, s;B3) = 2 < d(r, s;B4) = 3,
d(r, p;B3) = 3 > d(r, p;B4) = 2, and
d(r, u;B3) = 2 = d(r, u;B4).

So, one cannot say that the B3-distances or the B4-distances are greater than
the others, it depends on the points as well.

7 Conclusion

The concept of neighborhood sequences is applicable in image processing (see
[6]). In the present paper we used the concept of neighborhood sequences, and
with their help, we were able to define distance functions on the hexagonal grid.
This method based on the three types of neighborhood relations in the hexag-
onal grid which are according the neighborhood relations of the cubic grid.
Based on the analogy between the points of the cubic grid and the points of
hexagonal grid we derived a formula, which give the distance from one point
to another. We cannot use the term distance between points because not every
distance based on neighborhood sequences is symmetric. We showed that the
non-symmetric distances depend on the ordering of elements of the neighbor-
hood sequences.

108 B. Nagy

Our result is a theoretical one; it makes the distances based on neighbor-
hood sequences in the hexagonal grid applicable. It is a future –, but not so
hard – work to use this result in real applications. It is a very interesting
property that there are non-symmetric distances which may useful in some
applications.

Acknowledgements

This research was partly supported by a grant from the Hungarian National
Foundation for Scientific Research (OTKA F043090).

References

1. P.E. Danielsson, “3D Octagonal Metrics”, Eighth Scandinavian Conference on Im-
age Processing, 1993., pp. 727-736.

2. P.P. Das, P.P. Chakrabarti and B.N. Chatterji, “Distance functions in digital ge-
ometry”, Information Sciences 42, pp. 113-136, 1987.

3. E.S. Deutsch, “Thinning algorithms on rectangular, hexagonal and triangular ar-
rays”, Communications of the ACM, 15 No.3, pp. 827-837, 1972.

4. A. Fazekas, A. Hajdu and L. Hajdu, “Lattice of generalized neighborhood
sequences in nD and ∞D”, Publicationes Mathematicae Debrecen 60, pp. 405-427,
2002.

5. H. Freeman, “Algorithm for generating a Digital Straight Line on a Triangular
Grid”, IEEE Transactions on Computers C-28 pp. 150-152, 1979.

6. A. Hajdu, B. Nagy and Z. Zörgő, “Indexing and segmenting colour images using
neighborhood sequences”, IEEE International Conference on Image Processing,
ICIP’03, Barcelona, Sept. 2003. pp. I/957-960.

7. T. Y. Kong and A. Rosenfeld, “Digital Topology: Introduction and Survey”, Com-
puter Vision, Graphics and Image Processing 48, pp. 357-393, 1989.

8. B. Nagy, “Distance functions based on neighbourhood sequences”, Publicationes
Mathematicae Debrecen 63, pp. 483-493, 2003.

9. B. Nagy, “Shortest Path in Triangular Grids with Neighborhood Sequences”, Jour-
nal of Computing and Information Technology 11, pp. 111-122, 2003.

10. B. Nagy, “A family of triangular grids in digital geometry”, 3rd International
Symposium on Image and Signal Processing and Analysis (ISPA’03), Rome, Italy,
Sept. 2003., pp. 101-106, 2003.

11. B. Nagy, “A symmetric coordinate system for the hexagonal networks”, Informa-
tion Society 2004 – Theoretical Computer Science (IS04-TCS), ACM Slovenija
conference, Ljubljana, Slovenia, Okt. 2004. accepted paper

12. B. Nagy, “Non-metrical distances on the hexagonal plane”, 7th International
Conference on Pattern Recognition and Image Analysis: New Information
Technologies (PRIA-7-2004), St. Petersburg, Russian Federation, Okt. 2004.
accepted paper.

13. B. Nagy, “Distance with generalised neighborhood sequences in nD and ∞D”,
Discrete Applied Mathematics, submitted.

Calculating Distance with Neighborhood Sequences in the Hexagonal Grid 109

14. A. Rosenfeld and J.L. Pfaltz, “Distance functions on digital pictures”, Pattern
Recognition 1, pp. 33-61, 1968.

15. M. Yamashita and T. Ibaraki, ”Distances defined by neighborhood sequences”,
Pattern Recognition 19, pp. 237-246, 1986.

On Correcting the Unevenness of Angle
Distributions Arising from Integer Ratios Lying

in Restricted Portions of the Farey Plane

Imants Svalbe and Andrew Kingston

Centre for X-ray Physics and Imaging,
School of Physics and Materials Engineering,

Monash University, VIC 3800, AUS
{Imants.Svalbe, Andrew.Kingston}@spme.monash.edu.au

Abstract. In 2D discrete projective transforms, projection angles cor-
respond to lines linking pixels at integer multiples of the x and y image
grid spacing. To make the projection angle set non-redundant, the inte-
ger ratios are chosen from the set of relatively prime fractions given by
the Farey sequence. To sample objects uniformly, the set of projection
angles should be uniformly distributed. The unevenness function mea-
sures the deviation of an angle distribution from a uniformly increasing
sequence of angles. The allowed integer multiples are restricted by the
size of the discrete image array or by functional limits imposed on the
range of x and y increments for a particular transform. This paper out-
lines a method to compensate the unevenness function for the geometric
effects of different restrictions on the ranges of integers selected to form
these ratios. This geometric correction enables a direct comparison to be
made of the effective uniformity of an angle set formed over selected por-
tions of the Farey Plane. This result has direct application in comparing
the smoothness of digital angle sets.

Keywords: discrete image processing, discrete Radon transforms, Farey
sequences and digital angles.

1 Introduction

Discrete Radon transforms [1–3] differ from analogue projections, such as those
used in computed tomography (CT). The set of discrete projection angles is
explicitly linked to the digital imaging grid on which the projections are made,
rather than the free choices in continuous space available for taking measure-
ments in CT. Having the set of projection angles emerge as a property of the
transform is an advantage, as it removes the “arbitrary” choice of angles in the
continuum. However the distribution of discrete angles that comes with each
discrete transform is no longer uniform and some way of comparing angle dis-
tributions that arise from different discrete formulations is then needed.

The unevenness function is such a measure; it reflects the sum of the absolute
differences of a monotonically arranged set of angles with respect to the same

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 110–121, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Integer Ratios Lying in Restricted Portions of the Farey Plane 111

number of equally spaced angles over the same range. The angle corresponding to
an integer ratio is taken as the inverse tangent of the ratio. Thus 0/1, 1/4, 1/2, 3/4
and 1/1 is a sequence of ratios with zero unevenness, whilst the sequence of ratios
0/1, 1/3, 1/2, 2/3, 1/1 has a net unevenness of 1/12 + 0 + 1/12 = 1/6 for the 3
terms between 0 degrees (tan−1(0/1)) and 45 degrees (tan−1(1/1)). The latter
case is shown in Figure 1.

Fig. 1. The set of vectors that represent the angles for ratios 0/1, 1/3, 1/2, 2/3 and
1/1

The use of integer ratios to represent angles occurs frequently in digital trans-
forms. Discrete projective transforms link pixels located at integer multiples i
and j of the x and y image grid spacing to form the projection angle tan−1(i/j).
To form non-redundant projection angles, i and j are restricted to the set of rel-
atively prime integers which, as fractions, form members of the Farey sequence
[4, 5].

The transforms [1–3] each impose different restrictions on the range of the
integers (i, j) that form the discrete projection angle set. These restrictions arise
directly from the finite size of the discrete imaging grid, or through some trans-
form dependent functional limit on i and j. If we restrict the portion of the 2D
plane from which integer fractions (i, j) can be selected to form discrete projec-
tion angles, then the unevenness shifts systematically further from zero as the
domain of integers becomes more restricted and further removed from a linear
distribution of angles.

To compare the unevenness for angle sets arising from restricted ratios, we
need to remove the systematic bias that reflects the restricted domain rather
than of the distribution of integers within that domain.

In this paper, we correct the unevenness function for fractions comprised of
integers (i, j) that are restricted to specific areas of the 2D plane. We start with
the full unrestricted set and then consider the simple restriction i < m, j < n
(corresponding to the general Farey Sequence [6]). We next consider the length
of the segment, |(i, j)|, to be less than some radius r, i.e., |(i, j)| < r.

112 I. Svalbe and A. Kingston

The latter case motivated this work, as it corresponds closely to the constraint
on the integer ratios that arises in the discrete Radon formalism [2]. We were
interested to find if the discrete Radon transform selects Farey fractions in a
way that is, in some sense, optimally smooth. The properties of the projective
angle sets are of concern in reconstructing images from analogue projections [7]
(where digital angles are matched to the nearest uniform continuum angle) or as
a means of dynamic image analysis using the projected views of image subsets [8]
(where extra angles are added or subtracted as the size of image subset changes).

This paper considers distributions for Fn with n � 100. It takes the simplest
approximation of uniform density of angles formed by lines connecting the origin
to the points in the Farey plane. We assume this as the density of relatively
prime points in the Farey plane is approximately constant. The uniform angle
approximation can be shown to be weak. In [9] Boca, Cobeli and Zaharescu
derive the limiting distribution for large n for the angles of lines from Farey
points to the origin from linear segment or disc bounded sections of the plane.
Clearly, more accurate results will be obtained using the distribution based on
[9] as the starting point, but for n < 100 the accuracy obtained here is sufficient
to correct and compare the angle distributions for discrete projection sets.

In Section 2 we review some properties of the Farey sequence and its relation
to discrete Radon transforms. Section 3 reviews the unevenness for Farey frac-
tions in Fn where i and j < n, whilst Section 4 presents the correction required
to “linearise” the unevenness for the general Farey terms for Fm,n , and Section
5 covers the case where the integers i and j fall inside a circle of radius r. We
conclude in Section 6 with some discussion on the relevance of the latter case to
the discrete Radon transform of [2] and of the use of geometric corrections to
the unevenness in examining the uniformity of relatively prime fractions across
arbitrary regions of the 2D plane.

2 Discrete Radon Projections, Relative Primes and the
Farey Sequence

The discrete Radon transform sums the contents of image pixels located along
straight lines. The lines have slopes that are the ratio of two integers i/j, so that
the image is sampled along these lines, but only at grid locations separated by
regular intervals of

√
(i2 + j2), as shown in Figure 1. A digital projection is a

parallel array of such lines separated by integer translations (usually taken as
the unit pixel spacing along the x–axis direction).

For the discrete Radon transform described in [2], the image I(x, y) is chosen
to be a square with a side length fixed as a prime number (p) of pixel units.
Discrete transforms for arrays that are square but have composite length, L,
sides are presented in [10, 11] for L = 2n and in [12] for L = pn and [13] for L a
general composite number.

The projections are indexed by an integer m, where 0 ≤ m ≤ p, by x = my+t
for translations 0 ≤ t < p under modular arithmetic (so that the rays wrap,
under periodic boundary conditions, from right to the left image boundary).

Integer Ratios Lying in Restricted Portions of the Farey Plane 113

Under these constraints, the discrete Radon transform R(t,m) is a 1:1 mapping
of the image I(x, y). The image can be reconstructed (using additive operations
only), without loss, from the discrete projections, using a back-projection process
similar to the projection mechanism.

Linking pixels that are sampled on a given projection ray to their nearest
sampled neighbours means each integer m corresponds to a unique ratio of in-
tegers, i/j, that gives the slope or angle of the projection. It is shown in [4]
that the projection angles for the discrete Radon transform defined in [2] are a
subset of the Farey sequence of relatively prime ratios. All Farey fractions i/j
that are located at coordinate (i, j) inside a circle of radius

√
p form part of the

projection angle set, with an apparently “random” selection of Farey fractions
from radii

√
p up to

√
(2p/
√

3) to reach the full complement of the p + 1 angles
that correspond to the discrete projection set for a p× p image.

3 Unevenness of Farey Terms

A plot of the location (i, j) of the Farey fractions i/j for i and j < n is shown
in Figure 2 (the pattern is symmetric about the 45 degree line for the fractions
j/i). Relevant recent work on Farey sequences has considered the distribution
of Farey points [14] and correlations between Farey fractions [15].

Fig. 2. White points mark the location (i, j) of all positive relatively prime Farey
fractions i/j with i < j and j < n. For this example, n = 101

If there are a total of S Farey points inside the 45 degree triangle formed by
the points i < n, j < n, then we can order these ratios so that their fractional
value increases monotonically. This forms the Farey sequence Fn. Let k be the
index into this ordered set. We compute the unevenness Dn of the Farey series
Fn as Dn =

∑S−1
k=0 |d(k)| where d(k) = 1/j − k/S and i/j is the kth of S angles

114 I. Svalbe and A. Kingston

between 0/1 and 1/1. Figure 3 shows this process diagrammatically. The number
of angles dS enclosed between the dotted lines is proportional to the area dA
between the dotted lines, provided that the density of i/j fractions over the 45
degree Farey triangle is uniform. The unevenness, as used in this paper, compares
values relative to the linear set of fractions between 0/1 and 1/1. The inverse
tangent of these values should be taken to rank the unevenness of terms relative
to a uniform distribution of angles.

Fig. 3. Distribution of the number of integer ratios as a function of angle. The shaded
area encloses part of the angle distribution given by the integer ratios i/j. (a) denotes
the full Farey triangle for Fn where {i, j} < n, (b) illustrates the general Farey case
Fm, n where {i} < m, {j} < n, and (c) the case where {i, j} is restricted to lie inside
a circular arc of radius n

All shaded triangles of equal base will here have equal height and hence
area. As the angle index k varies from 0 degrees (0/1) to 45 degrees (1/1),
dS, which is proportional to dA, remains constant with k. Hence for the full
Farey triangle (shown as (a) in Figure 3), the number of angles varies linearly
with k in a continuous plane and hence the unevenness would be zero. For
discrete points in the plane and if the density of relatively prime ratios was
constant, then the unevenness for each Fn would be close to, but not equal to
zero. The density of relative primes is approximately constant, as the probability
that two numbers are relatively prime is 1/ζ(2) = 6/π2 [5]. This relatively poor
assumption of an even angle distribution resulting from an “on average” constant
density of relative primes is addressed in [9] for bounded sections of the Farey
plane that preserve the adjacency property of Farey fractions. In [9] rigorous
results are given for the mean density of lattice points visible from the origin
as a function of angle. There is great interest in number theory in quantifying

Integer Ratios Lying in Restricted Portions of the Farey Plane 115

the fluctuations in the density of primes (and relative primes). The unevenness
function provides a measure of deviations from uniformity and bounds on the
deviation of unevenness can be expressed as a variant statement of the Riemann
Hypothesis [16].

Here the unevenness function provides a useful comparison of the smoothness
with which digitally selected integer ratios fill the range of projection angles.
Figure 4 shows d(k), the variation in unevenness as a function of k, for the full
Farey sequence Fn with n = 107 (for which the total unevenness, D = 2.426
over the 3533 terms from 0/1 to 1/1). The work in [9] models the distribution
of unevenness values like those shown in Fig. 4.

Fig. 4. Unevenness terms d(k), as a function of increasing angle for the Farey sequence
with n = 107. Note the reflected symmetry about the midpoint, where i/j = 1/2
corresponds to k = 1/2

4 The Case for Fm,n

The points chosen to be included as part of Farey plane can be truncated in
various ways. As a simple example, we begin by truncating i at an integer m < n.
This restriction corresponds to formation of the general Farey sequence Fm,n [6]
where the integer ratios i/j now only come from within i ≤ m and j ≤ n (see
line (b) in Figure 3). [6] also provides efficient algorithms to calculate all terms
in such a sequence for any general Farey sequence without the use of recursive
generation.

Figure 5 shows components of the observed unevenness as a function of k for
F33,66. The large unevenness results from the displacement of angles away from
the linear trend, due to the selective truncation of the integer ratios within the
Farey triangle.

Because the fluctuations in unevenness are approximately equally likely to
have either sign, smoothing the curve by some form of local averaging will pro-
duce a curve that approximates the underlying distortion due to the geometry.
However such an approach will yield only approximate results and has difficulty
dealing with the ends of the distribution, where large unevenness contributions
of the same size occur.

116 I. Svalbe and A. Kingston

Fig. 5. Unevenness d(k) as a function of k for the general Farey sequence Fm,n for
m = 33, n = 66. The total unevenness, D, here is 99.834 over the 1009 terms from 0/1
through to 1/1

This geometric effect should then be compensated for exactly in order to
allow a meaningful direct comparison with the corresponding unevenness of the
full Farey set, which here would be F66.

If we truncate the allowed values of i at m (as shown in line (b) of Figure 2),
we can compute the underlying continuous plane unevenness function as before,
based on the incremental changes in area as k increases.

For 0 ≤ k ≤ m:

A =
nk

2
. (1)

At k = 0, A = 0 and at k = m, A = nm/2. This gives the linear variation of
angle density with k mentioned in Section 2.

For m < k ≤ n:

A =
nm(k −m)

2k
+

nm

2
=

nm(2k −m)
2k

(2)

At k = m, A = nm/2, at k = n, A = m(2n−m)/2. The inverse function of
(2), expressing k as a function of A, is then

k =
nm2

2(nm−A)
. (3)

The difference between a linear trend and the values of k given by (2) and
(3) over 0/1 to 1/1 produces the function required to correct for the truncation
of values at m in Fm,n.

Figure 6 shows the required geometric correction based on (1) and (3) applied
to the example of Figure 5. Figure 7 shows Figure 5 corrected by subtracting
an appropriately scaled version of the function shown in Figure 6. The total
unevenness for Figure 7 is now D = 1.619. Note the loss of symmetry about
k = 1/2 that was previously seen in Figure 4; i/j = 1/2 now occurs at k = 2/3
in the truncated Farey angle distribution. Figure 8 shows another post-correction
example applied to the general Farey sequence F24,80.

Integer Ratios Lying in Restricted Portions of the Farey Plane 117

Fig. 6. Geometric correction function for the general Farey sequence Fm,n as a function
of angle index k, applied to the example F33,66

Fig. 7. Corrected unevenness as a function of k for Fm,n as a function of angle index
k (over 1009 terms) for the example F33,66. Here D changes from 99.834 uncorrected
to 1.619 corrected

Fig. 8. Corrected unevenness for Fm,n as a function of angle index k for F24,80 (over
1010 terms). Here D changes from 199.377 uncorrected to 1.479 corrected

5 The Case for Fn Limited by a Disc

The same geometric correction procedure can be applied to the case where we
exclude all ratios i/j that lie outside a circle of specified radius, which we take

118 I. Svalbe and A. Kingston

here as r = n (as shown by line (c) in Figure 3). This approximates the discrete
Radon transform angle projection selection criteria, as given in Section 2.

We order the sequence of angles by θ = tan−1(k/n), so that k = n tan(θ).
Then dk/dθ = n sec2(θ) and dA = n2dθ/2 so that

dA
dk

=
n

2 sec2(θ)
=

n3

2(n2 + k2)
(4)

and

A =
n2 tan−1(k/n)

2
(5)

and
k = n tan(2A/n2) (6)

gives the required correction function for a circular cut-off in the Farey plane
when we find the difference between (6) and a linear trend. Figure 9 shows
the unevenness as a function of k for the integer ratios i/j of F107 limited to
i2 + j2 = r2 < 10, 009.

Fig. 9. Unevenness as a function of k for terms in Fn limited to lie inside radius r, here
n = 107 and r =

√
(10, 009). Here D = 139.44. For comparison, D for F107 is 2.426

over 2,389 terms

Fig. 10. Geometric correction function given by (6) for the example applied to the case
shown in Figure 9

Integer Ratios Lying in Restricted Portions of the Farey Plane 119

Fig. 11. Figure 9 after geometric correction for the circular truncation in the Farey
plane. Here D = 2.0419 for the 2,389 angle terms between 0 and 45 degrees and inside
radius r, where r2 = 10, 009

6 Conclusions

We have developed a simple procedure to enable a direct comparison of the
unevenness for angle distributions using differently restricted sections of the
Farey plane of relatively prime integer ratios. The procedure involves a geometric
correction factor specific to each geometric constraint and assumes a uniform
density of points in the Farey plane.

Figure 12 shows the unevenness for a discrete Radon angle set corrected using
a hard edged circle with radius equal to the maximum radius for that p. The
Radon set shows a slightly greater unevenness than for the full set of relatively
prime integer ratios out to the same radius.

Fig. 12. Compensated unevenness for the discrete radon transform angle distribution
at p = 10, 009, for which D = 3.274 (was 143.09 uncorrected)

We are examining the variation of unevenness for the discrete Radon angle
sets for primes of similar value, to find which primes have the smoothest digital
angle sets, as well as examining the general trends in unevenness as a function of
increasing array size p. The same procedure can be used to compare the uneven-
ness for images of the same discrete size but using different transform definitions
[1–3] that also lead to different restrictions on the ratio set. These results may

120 I. Svalbe and A. Kingston

also have application in examining the variation in the level of fluctuations in
relative primes over sub-regions of the Farey plane. These comparisons need
to incorporate the effects of the known limiting distribution of fluctuations de-
scribed in [9]. This would then provide a level of accuracy needed to compare the
unevenness between adjacent prime sized array angle sets. For the DRT Farey
points, the adjacency property used in [9] does not hold for points in the DRT
Farey set with radius r ≥ √p, i.e., there are missing Farey fractions, however the
theory of [9] is valid for the majority of DRT Farey points which have r <

√
p.

Discrete arrays with sides of composite length [13] also select i/j ratios from
the Farey plane, but with an altered distribution of angles to account for the
redundancy in sampling due to the non-prime “wrapping” across the array. A
similar evaluation of these angle distributions and of those for more general
arrays of size N ×M is being undertaken.

Acknowledgments

We thank the referees for drawing our attention to the fundamental work of Boca,
Cobeli and Zaharescu [9] and later papers. IS has received research support for
this work from the Centre for X-ray Physics and Imaging, the School of Physics
and Materials Engineering and the Faculty of Science at Monash University. AK
acknowledges support from an Australian Postgraduate Research Scholarship
provided through the Australian government, as well as support from the School
of Physics and Materials Engineering at Monash University.

References

1. Beylkin, G.: Discrete radon transform. IEEE Transactions on Acoustics, Speech,
& Signal Processing 35 (1987) 162–172

2. Matus, F., Flusser, J.: Image representation via a finite Radon transform. IEEE
Transactions on Pattern Analysis & Machine Intelligence 15 (1993) 996–1006

3. Guedon, J., Normand, N.: The Mojette transform: applications in image analysis
and coding. In: The International Society for Optical Engineering. Volume 3024,
pt.2, 1997, p 873-84., SPIE-Int. Soc. Opt. Eng, USA (1997) 873–884

4. Svalbe, I., Kingston, A.: Farey sequences and discrete Radon transform projection
angles. In: Electronic Notes in Discrete Mathematics. Volume 12., Elsevier (2003)

5. Hardy, G., Wright, E.: An introduction to the theory of numbers. 4 edn. Clarendon
Press, Oxford (1960)

6. Acketa, D., Zunic, J.: On the number of linear partitions of the (m, n)-grid.
Information Processing Letters 38 (1991) 163–168

7. Svalbe, I., van der Spek, D.: Reconstruction of tomographic images using analog
projections and the digital Radon transform. Linear Algebra and Its Applications
339 (2001) 125–145

8. Kingston, A., Svalbe, I.: Adaptive discrete Radon transforms for grayscale images.
In: Electronic Notes in Discrete Mathematics. Volume 12., Elsevier (2003)

9. Boca, F., Cobeli, C., Zaharescu, A.: Distribution of lattice points visible from the
origin. Commun. Math. Phys. 213 (2000) 433–470

Integer Ratios Lying in Restricted Portions of the Farey Plane 121

10. Hsung, T., Lun, D., Siu, W.: The discrete periodic Radon transform. IEEE Trans-
actions on Signal Processing 44 (1996) 2651–2657

11. Lun, D., Hsung, T., Shen, T.: Orthogonal discrete periodic Radon transform. Part
I: theory and realization. Signal Processing 83 (2003) 941–955

12. Kingston, A.: Orthogonal discrete Radon transform over pn. Signal Processing
(submitted November 2003)

13. Kingston, A., Svalbe, I.: A discrete Radon transform for square arrays of arbitrary
size. submitted to DGCI’05 (2004)

14. Augustin, V., Boca, F., Cobeli, C., Zaharescu, A.: The h-spacing distribution
between Farey points. Math. Proc. Cambridge Phil. Soc. 131 (2001) 23–38

15. Boca, F., Zaharescu, A.: The correlations of Farey fractions. preprint
http://arxiv.org/ps/math.NT/0404114 (2004)

16. Apostol, T.: Introduction to analytic number theory. Springer-Verlag, New York
(1976)

Equivalence Between Regular n-G-Maps and
n-Surfaces

Sylvie Alayrangues1 and Xavier Daragon2, Jacques-Olivier Lachaud1,
and Pascal Lienhardt3

1 LaBRI - 351 cours de la libération - 33405 Talence Cedex
{alayrang, lachaud}@labri.fr

2 ESIEE - Laboratoire A2SI, 2 bd Blaise Pascal, cité DESCARTES, BP99,
93162 Noisy le Grand Cedex

daragonx@esiee.fr
3 SIC - bât SP2MI, Bd M. et P. Curie, BP 30179,

86962 Futuroscope Chasseneuil Cedex
lienhardt@sic.sp2mi.univ-poitiers.fr

Abstract. Many combinatorial structures have been designed to repre-
sent the topology of space subdivisions and images. We focus here on two
particular models, namely the n-G-maps used in geometric modeling and
computational geometry and the n-surfaces used in discrete imagery. We
show that a subclass of n-G-maps is equivalent to n-surfaces. We exhibit
a local property characterising this subclass, which is easy to check al-
gorithmatically. Finally, the proofs being constructive, we show how to
switch from one representation to another effectively.

1 Introduction

The representation of space subdivisions and the study of their topological prop-
erties are significant topics in various fields of research such as geometric model-
ing, computational geometry and discrete imagery. A lot of combinatorial struc-
tures have already been defined to represent such topologies and specific tools
have been developed to handle each of them. Although most of them aim at
representing manifold-like underlying spaces they have very variable definitions.

Comparing these structures, and highlighting their similarities or specificities
are important for several reasons. It can first create bridges between them and
offer the possibility to switch from one framework to another according to the
needs of a given application. It may also lead to a more general framework which
unify most of these structures. Theoretical results and practical algorithms can
also be transferred from one to another. However, these structures are most likely
not interchangeable. Indeed, there is yet no complete combinatorial character-
isation of manifolds. The structures found in the literature generally propose
local combinatorial properties that can only approach the properties of space
subdivisions. It is therefore extremely important to know precisely what class of
objects is associated to each structure. Several studies have already been carried

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 122–136, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Equivalence Between Regular n-G-Maps and n-Surfaces 123

out in this direction. Quad-edge, facet-edge and cell-tuples were compared by
Brisson in [6]. Lienhardt [15] studied their relations with several structures used
in geometric modelling like the n-dimensional (generalized or not) map. The re-
lation between a subclass of orders and cell complexes was also studied in [1]. A
similar work was done on dual graphs and maps by Brun and Kropatsch in [7].

We focus here mainly on two structures: the n-surface and the n-dimensional
generalized map. The n-surface is a specific subclass of orders defined by Bertrand
and Couprie in [4] which is similar to the notion previously defined by Evako et
al. on graphs in [12]. It is essentially an order relation over a set together with
a finite recursive property. It is designed to represent the topology of images
and objects within. The generalized map introduced by Lienhardt in [15] is an
effective tool in geometric modeling and is also used in computational geometry.
It is defined by a set of n+1 involutions joigning elements dimension by dimen-
sion. Although the definitions of these two structures are very different, we show
that a subclass of generalized maps, that we call regular n-G-maps, is equivalent
to n-surfaces. Furthermore, we provide a simple local characterisation of this
subclass. This may have various nice consequences. From a theoretical point of
view, some proofs may be simplified by expressing them rather on a model than
on the other, some notions can also be extended. Moreover the operators defined
on each model may be translated onto the other. A possible application would
consist in using the tools defined on orders: homotopic thinning, marching chains
using frontier orders [8, 9] to obtain n-surfaces. They can then be transformed
into n-G-maps which can easily be handled with their associated construction
operators: identification, extrusion, split, merge. To prove the equivalence of
these models, we use an intermediary structure defined by Brisson in [6]: the
augmented incidence graph. This structure is quite similar to orders although
its definition does not involve the same local properties as n-surfaces. Moreover
Brisson shows a partial link between n-G-maps and such incidence graphs. He
effectively proved that an n-G-map may be built from any augmented incidence
graph. In [15], Lienhardt gives a necessary condition to build such an augmented
incidence graph from an n-G-map. We show here with a counter-example that
it is not sufficient.

The main contributions of these papers are: (i) we prove that n-dimensional
augmented incidence graphs and n-surfaces are equivalent structures (Theorem
18), (ii) we complete the works of Brisson and Lienhardt with the characteriza-
tion of the n-G-map subclass that is equivalent to augmented incidence graphs
(Definition 8 of regular n-G-maps, Theorem 12 and 14), (iii) we design construc-
tive proofs which allow to effectively switch between the different representation.
This result remains very general since any closed n-G-map can be refined into a
regular n-G-map with appropriate local subdivisions.

The paper is organized as follows. First, we recall the notions of incidence
graphs and orders and show how they are related to each other. We also define
precisely the models we wish to compare and give some clues to their equivalence.
Then, we give a guideline of the proof before presenting the whole demonstration.
We conclude with some perspectives for this work.

124 S. Alayrangues et al.

2 Models Description

We describe below the models we wish to compare, and we list known results about
their relationships. We begin with recalling the general notions related to orders
and incidence graphs and we characterize then the appropriate submodels.

2.1 Orders and Incidence Graphs

Orders are used by Bertrand et al. [3] to study topological properties of images.
The main advantages of this model are its genericity and its simplicity. Orders
can be used to represent images of any dimension, whether they are regularly
sampled or not.

Definition 1. An order is a pair |X| = (X,α), where X is a set and α a
reflexive, antisymmetric, and transitive binary relation. We denote β the inverse
of α and θ the union of α and β. CF orders are orders which are countable, i.e.
X is countable, and locally finite, i.e. ∀x ∈ X, θ(x) is finite.

For any binary relation ρ on a set X, for any element x of X, the set ρ(x) is
called the ρ-adherence of x and the set ρ�(x) = ρ(x)\{x}, the strict ρ-adherence
of x. A ρ-chain of length n is any sequence x0, x1, · · · , xn such that xk+1 ∈
ρ�(xk). An implicit dimension, dimα(x), may be associated to each element of
an order [12, 1], as the length of the longest α-chain beginning at it. We choose
here to represent orders as simple directed acyclic graphs (see Fig. 2-a), where
each node is associated to an element of the order and only direct α-relations1

are shown. The remaining relations can be deduced by transitivity.
Incidence graphs are used to represent subdivisions of topological spaces.

They explicitly deal with the different cells of the subdivision and their inci-
dence relations. They have for example been used by Edelsbrunner [10] to design
geometric algorithms.

Definition 2. An incidence graph [6] yielded by a cellular partition of dimen-
sion n is defined as a directed graph whose nodes correspond to the cells of the
partition and where each oriented arc connects an i-cell to an (i−1)-cell to which
it is incident. With such a graph is associated a labeling of each node given by
the dimension of its associated cell.

Let us denote by Ii the index set of the i-cells of a cellular partition. The
associated n-dimensional incidence graph is hence denoted by IGC = (C,≺),
where C =

⋃i=n
i=0 (

⋃
β∈Ii

ci
β) is the set of cells and ≺ is the incidence relation

between (i− 1)-cells and i-cells, i ∈ {1, · · · , n}.

In the sequel we only consider finite incidence graphs. For convenience, it is
also sometimes useful to add two more cells c−1 and cn+1 to incidence graphs,
such that c−1 is incident to all 0-cells and all n-cells are incident to cn+1. They

1 An element x is said to be directly related to x′ by α if x′ ∈ α� (x) and α� (x) ∩
β� (x′) = ∅.

Equivalence Between Regular n-G-Maps and n-Surfaces 125

represent no real cells of the subdivision but make easier the definition of generic
operators on incidence graphs. An incidence graph with two such cells is called
an extended incidence graph and is denoted by IG∗

C = (C∗,≺). Let IGC be an
incidence graph and c an element of C, if c′ is linked to c by a chain of cells
(eventually empty) related by ≺ then we say that c′ is a face of c and we denote
it by c′ ≤ c. We write c′ < c when c′ �= c and c′ ≤ c. An incidence graph is hence
represented by a simple directed acyclic graph, where the nodes respectively
representing a cell ci+1 and a cell ci are linked by an arc if and only if ci ≺ ci+1

(see Fig. 2-b).
There is an obvious relationship between incidence graphs and orders. The

incidence graph IGC = (C,≺) can indeed be seen as the order (C,≤) where
the dimension associated to each cell is forgotten. (C,≤) is the order associated
to IGC . Reciprocally, a relation ≺|X| may be defined on the elements of |X|,
such that x′ ≺|X| x is equivalent to x′ ∈ α(x) and dimα(x′) = dimα(x) −
1. The incidence graph (X,≺|X|) where each cell of the graph is labeled by
its corresponding α-dimension in |X| is the incidence graph associated to |X|.
However, in the general case, the relation ≤ between the cells of an incidence
graph built from an order is different from the order relation α on the set X
(see [2]). An order |X| = (X,α) is said to be equivalent to an incidence graph
G = (C,≺) if the order |G| = (C,≤) is isomorphic to |X|.

Theorem 3. An order (X,α) and its associated incidence graph are equivalent
if and only if:

1. each element of x belongs to at least one maximal α-chain,
2. ∀x ∈ X, the elements of X directly related to x by α have dimension

dimα(x)− 1.

When dealing with incidence graphs we hence use the notations defined on
orders. An incidence graph or an order are connected if and only if any couple
of cells can be joined by a sequence of cells related by θ�.

We notice here that orders as well as incidence graphs are not able to represent
cellular subdivisionswithmulti-incidence.A simple example is the torusmade from
a single square with opposite borders glued together. They indeed cannot provide
information on how the different cells are glued together. They are for example not
able to represent differently the two objects of Figs. 2.1 -(a) and 2.1 -(c).

2.2 n-Surfaces, Augmented Incidence Graphs and G-Maps

Orders and incidence graphs can represent a wide range of objects. We concen-
trate now on subclasses of these models that are used to represent restricted
classes of objects. We aim at comparing these structures with n-dimensional
generalized maps (n-G-maps) defined by Lienhardt [14–16].

We begin with a subclass of orders defined by Bertrand et al. which is close
to the notion of manifold proposed by Kovalevsky [4].

126 S. Alayrangues et al.

Fig. 1. Both objects (a) and (c) have the same cells and the same incidence relations,
and hence the same incidence graph (e). However they are clearly different and are rep-
resented by two different 2-G-maps, respectively (b) and (d). The object (c) represents
the minimal subdivision of the projective plane (see [2])

Definition 4. Let |X| = (X,α) be a non-empty CF -order. The order |X| is a
0-surface if X is composed exactly of two points x and y such that y �∈ α(x) and
x �∈ α(y). The order |X| is an n-surface, n > 0, if |X| is connected and if, for
each x ∈ X, the order |θ�(x)| is an (n− 1)-surface.

It can be recursively proved that Theorem 3 holds for any n-surface (see
Fig. 2-a), which is then always isomorphic to its associated incidence graph.

x10

x1 x3 x4

x13

x2 x5

x14x12

x7 x9 x11x8x6 e

2 2 2

11 1 1

0 0 0 0 0

1 1

DA B C E

F1 F2 F3

cfa b d

Fig. 2. Example of an order (Left) which is 2-surface and of an incidence graph (Right)
which is augmented, and represents the subdivision of Fig. 4-a

We present now a subclass of incidence graphs defined by Brisson [6], to
represent CW-complexes whose underlying spaces are d-manifolds. It will form
the bridge between n-surfaces and n-G-maps.

Definition 5. An extended incidence graph IG∗
C of dimension n is said to be

an augmented incidence graph when it is connected and:

Equivalence Between Regular n-G-Maps and n-Surfaces 127

1. each i-cell of C belongs to at least one (n + 1)-tuple of cells (c0, · · · , cn).
2. ∀(ci−1, ci, ci+1) ∈ C∗ × C × C∗, ci−1 ≺ ci ≺ ci+1, ∃!c′i ∈ C, c

′i �= ci, ci−1 ≺
c′i ≺ ci+1. (ci−1, ci, ci+1) and (ci−1, c

′i, ci+1) are called switch IG∗
C-triplets.

The operator switch is hence defined by switch(ci−1, ci, ci+1) = c′i. The cell
c

′i is then called the (ci−1, ci+1)-twin of ci in IG∗
C .

The n-G-maps defined by Lienhardt are used to represent the topology of
subdivisions of topological spaces. They can only represent quasi-manifolds (see
[16]), orientable or not, with or without boundary.

Definition 6. Let n ≥ 0, an n-G-map is an (n + 2)-tuple G = (D,α0, · · · , αn)
such that:

– D is a finite set of darts
– αi, i ∈ {0 · · · , n} are permutations on D such that:
• ∀i ∈ {0, · · · , n}, αi is an involution2.
• ∀i, j such that 0 ≤ i < i + 2 ≤ j ≤ n, αiαj is an involution (Commuta-

tivity property).

The i-cells of the cellular subdivision represented by an n-G-map are deter-
mined by the orbits of the darts of D (see Figs. 4-b, c and d). In the following
an orbit of a dart d is denoted by <α> (d) indexed by the indices of the involved
permutations.

Definition 7. Let G = (D,α0, · · · , αn) be an n-G-map. Each i-cell of the cor-
responding subdivision is given by <α>N−{i} (d) where d is a dart incident to
this i-cell.

The set of i-cells is a partition of the darts of the n-G-map, for each i between
0 and n. The incidence relations between the cells is defined by: cj =<α>N−{j}
(d) is a face of a cell ci =<α>N−{i} (d) when j ≤ i [15]. Two such cells are said
to be consecutive when j = i + 1.

We list below three classical notions related to n-G-maps.

1. Closeness: ∀i ∈ N = {0, · · · , n}, αi is without fixed point: ∀d ∈ D,αi(d) �= d

2. Without Multi-incidence: ∀d ∈ D,
⋂i=n

i=0 <α>N−{i} (d) = {d}
3. Connectedness: ∀d ∈ D, <α>N (d) = D

We note that a subdivision represented by a closed n-G-map has no boundary.
A subdivision with multi-incidence is displayed in Fig. 2.1.

The associated incidence graph of an n-G-map is the extended incidence
graph corresponding to the cellular subdivision it represents. There is an im-
mediate link between the darts of an n-G-map and the maximal chains, called
(n+ 1) cell-tuples, of its associated incidence graph. A dart d actually defines a
unique (n + 1) cell-tuple (c0, · · · , cn) with all cells having at least the dart d in

2 A permutation π on the domain set D is an involution if and only if π ◦ π =
identity on D .

128 S. Alayrangues et al.

common (see Definition 7). (c0, · · · , cn) is called the (n+1) cell-tuple associated
to d. The condition of non multi-incidence is needed to reciprocally associate a
unique dart to each (n + 1) cell-tuple. There exists hence a bijection between
the set of darts of an n-G-map without multi-incidence and the set of (n + 1)
cell-tuples in the associated incidence graph. For instance, on Fig. 4-a, the dart
1 is uniquely associated to (A, a, F1).

However, despite what has been written in [15], the property of non multi-
incidence of a generalized map is not sufficient to guarantee that its associated
incidence graph is augmented. A counterexample is given in Fig. 3. We introduce
hence a more accurate subclass of n-G-maps.

Fig. 3. Example of a closed n-G-map without multi-incidence (Left) and its associated
space subdivision (Right) whose associated incidence graph is not augmented: there
are four 1-cells (c,d,f ,h) between D and F2. F1, F2 and F3 are respectively defined by
the sets of darts {27, . . . , 32}, {11, · · · , 26} and {1, · · · , 10}

2.3 Regular n-G-Maps

The insufficiency of the non multi-incidence property comes from a subtler kind
of multi-incidence. The classical non multi-incidence condition guarantees that
there are no multi-incidence on the cellular subdivision associated to the n-
G-map. As many other models, each n-G-map may be associated to a “set of
simplices” but it has not to be a simplicial complex. It is namely a numbered
simplicial set3 (see Fig. 4-e) in which other kinds of multi-incidence may appear.
Such a simplicial set is related to the barycentric triangulation of the corre-
sponding cellular partition. The set of vertices is exactly the set of cells of the
incidence graph, each vertex being labeled by the dimension of the corresponding
cell. The classical non multi-incidence property implies that two different maxi-
mal simplices of the associated numbered simplicial set cannot have the same set
of vertices. But it does not force lower dimensional simplices to fullfill the same
requirement. We consider hence a restricted subclass of n-G-maps, the regular
n-G-maps, which avoids more configurations of simplicial multi-incidence.

Definition 8. A regular n-G-map is a connected closed n-G-map without multi-
incidence with the additional property, ∀i ∈ {1, · · · , n− 1} and ∀d ∈ D:

3 A numbered simplicial set is a simplicial set in which a positive integer is associated
to each 0-simplex, see [16, 17].

Equivalence Between Regular n-G-Maps and n-Surfaces 129

E

149

1110

13

19

20

2122

15 16

1 2
3

4
56

7

824

23

12

17

18

F2

A B

C

D

F1

a

b

c

d

e

F3

f

(a) Subdivision of R
2 and its corresponding 2-G-map,

G = (D, α0, α1, α2), with D = {1, · · · , 24}

α1

α0

α1

α1

α0

α0

α0

α1

α0

α1

α1

α0

α1

α0

α0 α1

α1

α0α1

α0

α0

α1

α0

α1

23

24

15 16

17

18

19

20

2122

6
7

8
1 2

3

4 10

9 14

13
12

11
5

(b) < α0, α1 > orbits / 2-
cells on a 2-G-map
< α0, α1 > (15) ⇔ F3

< α0, α1 > (9) ⇔ F2

< α0, α1 > (1) ⇔ F1

α2

24

23

8

7
6 5

2122

1 2

1615

3

4 10

9 14

17

18

13
12

19

20

11

α2

α0

α0

α0

α0

α0

α0

α2

α2

α0

α2

α0α0

α2

α2

α2
α2

α0

α2

α2

α0

α2

α0

(c) < α0, α2 > orbits / 1-
cells on a 2-G-map
<α0, α2 > (1)⇔a,
<α0, α2 > (13)⇔b
< α0, α2 > (11) ⇔ c,
< α0, α2 > (5) ⇔ d
< α0, α2 > (7) ⇔ e,
< α0, α2 > (3) ⇔ f

α1

15

824

16

17

18

194

21

20

22

23

α1

α1

α1

α1 α2 α2

α13

12
α2

α2

10
α2

α1

α2

5
α1

α2

α2 7

6
α1

α2

1 2
α1

α2
9

14
α2

13
α1

11α1
α2

(d) < α1α2 > orbits / 0-
cells on a 2-G-map
< α1, α2 > (1) ⇔ A,
< α1, α2 > (2) ⇔ B
< α1, α2 > (12) ⇔ C,
< α1, α2 > (4) ⇔ D
< α1, α2 > (6) ⇔ E

b

0

0

1

1

2

1

0

2

10

1

0

1

B

C

E

fF1
e

d

aA

D

c

F2

(e) numbered simpli-
cial set associated to
G′ = (D′, α0|D′ , α1|D′ , α2|D′)
with D′ = {1, · · · , 14}

Fig. 4. A 2-G-map with its associated cellular decomposition and the numbered sim-
plicial set associated to one of its submaps

130 S. Alayrangues et al.

<α>N−{i−1} (d)∩ <α>N−{i+1} (d) =<α>N−{i−1,i+1} (d) (simplicity)

The simplicity condition of such an n-G-map impose that the cells of the
associated subdivision are more similar to topological disks. It implies that the
numbered simplicial set must have a single edge between every two vertices when
there is a difference of two between their associated numbers.

This limitation is not too restrictive because of the following property: any
closed n-G-map may be refined into a regular n-G-map by appropriate barycen-
tric subdivisions. There is indeed always possible to obtain a simplicial set with-
out multi-incidence from any simplicial set by refining it [13]. Moreover as this
process involves barycentric subdivisions [13], we are sure that the resulting sim-
plicial set can be numbered [16]. We also note that the refinement process has
not to be done on the whole map but only locally where some multi-incidence
appears.

3 Equivalence of Regular n-G-Maps, Augmented
Incidence Graph and n-Surfaces

We give first the main ideas and the organisation of the proof. We detail then
the whole demonstration.

3.1 Guideline of the Proof

Incidence graphs are used as a bridge between regular n-G-maps and n-surfaces.

Generalized Map and Incidence Graph. An example of a regular n-G-map
and an equivalent augmented incidence graph is given in Figs. 4 and 2-b.

We first prove that the incidence graph associated to any regular n-G-map is
augmented. It already fullfills a part of the definition since each cell of such an
incidence graph belongs to at least one (n + 1) cell-tuple. We must then show
that the (n+1) involutions of the map induce a switch operator on the incidence
graph, which makes it augmented. These involutions are indeed involutions on
the darts of the map and thus induce (n+1) involutions on the (n+1) cell-tuples
of the associated incidence graph. The regularity of the map allows to prove that
these involutions induce a switch property on the (n + 1) cell-tuples.

The converse has already partially been proved by Brisson [6]. We begin with
proving that the switch operator on an augmented incidence graph of dimension
n induces n + 1 involutions without fixed point on the (n + 1) cell-tuples of
this graph. We show then that they commute when there is a difference of two
between their indices. The (n + 2)-tuple made of the set containing all (n + 1)
cell-tuples of the incidence graph and the (n + 1) involutions is hence a closed
n-G-map without multi-incidence. The switch property allows then to prove that
it also verifies the simplicity property.

Incidence Graph and n-Surface. An example of an augmented incidence
graph and an equivalent n-surface is displayed on Fig. 2.

Equivalence Between Regular n-G-Maps and n-Surfaces 131

The proof is made with an induction over the dimension n. The equivalence
is clear for n = 0. For n > 0, we prove that each subgraph built on the strict
θ-adherence of any element of an augmented incidence graph is itself an aug-
mented incidence graph. We also show that an extended incidence graph which
is locally everywhere an augmented incidence graph is globally an augmented
incidence graph. This means that an n-dimensional augmented incidence graph,
n > 0, can be recursively defined. It is simply an extended incidence graph such
that each subgraph built on the strict θ-adherence of any of its elements is an
(n− 1)-dimensional augmented incidence graph. Now n-dimensional augmented
incidence graphs and n-surfaces are equivalent for n = 0. Given that they are
built with the same recurrence for all n > 0, they are hence equivalent for all n.

Organisation of the Proof.

regular
n-G-map

nGIG−conversion

(Theorem 12 p. 132)
=⇒

IGnG−conversion

(Theorem 14 p. 133)⇐=

augmented
incidence

graph

IGnS−conversion

(Theorem 18 p. 134)
=⇒

nSIG−conversion

(Theorem 18 p. 134)⇐=

n-surface

3.2 Proof

We first prove the equivalence between regular n-G-maps and augmented inci-
dence graph. We show then that augmented incidence graph and n-surfaces are
equivalent. Finally we deduce the link between regular n-G-maps and n-surfaces.

Equivalence Between Regular n-G-Maps and Augmented Incidence
Graphs. We first show how to define an nGIG-conversion which builds an
augmented incidence graph from a regular n-G-map. We then define the IGnG-
conversion which is the inverse of nGIG-conversion up to isomorphism.

nGIG-Conversion.
As previously said, there is an n-dimensional incidence graph associated with any
regular n-G-map. We are going to prove that this incidence graph is augmented.
We need first to state some properties of particular orbits of n-G-maps. The
first two lemmas have an interesting interpretation on the numbered simplicial
set associated to the n-G-map (Fig. 4-e). The last one is better related to the
cellular subdivision. The proofs of the three following lemmas can be found
in [2].

The first lemma states that, for any n-G-map without multi-incidence, three
0-simplices with consecutive numbers belong to exactly one 2-simplex.

Lemma 9. Let G = (D,α0, · · · , αn) be a closed n-G-map without multi-
incidence. Let d be any dart of D and i ∈ {1, · · · , n− 1},

<α>N−{i−1} (d)∩ <α>N−{i} (d)∩ <α>N−{i+1} (d) =<α>N−{i−1,i,i+1} (d)

132 S. Alayrangues et al.

This second lemma says that, for any n-G-map, a 1-simplex between two
0-simplices numbered i− 1 and i + 1 belongs to at most two 2-simplexes.

Lemma 10. Let G = (D,α0, · · · , αn) be an n-G-map. Let d be any dart of D
and i ∈ {1, · · · , n− 1},

<α>N−{i−1,i+1} (d) =<α>N−{i−1,i,i+1} (d)∪ <α>N−{i−1,i,i+1} (dαi)

This third lemma states that every 1-cell of the cellular subdivision associated
to an n-G-map has at most two 0-faces and that any (n − 1)-cell is face of at
most two n-cells.

Lemma 11. Let G = (D,α0, · · · , αn) be an n-G-map and d,d′ two darts of D.

1. <α>N−{1} (d) = (<α>N−{1} (d) ∩ <α>N−{0} (d)) ∪ (<α>N−{1} (d) ∩
<α>N−{0} (dα0))

2. <α>N−{n−1} (d) = (<α>N−{n−1} (d)∩<α>N−{n} (d))∪(<α>N−{n−1} (d)∩
<α>N−{n} (dαn))

Theorem 12. Let G = (D,α0, · · · , αn) be a regular n-G-map. Its associated
incidence graph is then augmented. The construction of an augmented incidence
graph from a regular n-G-map is called an nGIG− conversion.

Proof. We must prove that the incidence graph associated to the n-G-map has
the property needed to build a switch operator. This property can be equivalently
expressed on the (n + 1) cell-tuples of the graph with the two additional fictive
cells c−1 and cn+1 [6]. For all couple of cells (ci−1, ci+1), there must exist exactly
two different cells ci and c

′i such that all (n+ 1) cell-tuples containing ci−1 and
ci+1 contains either ci or c

′i. Moreover since there exists a bijection between the
set of darts of a closed n-G-map without multi-incidence and the set of (n + 1)
cell-tuples of the associated incidence graph, we can equivalently achieve the
demonstration with darts or cell-tuples.

Given two cells ci−1 and ci+1, let us choose one of the (n + 1) cell-tuples
containing them and let d be its associated dart. By Definition 7, the dart dαi

also corresponds to an (n+1) cell-tuple containing ci−1 and ci+1. But as the map
is closed and without multi-incidence, the i-cell associated to d, <α>N−{i} (d),
is different from the i-cell associated to dαi, <α>N−{i} (dαi). We have then at
least two distinct i-cells between ci−1 and ci+1. We must prove that there is no
other. We translate this condition in terms of orbits of darts.

– If i ∈ {1, · · · , n − 1}, ∀d′ ∈ D such that d′ ∈ <α>N−{i−1}(d) and d′ ∈
<α>N−{i+1}(d) ⇒ either d′ ∈ <α>N−{i}(d) or d′ ∈ <α>N−{i} (dαi)

– ∀d′ ∈ D, d′ ∈ <α>N−{1} (d)⇒ d′ ∈ <α>N−{0} (d) or d′ ∈ <α>N−{0} (dα0),
– ∀d′ ∈ D, d′ ∈ <α>N−{n−1} (d) ⇒ d′ ∈ <α>N−{n} (d) or d′ ∈

<α>N−{n} (dαn)

The last two points comes directly from Lemma 11. We prove the first point.

Equivalence Between Regular n-G-Maps and n-Surfaces 133

d′ ∈<α>N−{i−1} (d)∩ <α>N−{i+1} (d)
simplicity⇐⇒ d′ ∈<α>N−{i−1,i+1} (d)

Lemma 10⇐⇒ d′ ∈<α>N−{i−1,i,i+1} (d)∪ <α>N−{i−1,i,i+1} (dαi)
Lemma 9⇐⇒ d′ ∈ (<α>N−{i−1} (d)∩ <α>N−{i} (d)∩ <α>N−{i+1} (d))

∪(<α>N−{i−1} (dαi)∩ <α>N−{i} (dαi)∩ <α>N−{i+1} (dαi))

Otherwise said d′ ∈<α>N−{i} (d) or d′ ∈<α>N−{i} (dαi). ��

IGnG-Conversion.
We here show how to build an n-G-map from an augmented incidence graph.
The first lemma says that the operator switch induces (n + 1) involutions on
the set of (n + 1) cell-tuples of the incidence graph.

Lemma 13. Let IG∗
C be an augmented incidence graph. Its switch operator

induces (n + 1) involutions without fixed point αi, i ∈ {0, · · · , n} on the set of
the (n + 1) cell-tuples of IG∗

C , (c0, · · · , ci, · · · , cn) , defined by:

αi((c0, · · · , ci−1, ci, ci+1, · · · , cn)) = (c0, · · · , ci−1, c
′i, ci+1, · · · , cn)

where c
′i = switch(ci−1, ci, ci+1)

Theorem 14. Let IG∗
C be an augmented incidence graph. Let us define

– D = {(c0β0
, · · · , cn

βn
), c−1 ≺ c0β0

≺ c1β1
≺ · · · ≺ cn

βn
≺ cn+1}

– αi, i ∈ {0, · · · , n} such that

(c0β0
, · · · , ci−1

βi−1
, ci

βi
, ci+1

βi+1
, · · · , cn

βn
) αi�→ (c0β0

, · · · , ci−1
βi−1

, ci
β′

i
, ci+1

βi+1
, · · · , cn

βn
)

with ci
β′

i
= switch(ci−1

βi−1
, ci

βi
, ci+1

βi+1
)

Then (D,α0, · · · , αn) is a regular n-G-map.
This process is called a IGnG-conversion

Proof. The proof is decomposed in four parts. The closeness, commutativity and
without multi-incidence properties have already been proved by Brisson [6] and
may also be found in [2]. We just prove here the simplicity property. The switch
property and the definition of αi guarantees that if d′ ∈<α>N−{i−1} (d)∩ <
α>N−{i+1} (d) then either d′ ∈<α>N−{i} (d) or d′ ∈<α>N−{i} (dαi). Otherwise
said,

<α>N−{i−1} (d)∩ <α>N−{i+1} (d)
(by Switch prop.)

= (<α>N−{i−1} (d)∩ <α>N−{i+1} (d)∩ <α>N−{i} (d))
∪ (<α>N−{i−1} (d)∩ <α>N−{i+1} (d)∩ <α>N−{i} (dαi)))

(by Lemma 9)
= <α>N−{i−1,i,i+1} (d)∪ <α>N−{i−1,i,i+1} (dαi)

(by Lemma 10)
= <α>N−{i−1,i+1} (d)

��

134 S. Alayrangues et al.

Equivalence Between Augmented Incidence Graphs and n-Surfaces.
We state below two lemmas which together provide a recursive definition of
n-dimensional augmented incidence graphs. Their proofs can be found in [2].

The first lemma expresses that given an augmented incidence graph IG∗
C all

subgraphs of the form θ�(c) with c ∈ C are augmented incidence graphs too.

Lemma 15. Let IG∗
C be an augmented incidence graph of dimension n ≥ 1,

then ∀c ∈ C, θ�(c) is an augmented incidence graph of dimension n− 1.

The next lemma shows that an extended incidence graph IG∗
C with dimension

at least 1, which is locally everywhere an augmented indicence graph, is also itself
an augmented incidence graph.

Lemma 16. Let IG∗
C be an extended incidence graph of dimension at least 1,

such that ∀c ∈ C, θ�(c) is an augmented incidence graph then IG∗
C is also an

augmented incidence graph.

These two lemmas lead to the following theorem which gives a recursive
characterization of augmented incidence graphs of dimension n.

Theorem 17. Let IG∗
C = (C∗,≺) be an extended incidence graph of dimension

n, the two following propositions are equivalent:

1. IG∗
C is a non empty augmented incidence graph

2. IG∗
C is such that:

– if n = 0, C contains exactly two 0-cells c0 and c
′0, such that c0 and c

′0

are (c−1, c1)-twins in IG∗
C .

– if n > 0, C is such that for all c ∈ C, θ�(c) is an augmented incidence
graph of dimension n− 1.

Proof. We are going to prove that (1)⇔ (2) for all n. The proof is quite imme-
diate for n = 0 [2] (Both models consist in two disconnected points). We show
it for n > 0:

⇒ Let IG∗
C be an augmented incidence graph of dimension n. ∀c ∈ Cn, θ�(c)

is by Lemma 15 an augmented incidence graph of dimension n− 1.
⇐ Let IG∗

C be an extended incidence graph of dimension n fullfilling the con-
ditions of (2). For all c ∈ Cn, θ�(c) is an (n − 1)-dimensional augmented
incidence graph. IG∗

C has dimension strictly greater than 0. It is then by
Lemma 16 an augmented incidence graph.

��

This recursive characterization identical to the definition of n-surfaces leads
immediately to the following theorem:

Theorem 18. Let IGC = (C,≺) be an incidence graph and |X| = (X,α) an
order

1. IG∗
C = (C ∪ {c−1, cn+1},≺) is augmented ⇒ its associated order is an n-

surface
2. |X| = (X,α) is an n-surface ⇒ its associated incidence graph is augmented

Equivalence Between Regular n-G-Maps and n-Surfaces 135

Equivalence Between Regular n-G-Maps and n-Surfaces. The two pre-
ceding results leads to the following equivalence between regular n-G-maps and
n-surfaces.

Theorem 19. Let G = (D,α0, · · · , αn) be an n-G-map and |X| = (X,α) an
order such that there exists an isomorphism between their associated incidence
graphs. Then the following propositions are equivalent:

1. G is a regular n-G-map
2. |X| is an n-surface

If CG is the set of cells of the subdivision represented by a regular n-G-map
G and ≤G the incidence relation between these cells then (CG,≤G) is the n-
surface associated to G by nGnS-conversion where the dimension of the cells
of CG are forgotten. Reciprocally, if D|X| is the set of (n + 1) α-chains of an
n-surface |X|, then (D|X|, α0, · · · , αn) is the regular n-G-map associated to |X|
by nSnG-conversion, where for each d = (x0, · · · , xi−1, xi, xi+1, · · · , xn) ∈ D|X|,
dαi = (x0, · · · , xi−1, x

′i, xi+1, · · · , xn) with x
′i = (α�(xi+1) ∩ β�(xi−1))\{xi} if

i ∈ {1, · · · , n− 1}, x′0 = α�(x1)\{x0} and x
′n = β�(xn−1)\{xn}.

Theorem 20. Let G = (D,α0, · · · , αn) be an n-G-map and |X| = (X,α) an
order:

1. G is a regular n-G-map ⇒ its associated order is an n-surface
2. |X| is an n-surface ⇒ its associated n-G-map is regular

With the previous construction processes, any n-surface may be built from
some regular n-G-map, and any regular n-G-map may be built from some n-
surface. We also prove, in [2], that these conversions are inverse to each other
up to isomorphism which prove the equivalence of both structures.

4 Conclusion

We have shown that two topological models namely regular n-G-maps and n-
surfaces are equivalent structures. This result is important because these models
come from various research fields, and are defined very differently. Moreover
we have given an explicit way to switch from one representation to another.
The equivalence between both models gives us more information on them. It
implies for example that the neighbourhood of any cell of a regular n-G-map is
a generalized map too.

Future works will be lead into three main directions. It will first be interesting
to take advantage of this equivalence by transfering tools, namely operators and
properties from one to another or by integrating them in a chain of operations.
Besides such models can only represent quasi-manifolds, it would be useful to
go on with more general structures such as chains of maps [11] which represent
more general subdivisions that are not necessarily quasi-manifolds but such that
each cell is a quasi-manifold. We could also focus on subclasses of these models.
Finally it could be useful to study more precisely the class of regular n-G-maps,
we have introduced here.

136 S. Alayrangues et al.

References

1. Alayrangues, S., Lachaud, J.-O.: Equivalence Between Order and Cell Complex
Representations, Proc. Computer Vision Winter Workshop (CVWW02).

2. Alayrangues, S., Daragon, X., Lachaud, J.-O., Lienhardt, P,: Equiv-
alence between Regular n-G-maps and n-surfaces, Research Report.
http://www.labri.fr/Labri/Publications/Publis-fr.htm

3. Bertrand, G.: New Notions for Discrete Geometry, Proc. of 8th Discrete Geometry
for Computer Imagery (DGCI’99).

4. Bertrand, G.: A Model for Digital Topology, Proc. of 8th Discrete Geometry for
Computer Imagery (DGCI’99),

5. Björner, A.: Topological methods, MIT Press, Handbook of combinatorics (vol. 2),
1995.

6. Brisson, E.: Representing Geometric Structures in d Dimensions: Topology and
Order, Proceedings of the Fifth Annual Symposium on Computational Geometry,
1989.

7. Brun, L., Kropatsch, W.: Contraction Kernels and Combinatorial Maps, 3rd IAPR-
TC15 Workshop on Graph-based Representations in Pattern Recognition, 2001.

8. Daragon, X., Couprie, M., Bertrand, G.: New ”marching-cubes-like” algorithm for
Alexandroff-Khalimsky spaces, Proc. of SPIE: Vision Geometry XI, 2002.

9. Daragon, X., Couprie, M., Bertrand, G.: Discrete Frontiers, Discrete Geometry for
Computer Imagery, Lecture Notes in Computer Science, 2003.

10. Edelsbrunner, H.: Algorithms in combinatorial geometry, Springer-Verlag New
York, Inc, 1987.

11. Elter, H.: Etude de structures combinatoires pour la reprsentation de complexes
cellulaires, Universit Louis Pasteur, Strasbourg, France, 1994?

12. Evako, A.V., Kopperman R., Mukhin, Y. V.: Dimensional properties of graphs and
digital spaces, Journal of Mathematical Imaging and Vision, 1996.

13. Hatcher, A.: Algebraic Topology Cambridge University Press, 2002
14. Lienhardt, P.: Subdivisions of n-dimensional spaces and n-dimensional generalized

maps, Proc. 5 th Annual ACM Symp. on Computational Geometry, 1989.
15. Lienhardt, P.: Topological models for boundary representation: a comparison with

n-dimensional generalized maps, Computer-Aided Design, 1991.
16. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-

manifolds, International Journal of Computational Geometry and Applications,
1994.

17. May, P.: Simplicial objects in algebraic topology, von Nostrand, 1967.

Z-Tilings of Polyominoes and Standard Basis

Olivier Bodini1 and Bertrand Nouvel2

1 LIRMM, 161, rue ADA,
34392 Montpellier Cedex 5, France

2 LIP, UMR 5668 CNRS-INRIA-ENS Lyon-Univ. Lyon 1,
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Abstract. In this paper, we prove that for every set E of polyominoes
(for us, a polyomino is a finite union of unit squares of a square lattice),
we have an algorithm which decides in polynomial time, for every poly-
omino P , whether P has or not a Z-tiling (signed tiling) by translated
copies of elements of E. Moreover, if P is Z-tilable, we can build a Z-
tiling of P . We use for this the theory of standard basis on Z [X1, ..., Xn].
In application, we algorithmically extend results of Conway and Lagarias
on Z-tiling problems.

1 Introduction

A cell c(i, j) in the square lattice Z2 denotes the set:

c(i, j) := {(x, y) ; i ≤ x < i + 1, j ≤ y < j + 1} .

So, cells are labelled by their lower left corner and the set of cells S can easily
be identified with Z2. For us, a polyomino is a finite -not necessary connected-
union of cells. In this paper, we are interested in the study of a variant of the
problem of tiling, called the Z-tiling problem. Precisely, let P be a polyomino
and E a set of polyominoes (the tiles); a Z-tiling of P by E consists of a finite
number of translated tiles placed in the lattice (possibly with overlaps), with
each tile be assigned a sign of +1 or -1, such that, for each cell c(i, j) in Z2,
the sum of the signs of the tiles covering c(i, j) is +1 if c(i, j) ∈ P and 0 if
c(i, j) /∈ P (Fig. 1). Obviously, a polyomino which is tilable by a set of tiles
is also Z-tilable by this set. Consequently, the condition of Z-tilability gives
important (and not trivial) necessary conditions of tilability. J.H. Conway and
J.C. Lagarias [4] have previously studied this notion. They particularly obtained
the following necessary and sufficient condition for the special case where the
polyominoes are simply connected:

A simply connected polyomino P has a Z-tiling by a set of simply connected
polyominoes E if and only if the combinatorial boundary [∂P] is included in the
tile boundary group B (E). For these definitions, we can refer to the paper of
J.H. Conway and J.C. Lagarias [4].

Nevertheless, this group theoretic theorem presents some drawbacks. Firstly,
it only applies to simply connected polyominoes. Secondly, this criterion seems

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 137–150, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

138 O. Bodini and B. Nouvel

Fig. 1. A (classical) polyomino P which is Z-tilable by bars of length 3. In bold, a
negative copy of a bar. The segments indicate positive copies of bars. These positive
and negative bars constitute a Z-tiling of P

in general not easier to verify than to solve the original problem. Thirdly, it
seems to be impossible to extend theoretic group arguments in higher dimen-
sions. This third open problem has already been mentioned by R. Kenyon in his
habilitation [9].

In this paper, we propose another way of solving the problem. We associate
for each polyomino P a polynomial in Z[X1, X2, Y1, Y2], called P -polynomial. We
denote it by QP . We prove that, given a set E of polyominoes, a polyomino P
is Z-tilable by E if and only if QP ∈ 〈QP ′ with P ′ ∈ E,X1Y1 − 1, X2Y2 − 1〉

Z

(i.e. the ideal of Z [X1, ..., Xn] generated by the polynomials QP ′ where P ′ ∈ E
and by X1Y1−1, X2Y2−1). This new formulation allows us to use commutative
algebraic tools like the standard basis algorithm to solve the problem and we
are no more limited to simply connected objects in dimension 2. The reader can
find a good introduction to standard basis (for ideals in K [X1, ..., Xn] where K

is a field) in [3] or [5]. The algorithm for standard basis is double exponential in
the worst case. Nevertheless, for any set of tiles S, we can precompute this basis.
After that, for any polyomino we have a polynomial algorithm (division type al-
gorithm) to decide whether P is Z-tilable by S. This leads us to consider coloring
arguments. These tools are frequently found in the literature ([7],[8],[10]). This
notion gives in general important necessary conditions of tilability. For instance,
if a polyomino P is tilable by dominoes, it is easy to prove that P needs to
have the same number of black and white squares in a classical chessboard-like
coloration. We define in this paper the generalized coloring associated to a set
of tiles E. This generalized coloring contains all the generalized coloring argu-
ments defined by Conway-Lagarias [4]. Moreover, the generalized coloring of a
polyomino P is null if and only if P is Z-tilable by the set E. Finally, we prove
that it is possible to determine the generalized coloring of a classical polyomino
when we only know the colors of the squares which are adjacent to the boundary
of P .

So, if a polyomino P is in a sense “big” (the ratio between perimeter and
volume is less than 1/2), then we have a better algorithm to determine the
tilability of P .

Now, we are going to introduce the abstract notions that constitute the gen-
eral framework of this paper. Let us recall that S is the set of all the cells in
Z2, a Z-weighted polyomino or simply a Z-polyomino is a map P from S ! Z2

Z-Tilings of Polyominoes and Standard Basis 139

into Z with a finite support. For each cell c, we call weight of P in c the number
P (c). The space PZ of Z-weighted polyominoes has a natural structure of free Z-
module. Indeed, the cells of weight 1 constitute a basis of PZ. We can canonically
embed the set of ”classical” polyominoes in the Z-module of the Z-polyominoes
(assigning 1 to cells covered by the polyomino and 0 to the other cells). We say
that a Z-polyomino P is Z-tilable by a set of Z-weighted tiles if and only if P
is a Z-linear combination of translated elements of this set (the translated of a
Z-polyomino P (.) by a vector v ∈ Z2 being the Z-polyomino P (.− v)).

2 P-Polynomials and Z-Tilings

The notion defined below can easily be extended in a more general framework.
For instance, we have similar definitions for Z-polycubes (in this case, the cells
are the unit cubes of the regular cubical lattice of Rd) or for Z-polyamands (the
cells are the triangles of the regular triangular lattice) or Z-polyhexes (sums of
weighted hexagons of the regular hexagonal lattice). In this section, in order to
simplify, we only deal with Z-polyominoes and Z-polyhexes. The reader can find
in [2] a more general presentation.

Firstly, for a ∈ Z2, we define X a as:

X a = X
a1+|a1|

2
1 X

a2+|a2|
2

2 Y
|a1|−a1

2
1 Y

|a2|−a2
2

2 .

We encode the square of the plane with 4 parameters (cardinal points)
to avoid to work with Laurent polynomials. Let us recall that we denote by
〈P1, ..., Pk〉Z the ideal of Z [X1, ..., Xn] generated by the polynomials P1, ..., Pk.
For each Z-polyomino P , we can define its P-polynomial

QP =
∑
a∈Z2

P (c(a))X a.

Lemma 1. The space PZ is isomorphic to

Z [X1, X2, Y1, Y2] / 〈(X1Y1 − 1) , (X2Y2 − 1)〉
Z
.

Proof. There exists a unique linear map f from Z [X1, X2, Y1, Y2] to PZ such
that f

(
Xa1

1 Y b1
1 Xa2

2 Y b2
2

)
is the cell (a1 − b1, a2 − b2) with weight 1. Now, we

must prove that ker (f) = 〈(X1Y1 − 1) , (X2Y2 − 1)〉
Z
. We proceed by successive

divisions by (X1Y1 − 1) and (X2Y2 − 1) in the successive rings

Z [X2, Y1, Y2] [X1] and Z [X1, Y1, Y2] [X2] .

So, we can write every polynomial Q as follows Q = R +
2∑

i=1
Qi (XiYi − 1)

with R containing only monomials of the form X a where a ∈ Z2 (i.e. without
simultaneously Xi and Yi). We have the following equivalence: f (Q) is the empty
polyomino, denoted by 0 (i.e. the polyomino P with weight 0 on each cell), if

140 O. Bodini and B. Nouvel

and only if f (R) = 0 (indeed, f (Qi (XiYi − 1)) = 0 because f(X aXiYi) =
f(X a)). Moreover, as {f(X a)} is a basis of the Z-module PZ, it is clear that
f (R) = 0 ⇔ R = 0 and that R = 0 ⇔ Q ∈ 〈(X1Y1 − 1) , (X2Y2 − 1)〉

Z
. So,

ker (f) = 〈(X1Y1 − 1) , (X2Y2 − 1)〉
Z
.

Definition 1. The ideal QP ∈ 〈QP ′ with P ′ ∈ E,X1Y1 − 1, X2Y2 − 1〉
Z

is
called the tiling ideal of E. We denote it by I(E).

Theorem 1. Let E be a set of Z-polyominoes. A Z-polyomino P is Z-tilable by
E if and only if QP belongs to the tiling ideal of E.

Proof. By definition, a Z-polyomino P is Z-tilable by E if and only if

P =
t∑

i=1

λiPi (.− ai)

where λi ∈ Z, Pi ∈ E and ai ∈ Z2. Moreover, in

Z [X1, X2, Y1, Y2]/〈(X1Y1 − 1) , (X2Y2 − 1)〉
Z

we have QPi(.−ai) = X aiQPi and consequently, QP =
t∑

i=1
λiX aiQPi . Thus, QP ∈

I(E). Conversely, if QP ∈ I(E), then QP =
∑

P ′∈E

(
∑

λiX ai)QP ′ . Indeed, QP

does not contain monomials where occur simultaneously Xi and Yi. Now, this
implies that P =

∑
P ′∈E

(
∑

λiP
′ (.− ai)). Finally, P is Z-tilable by E if and only

if QP ∈ I(E).

We have the same statement for polyhexes. Indeed, for the hexagonal lat-
tice built in gluing translated copies of the hexagonal convex hull of the points
(0, 0) , (0, 1) ,

(
−1
2 ,

√
3

2

)
,
(

3
2 ,

√
3

2

)
,
(
0,
√

3
)
,
(
1,
√

3
)
, we denote by [a1, a2] the

hexagonal cell whose lower left corner is
(

3
2 (a1 + a2),

√
3

2 (−a1 + a2

)
) where (a1,

a2) ∈ Z2 (Fig.2). For each Z-polyhexe P , we can define the P-polynomial

QP =
∑

(a1,a2)∈Z2

P ([a1, a2])X(a1,a2).

Then, we have the following analogous theorem:

Theorem 2. Let E be a set of Z-polyhexes. A Z-polyhexe P is Z-tilable by E
if and only if

QP ∈ 〈QP ′ with P ′ ∈ E,X1Y1 − 1, X2Y2 − 1〉
Z
.

3 Standard Basis on Z[X1, ..., Xn]

In this section, we indicate briefly how to solve the problem of membership
in an ideal of Z [X1, ..., Xn]. In fact, we use a non-trivial extended version to

Z-Tilings of Polyominoes and Standard Basis 141

Fig. 2. The hexagonal lattice with its coordinates

Z [X1, ..., Xn] of the Buchberger algorithm [2]. The original one only works for
an ideal of K [X1, ..., Xn] where K is a field and can be found in [5], [3]. First
of all, we have to define a total order on the monomials of Z [X1, ..., Xn]. Let
≤∗ be the lexicographic order on the n-tuples and let α = (α1, ..., αn) be in Nn;
we denote by Xα the monomial Xα1

1 ...Xαn
n . Then, we define the order ≤∗ as

Xα ≤∗ Xβ if and only if α ≤∗ β. It is easy to verify that ≤∗ is a total order
on the monomials of Z [X1, ..., Xn] and that we have the following property: For
every γ ∈ Nn, if Xα ≤∗ Xβ , then Xα+γ ≤∗ Xβ+γ . This is the lexicographic
order induced by X1 > ... > Xn.

Let us recall now useful terminology for multivariable polynomials. For each
non-empty polynomial P =

∑
α∈Nn

aαX
α in Z [X1, ..., Xn]:

The support of P is S (P) = {α ∈ Nn such that aα �= 0}. In particular S(P) is
always finite.The multidegree of P is m(P) = max{α ∈ S(P)}.
The leading coefficient of P is LC(P) = am(P).

The leading monomial of P is LM(P) = Xm(P).
The leading term of P is LT (P) = LC(P)LM(P).
The norm of P is ‖P‖1 =

∑
α∈Nn

|aα|

Theorem 3. Let F = (P1, ..., Ps) be an s-tuple of polynomials of Z [X1, ..., Xn].
Then every polynomial P of Z [X1, ..., Xn] can be written in the following non-

unique form P = R +
s∑

k=1
QkPk where:

i) Q1, ..., Qs, R ∈ Z [X1, ..., Xn] .
ii) R =

∑
α∈Nn

cαX
α and ∀α ∈ S(R), cαX

α is not divisible by any of LT (P1), ...,

LT (Ps).

Proof. This proof is an easy consequence of the following generalized division
algorithm.

142 O. Bodini and B. Nouvel

Generalized Division Algorithm.
We denote by trunc(s) the integer part of s.
Input: (P1, ..., Ps), P
Output: (a1, ..., as), R
a1 := 0, ..., as := 0, R := 0
Q := P
While Q
= 0 Do
i := 1
division := false
While (i ≤ s and division=false) Do
If LM(Pi) divides LM(Q) and |LC (Pi)| ≤ |LC (Q)| Then
ai := ai + trunc(LC(Q)/LC(Pi))LM(Q)/LM(Pi)
Q := Q − (trunc(LC(Q)/LC(Pi))LM(Q)/LM(Pi))Pi

division := true
Else
i := i + 1
EndIf
EndWhile
If division = false Then
R := R + LT (Q)
Q := Q − LT (Q)
EndIf
EndWhile
Return (a1, ..., as), R

R is the remainder of P by (P1, ..., Ps). We denote it by P̄ (P1,...,Ps).
Roughly speaking, the upper algorithm tries to divide P as much as possible.

Example 1. If we have P = X1X
2
2 + X1X2 + X2

2 and (P1 = X2
2 − 1, P2 =

X1X2 − 1), then we obtain P = P1 × (X1 + 1) + P2 + X1 + 2. The remainder is
X1 + 2.

Example 2. The remainder of the division of P = X1X
2
2 −X2

2 by (P1 = X2
2 −

1, P2 = X1X2−1) is equal to zero. Nevertheless, the division of P = X1X
2
2 −X2

2
by (P1 = X1X2 − 1, P2 = X2

2 − 1) gives P̄ (P1,P2) = −X2
2 + 1.

So, we point out that the division depends on the ordering in the s-tuple
of the polynomials. Actually, the division does not allow us to determine if a
polynomial belongs or not to an ideal I of Z [X1, ..., Xn] .

We recall that in R [X] a polynomial P belongs to an ideal I if and only if
Q divides P where Q is the minimal polynomial of I. We have the following
analogous version in Z [X1, ..., Xn]:

Theorem 4. For every non-zero ideal I of Z [X1, ..., Xn], there exists an s-tuple
of polynomials (P1, ..., Ps) such that P belongs to I if and only if the remainder
of P by (P1, ..., Ps) is equal to zero.

Such an s-tuple is called a standard basis of I. We do not prove here this
theorem. The interested reader can find a constructive proof of this latter in

Z-Tilings of Polyominoes and Standard Basis 143

the following report [2]. He can also read the paper of J.C. Faugére [6] which
presents an efficient algorithm for computing standard basis. To illustrate the
interest of this reformulation, we continue this section by an application to a
classical problem solved by Conway and Lagarias [4] by using group theoretic
arguments. Let TN denote the triangular array of cells in the hexagonal lattice
having N(N + 1)/2 cells (Fig.3).

Fig. 3. T2 and T3

Theorem 5. (Conway-Lagarias, Theorems 1.3 and 1.4)
a) The triangular region TN in the hexagonal lattice has a Z-tiling by congruent
copies of T2 polyhexes if and only if N = 0 or 2 mod 3.
b) The triangular region TN in the hexagonal lattice has a Z-tiling by congruent
copies of three-in-line polyhexes if and only if N = 0 or 8 mod 9.

Proof.
a) Firstly, we put Y1 > Y2 > X1 > X2 and using classical algorithms [2] or [6],
we can compute a standard basis of the tiling ideal of T2:

I(E) = 〈X1 + X2 + 1, X1X2 + X1 + X2, Y1X1 − 1, Y2X2 − 1〉Z.

We obtain

B = (X1 + X2 + 1, X2
2 + X2 + 1, Y2 + X2 + 1, Y1 −X2).

Now, as QTN
=

N∑
i=0

Xi
2

(
N−i−1∑

j=0
Xj

1

)
, we can easily compute the remainder of

QTN
by (X1 + X2 + 1, X2

2 + X2 + 1, Y2 + X2 + 1, Y1 −X2).

It is equal to

{
0 if N = 0 or 2 mod 3.
1 if N = 1 mod 3.

b) We compute a standard basis of the tiling ideal of the three-in-line polyhexes:

I(E) = 〈X2
1 + X1 + 1, X2

2 + X2 + 1, X2
1Y

2
2 + X1Y2 + 1, Y1X1 − 1, Y2X2 − 1〉Z.

144 O. Bodini and B. Nouvel

with Y1 > Y2 > X1 > X2. We obtain

B = (X2
1 + X1 + 1, X2

2 + X2 + 1, X1 + Y1 + 1, X2 + Y2 + 1, 3X2 + 3X1 + 3,
X2X1 −X1 −X2 − 2).

The remainder of QTN
by B is equal to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if N =0 or 8 mod 9.
1 if N = 1 mod 9.
X1 + X2 + 1 if N =2 or 3 mod 9.
−2X1 − 2X2 − 1 if N = 4 mod 9.
2X1 + 2X2 + 2 if N =5 or 6 mod 9.
−X1 −X2 if N = 7 mod 9.

We can notice that this new proof gives a more precise statement than the one
obtained by Conway-Lagarias. Moreover, this is an ”automatic” proof. Indeed,
all the steps can be done computerwise.

4 General Coloring

Let us recall that, given a set E of Z-polyominoes, the ideal

I(E) = 〈QP ;P ∈ E and X1Y1 − 1, X2Y2 − 1〉Z

is the tiling ideal of E. If B is a standard basis of I(E) then B is said to be
associated to E.

Definition 2. A general coloring χE is the map from Z [X1, X2, Y1, Y2] into
Z [X1, X2, Y1, Y2] such that χE(Q) = Q̄B.

Theorem 6. A Z-polyomino P is Z-tilable by a set of Z-polyominoes E if and
only if χE(P) = 0.

Proof. By theorem 1, P is Z-tilable by E if and only if QP belongs to I(E), and
by definition, QP belongs I(E) if and only if χE(QP) = 0.

Remark 1. This definition seems to be tautological. Indeed, this is very useful
to have a geometric visualization. Let us observe the following example.

We want to have a coloring argument for the Z-tilability by the set E of
classical polyominoes described below (Fig.4) called T-tetraminoes. We have

I(E) = 〈X2
1 +X1X2 +X1 +1, X2

1X2 +X1X2 +X1 +X2, X1X2 +X2
2 +X2 +1,

X1X
2
2 + X1X2 + X1 + X2, X1Y1 − 1, X2Y2 − 1〉.

We compute a standard basis for the order Y1 > Y2 > X1 > X2

B = (X1 + 3, X2 + 3, 8, Y1 + 3, Y2 + 3).

Z-Tilings of Polyominoes and Standard Basis 145

Fig. 4. The T-tetraminoes

So, we have

χE(Qc(i,j)) = χE(X (i,j)) =

{
1 if i + j = 0 mod 2
5 if i + j = 1 mod 2

.

Moreover, we always have the following classical remainder property

χE(QP) = χE(
∑

c(i,j)∈P

Qc(i,j)) = χE

⎛⎝ ∑
c(i,j)∈P

χE

(
Qc(i,j)

)⎞⎠ .

Now, as A = χE

(∑
c(i,j)∈P

Qc(i,j)

)
is an integer, χE (A) = A mod 8. So, we

obtain the following theorem.

Theorem 7. Let us suppose that the squares of the plane have a chessboard-like
coloration (Fig.5). A polyomino P is Z-tilable by T-tetraminoes if and only if,
when assigning 5 on the white squares and 1 on the black ones in P , the sum of
values on the squares is a multiple of 8.

Corollary 1. A square n×n is Z-tilable (resp. tilable) by T-tetraminoes if and
only if n is a multiple of 4.

Proof. If n is odd, then the sum of values is odd, and the square n × n is not
Z-tilable by T-tetraminoes. If n is even, an easy computation gives χE(Qn×n) =
3n2 mod 8. So, the square n × n is Z-tilable by T-tetraminoes if and only if n
is a multiple of 4. Finally, we observe that the square 4×4 is (classically) tilable
by T-tetraminoes. Hence, if n is a multiple of 4, the square n× n is also tilable
by T-tetraminoes.

5 Optimal Quasi-Z-Tilings and Optimal Partial Tilings

Now, to show an other application, we are going to consider the following prob-
lem. We want to know the maximum number of translated copies of tiles of
type p × 1 and 1 × q (i.e. a horizontal bar of size p and a vertical bar of
size q) that we can put in a rectangle R × S. This is what we call an opti-
mal partial tiling of R × S by p × 1 and 1 × q. First of all, we notice that

146 O. Bodini and B. Nouvel

Fig. 5. A general coloring for the T-tetraminoes. The lower left corner square is the
square (0,0)

I(E) = 〈1 + X1 + ... + X
(p−1)
1 , 1 + X2 + ... + X

(q−1)
2 , X1Y1 − 1, X2Y2 − 1〉,

QR×S = (1 +X1 + ...+X
(R−1)
1)(1 +X2 + ...+X

(S−1)
2) and that B = (1 +X1 +

...+X
(p−1)
1 , 1+X2+...+X

(q−1)
2 , Y2+1+X2+...+X

(S−2)
2 , Y1+1+X1+...+X

(R−2)
1)

is a standard basis with respect to Y1 > Y2 > X1 > X2. In the sequel, we denote
by Xd−1

X−1 the polynomial 1 + ... + Xd−1. Let us continue with a short algebraic
lemma:

Lemma 2. If (R mod p) < p/2 (resp. (R mod p) > p/2) , the polynomial
X(R mod p)−1

X−1 (resp. −X(R mod p) × Xp−(R mod p)−1
X−1) is the unique element Q of

the class of XR−1
X−1 in Z[X]/

〈
Xp−1
X−1

〉
with degQ < p and ‖Q‖1 minimum among

the class.
If (R mod p) = p/2, these polynomials are the unique ones such that degQ <

p and ‖Q‖1 minimum among the class.

Proof. Let Q be a polynomial in the class of XR−1
X−1 . If Q is minimum for ‖ ‖1, so

it is for Q mod (Xp−1). Hence, we can suppose that deg(Q) < p. We distinguish
two cases:

a) if deg(Q) < p − 1, it is clear that Q is the remainder of P by Xp−1
X−1 . Thus,

Q = X(R mod p)−1
X−1 .

b) if deg(Q) = p − 1, Q = X(R mod p)−1
X−1 + k × Xp−1

X−1 . In X = 1, we obtain
Q(1) = (R mod p) + kp. Now, |Q(1)| ≤ ‖Q‖1 ≤ (R mod p). So, k = −1
and Q = −X(R mod p) × Xp−(R mod p)−1

X−1 . To conclude, it suffices to observe that

‖X(R mod p)−1
X−1 ‖1 ≤ ‖ −X(R mod p) × Xp−(R mod p)−1

X−1 ‖1 if and only if (R mod p) ≤
p/2.

Definition 3. Let P be a Z-polyomino and E a set of tiles. An optimal quasi-Z-

tiling of P by E, is a positioning of copies of tiles (that is
t∑

i=1
λiPi (.− ai) where

Z-Tilings of Polyominoes and Standard Basis 147

λi ∈ Z, Pi ∈ E and ai ∈ Z2) such that ‖QP −Q t∑

i=1
λiPi(.−ai)

‖1 is minimum. The

value of ‖QP − Q t∑

i=1
λiPi(.−ai)

‖1 is called the deficiency of the optimal quasi-Z-

tiling.

Now, we look at an optimal quasi-Z-tiling of R×S by {p×1, 1×q}. To obtain
an element of the class of QR×S in Z[X1, X2, Y1, Y2]/I(E) minimum for ‖ ‖1, it

suffices to ”reduce” separately XR
1 −1

X1−1 in Z[X1]/
〈
1 + ... + Xp−1

1

〉
and XS

2 −1
X2−1 in

Z[X2]/
〈
1 + ... + Xp−1

2

〉
. Indeed, 1+X1 + ...+X

(p−1)
1 and 1+X2 + ...+X

(q−1)
2

have totally independent variables and the standard basis does not mixed them.
So, such a minimal polynomial can be written as Q1 ×Q2 with:

Q1 ∈
{
X

(R mod p)
1 − 1
X1 − 1

,−X(R mod p)
1 × X

p−(R mod p)
1 − 1

X1 − 1

}
and

Q2 ∈
{
X

(S mod q)
2 − 1
X2 − 1

,−X(S mod q)
2 × X

q−(S mod q)
2 − 1

X2 − 1

}
.

More precisely:

Theorem 8.
- If (R mod p) ≤ p/2 and (S mod q) ≤ q/2 then the deficiency of an optimum
Z-tiling of R× S by {p× 1, 1× q} is (R mod p)(S mod q).
- If (R mod p) ≤ p/2 and (S mod q) > q/2 then the deficiency of an optimum
Z-tiling of R× S by {p× 1, 1× q} is (R mod p)(q − (S mod q)).
If (R mod p) > p/2 and (S mod q) ≤ q/2 then the deficiency of an optimum
Z-tiling of R× S by {p× 1, 1× q} is (p− (R mod p))(S mod q).
If (R mod p) > p/2 and (S mod q) > q/2 then the deficiency of an optimum
Z-tiling of R× S by {p× 1, 1× q} is (p− (R mod p))(q − (S mod q)).

Now, we look for an optimal partial tiling of R×S by {p×1, 1×q}. Let PQ1Q2

be the unique Z-polyomino such that QP = Q1Q2. We notice that R×S−PQ1Q2

is a ”true” polyomino if and only if P (Q1Q2) is a ”true” sub-polyomino of R×S,
(that is to say that all the monomials of Q1Q2 are unitary: all the coefficients
are +1, and belongs to QR×S). So, in the present case, this arises if Q1Q2 is:

X
(R mod p)
1 − 1
X1 − 1

X
(S mod q)
2 − 1
X2 − 1

or

X
(R mod p)
1 × X

p−(R mod p)
1 − 1

X1 − 1
×X

(S mod q)
2 × X

q−(S mod q)
2 − 1

X2 − 1
.

Furthermore, R×S−PQ1Q2 is tilable by {p×1, 1×q}. The following drawings
explain the tilings (Fig. 6). Thus, the first one is an optimal partial tiling of R×S

148 O. Bodini and B. Nouvel

by {p× 1, 1× q} when (R mod p) ≤ p/2 and (S mod q) ≤ q/2. The second one
is an optimal partial tiling of R×S by {p× 1, 1× q} when (R mod p) > p/2 and
(S mod q) > q/2. Finally, we need to study the cases where:

1) (R mod p) > p/2 and (S mod q) ≤ q/2,
2) (R mod p) ≤ p/2 and (S mod q) > q/2.

In fact, these two cases are identical up to rotation. Thus, it suffices to solve
the first one. Let us notice in this case that the deficiency of an optimal quasi-Z-
tiling of R×S by {p×1, 1×q} is exactly due to an overlap of some squares. Indeed,
all the coefficients of Q1Q2 are negative. So, we have an optimal covering. To have
an optimal partial tiling of R×S by {p× 1, 1× q} we need to find a polynomial
with all its coefficients are positive in the class of QR×S in Z[X1, X2, Y1, Y2]/I(E)
and minimum for ‖ ‖1. It is easy to prove that the norm of such a polynomial Q is
greater than min ((R mod p)× (S mod q), (p− (R mod p))× (q − (S mod q))).
Indeed, ‖Q‖1 is equal to Q(1). So, we can conclude with the following
theorem:

Theorem 9. The maximum number of unit squares in a rectangle R × S that
we can cover without overlap by translated copies of tiles of type p×1 and 1×q is
equal to R×S−min ((R mod p)× (S mod q), (p− (R mod p))× (q − (S mod q))).

In fact, this theorem can easily be extended in higher dimensions. It is a
generalization of a theorem of F.W. Barnes [1].

Fig. 6. Left: The optimal tiling when (R mod p)×(S mod q) is minimal, the horizontal
vector length is (R mod p) and the vertical one is (S mod q). Right: The optimal tiling
when (p−R mod p))× (q − (S mod q)) is minimal, the greater horizontal vector length
is p and the greater vertical one is q

6 Z-Tilability and Boundary Conditions

In this section, we only deal with classical polyominoes and not with
Z-polyominoes. In [4], Conway and Lagarias show that it is possible to know
whether a simply connected polyomino P has a Z-tiling by only considering the

Z-Tilings of Polyominoes and Standard Basis 149

boundary of P . We prove that we have a similar situation with our characteriza-
tion. We do not need to compute the remainder of QP , but only the remainder
of a shorter polynomial associated to the boundary of P .

Theorem 10. Let P be a polyomino and χE be a general coloring associated to
E. We suppose that

χE

(
2∑

i=1

(Xi + Yi)

)
− 4

is not a zero divisor of Z [X1, X2, Y1, Y2] /I (E). In this case,

χE (QP) = 0 if and only if
∑

(c1,c2)∈S

(χE (Qc1)− χE (Qc2)) = 0

where the couple (c1, c2) belongs to S if it is a domino (union of two adjacent
squares) with c1 ∈ P and c2 /∈ P .

Proof. Let χE be the general coloring, we denote by

vχE
(X a) =

2∑
i=1

(χE (X a)− χE (X aXi)) +
2∑

i=1

(χE (X a)− χE (X aYi)).

We have
∑

(c1,c2)∈S

(χE (Qc1)− χE (Qc2)) =
∑
c∈P

vχE
(Qc) because, if the

squares c and c′ belong to P , the contributions of the couples (c, c′) et (c′, c) can-
cel each other out. Now, if we consider that the image of χE is in Z [X1, X2, Y1, Y2]
/I (E), it is obvious that χE is a morphism of algebra and that we can rewrite

∑
c∈P

vχE
(Qc) =

(
4− χE

(
2∑

i=1

(Xi + Yi)

))∑
c∈P

χE (Qc)

in

Z [X1, X2, Y1, Y2] /I (E) . As χE

(
2∑

i=1
(Xi + Yi)

)
− 4 is not a zero divisor,

χE (QP) = 0 if and only if
∑

(c1,c2)∈S

(χE (Qc1)− χE (Qc2)) = 0.

To conclude this section, we give an example related to the paper of Thurston
[11]. Let us consider that we want to Z-tile a polyomino with dominoes. The
associated ideal is I(E) = 〈X1 + 1, X2 + 1, X1Y1 − 1, X2Y2 − 1〉. We obtain
that (1 + X1, 1 + X2, Y1 + 1, Y2 + 1) is a standard basis of I(E) for the order

Y1 > Y2 > X1 > X2. So, χE(X(i,j)) =

{
1 if i + j = 0 mod 2
−1 if i + j = 1 mod 2

. Hence, a

polyomino is Z-tilable by dominoes if and only if it has the same number of
black (when i+ j = 1 mod 2) and white (when i+ j = 0 mod 2) squares c(i,j).
In this case, the polyomino is said balanced. Independently, we have

χE(
2∑

i=1

(Xi + Yi))− 4 = −8

150 O. Bodini and B. Nouvel

which is not a zero divisor. So, we can apply Theorem 10. The values of χE(Qc1)−

χE(Qc2) =

{
2 if c1 = c(i,j) and i + j = 0 mod 2
−2 if c1 = c(i,j) and i + j = 1 mod 2

where (c1, c2) ∈ S. Thus,

P is balanced if and only if we have the same number of black and white edges
on its boundary (a black (resp. white) edge is an edge which borders a black
(resp. white) square of P), which is a classical result on domino tilings.

7 Conclusion

We have tried to prove in this paper that the standard basis theory can be very
useful (and powerful) to study a lot of tiling problems as:

– Z-tiling problems;
– Coloration argument problems and necessary conditions for ”true” tiling;
– Optimal partial tiling problems.

Moreover, this new reformulation does not have the drawbacks of the previ-
ous group theoretic representation (simply connectivity, dimension 2, reduction
of words in a presentation group). It seems that we have a more practical inter-
pretation to obtain non-trivial results on tilings.

References

1. F.W. Barnes, Best packing of rods into boxes, Discrete Mathematics 142 (1995)
271-275.

2. O. Bodini, Pavage des polyominos et Bases de Grobner, Rapport de recherche No

RR2001-51, LIP, 2001.
3. B. Buchberger, Introduction to Grobner basis, Logic of computation (Marktober-

dorf 95) 35-66, NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci.,157, Springer
Berlin (1997).

4. J.H Conway, J.C. Lagarias, Tiling with polyominoes and combinatorial group the-
ory, J.C.T. Series A 53 (1990) 183-208.

5. D. Cox, J. Little, D. O’Shea, Ideals,varieties and algorithms, 2nde edition, Under-
graduate Text in Mathematics, Springer Verlag, New York (1997) XV 536 pp.

6. J-C Faugére, A new efficient algorithm for computing Grobner basis, Journal of
Pure and Applied Algebra, 139 (1999) 61-88.

7. S. W. Golomb, Tiling with polyominoes, J.C.T. Series A 1 (1966) 280-296.
8. S. W. Golomb, Polyominoes which tile rectangles, J.C.T. Series A 51 (1989) 117-

124.
9. R. Kenyon, Sur la dynamique, la combinatoire et la statistique des pavages, Ha-

bilitation (1999)
10. D.A. Klarner, Packing a rectangle with congruent n-ominoes, J.C.T. Series A 7

(1969) 107-115.
11. W.P. Thurston, Conway’s tiling groups, Amer. Math. Monthly, 97, num. 8 (Oct.

1990) 757-773.

Curve Tracking by Hypothesis Propagation and
Voting-Based Verification

Kazuhiko Kawamoto and Kaoru Hirota

Tokyo Institute of Technology, Mail-Box:G3-49, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8502, Japan

kawa@hrt.dis.titech.ac.jp

Abstract. We propose a robust and efficient algorithm for curve track-
ing in a sequence of binary images. First it verifies the presence of a
curve by votes, whose values indicate the number of the points on the
curve, thus being able to robustly detect curves against outlier and oc-
clusion. Furthermore, we introduce a procedure for preventing redundant
verification by determining equivalence curves in the digital space to re-
duce the time complexity. Second it propagates the distribution which
represents the presence of the curve to the successive image of a given
sequence. This temporal propagation enables to focus on the potential
region where the curves detected at time t−1 are likely to appear at time
t. As a result, the time complexity does not depend on the dimension
of the curve to be detected. To evaluate the performance, we use three
noisy image sequences, consisting of 90 frames with 320×240 pixels. The
results shows that the algorithm successfully tracks the target even in
noisy or cluttered binary images.

1 Introduction

Object tracking in a sequence of images has various applications, such as mo-
tion analysis, object recognition, and video compression, in computer vision. In
particular, robust and efficient methods for tracking objects in clutter attracts
increasing attention from academic and industry. For a few decades, voting-based
algorithms, such as the Hough transform [1] and RANSAC (RANdom SAmple
Consensus) [2], have been widely used to detect objects in noisy or cluttered
images. However, the voting-based algorithms are, in general, time-consuming,
thus being unsuitable for the application to tracking in real or quasi-real time.

We propose a robust and efficient voting-based algorithm for tracking curves
in a sequence of noisy binary images. The algorithm roughly consists of two
parts. The first part verifies the presence of a curve by votes, whose values indi-
cate the number of the points on the curve, thus being able to robustly detect
curves against outlier and occlusion. This voting-based verification is performed
in the digital space using the Bresenham algorithm [4]. The digitization enables
us to prevent redundant verification by determining equivalence curves in the
digital space. The second part propagates the curve detected in the first part to
the successive image frame using sequential Monte Carlo (SMC) filtering [15].

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 151–163, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

152 K. Kawamoto and K. Hirota

This approach, called hypothesis propagation, enables us to focus on the poten-
tial region where the curve detected at the previous time are likely to appear.
The most attractive property is that the computational complexity does not de-
pend on the dimension of the curve to be detected. Furthermore we introduce
a procedure for reducing the variance of the state distribution which represents
the presence of curves.

To evaluate the tracking performance in clutter, two noisy image sequences,
consisting of 90 frames with 320 × 240 pixels, are used. The results shows that
the proposed algorithm successfully tracks the circle and the circular arc in the
binary images and that the execution time per frame for each image sequence is
23.6 msec and 23.5 msec, respectively, on the average of 10 trials.

This paper is organized as follows. In Sec. 2 we reviews a voting procedure
for detecting curves in binary images. In Sec. 3 we present a basic algorithm
of the SMC filters, called the bootstrap filter [16]. In Sec 4 we proposes an
algorithm for visual tracking with hypothesis propagation and voting-based ver-
ification. In Sec. 5 we proposes a procedure for preventing redundant verification
by determining equivalence curves in the digital space. In Sec. 6 we report the
experimental results.

2 Voting-Based Curve Detection in Binary Image

Let us consider the problem of detecting curves in a binary image. We assume
that the curves are analytically expressed with parameter a = (a1, a2, . . . , ana),
i.e., the curves are written by f(r; a) = 0, where r = (x, y)� denote two-
dimensional points in the image. This paper focuses on circle

f(r; a) = (x− xo)2 + (y − yo)2 − r2 = 0, (1)

where a = (xo, yo, r)�. Thus we can reduce the problem to finding the parameter
a in the parameter space.

Voting-based algorithms, such as the Hough transform [1] and RANSAC
(RANdom SAmple Consensus) [2], can robustly detect the parameter a even in
noisy binary images. The algorithms basically consist of two processes: counting
(or voting) and thresholding. The counting process evaluates each curve by an
additive measure, i.e., the number of the points on the curve is calculated as

I(a) =
∑

i

h(ri,a), where h(ri,a) =
{

1 if f(ri; a) = 0,
0 otherwise, (2)

where ri is the i -th point in the image [3]. Then the thresholding process detects
the curve if I(a) > T for a given threshold T .

2.1 Digital Circles by the Bresenham Algorithm

Of course, the definition of the measure in eq. (2) is not appropriate in the digital
space, i.e., f(r; a) �= 0 for almost all a ∈ Rna and r ∈ N2. Hence we require

Curve Tracking by Hypothesis Propagation and Voting-Based Verification 153

the definition of digital curves. Throughout this paper, we use the Bresenham
algorithm for drawing circles [4] to produce a sequence of the points on a circle
in the digital space. To draw a digital circle by the Bresenham algorithm, we
first digitize a real parameter a ∈ Rna by

â =

⎢⎢⎢⎣a +

⎛⎝0.5
0.5
0.5

⎞⎠⎥⎥⎥⎦ =

⎛⎝ #xo + 0.5$
#yo + 0.5$
#r + 0.5$

⎞⎠ , (3)

where â indicates the digitized vector of a real-number vector a, and #·$ is
the floor function, which specifies the largest integer not exceeding a given real
number. Then, giving the digital circle â to the Bresenham algorithm, we obtain
the sequence of the points, r1, r2, . . . , rl ∈ N2 on the digital circle. We simply
write the Bresenham algorithm by

Bresenham(â) = {r1, r2, . . . , rl}. (4)

Using this expression, we modify the equation f(ri; a) = 0 in eq. (2) to

ri ∈ Bresenham(â), (5)

thus verifying whether a point ri is on the circle â or not in the digital space.

2.2 Requirements for Voting

The underlying idea of the voting-based algorithm is simple and easy to imple-
ment on computers, whereas the algorithms are time-consuming because a lot
of iterations are required.

RANSAC requires the number of iterations

m =
log(1− γ)

log(1− (1− ε)na)
, (6)

where γ is the confidence level, ε is the outlier proportion, and na is the min-
imal number of the points that uniquely determines the curve to be detected.
Therefore the number of iterations m increases as ε increases, which situation
happens in the case of noisy images. Figure 1 shows the relationship between m
and ε, given γ = 0.95 and na = 3. In addition, the number of iterations m also
increases as na increases, i.e., RANSAC requires more computational time when
applying to higher dimensional curves.

The Hough transform increments O(αna−1) bins for each point, where α
is the number of bins in each dimension of the parameter space, i.e., a total
requirement is O(Mαna−1) if the total number of points is M . Therefore the
number of the iterations required exponentially increases as na increases. Also
the storage required is O(αna). These complexities make it difficult to apply the
Hough transform to higher dimensional curves.

In the literature, numerous techniques for improving the efficiency of the
Hough transform and RANSAC have been proposed. For example, randomiza-
tion [5–8], parallelization [9], and coarse-to-fine search [10–12] are introduced.
These techniques are useful for reducing the complexities, but the application
to curve detection in real-time remains difficult except for the low dimensional
case (na = 2).

154 K. Kawamoto and K. Hirota

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
: n

um
be

r
of

 it
er

at
io

ns

ε: outlier proportion

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
: n

um
be

r
of

 it
er

at
io

ns

ε: outlier proportion

Fig. 1. Number of the iterations required by RANSAC

3 Discrete State Estimation by Bootstrap Filter

The sequential Monte Carlo filters (SMC) [13–15] provide numerical estimates
of marginal distribution p(xt|y1:t) up to time t recursively in time as follows:

Prediction : p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (7)

Filtering : p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (8)

where x0:t
def= {x0,x1, . . . ,xt} and y1:t

def= {y1,y2, . . . ,yt} are the signal and the
observations up to time t, respectively. The bootstrap filter [16] is the simplest al-
gorithm of the SMC filters. In the computer vision community, an visual tracking
algorithm proposed under the framework of the bootstrap filter is known as the
conditional density propagation algorithm, namely the Condensation algorithm
[17]. The general algorithm, given an initial distribution p(x0) and a transition
equation p(xt|xt−1), is described as follows:

1. Initialization: (t = 0)
– For i = 1, 2, . . . , N , sample x

(i)
0 ∼ p(x0) and set t← 1.

2. Prediction:
– For i = 1, 2, . . . , N , sample x

(i)
t ∼ p(xt|x(i)

t−1)
3. Filtering:
– For i = 1, 2, . . . , N , evaluate the likelihoods

w
(i)
t = p(yt|x

(i)
t).

– For i = 1, 2, . . . , N , normalize the likelihoods

w
(i)
t ←

w
(i)
t∑N

k=1 w
(k)
t

.

Curve Tracking by Hypothesis Propagation and Voting-Based Verification 155

– For i = 1, 2, . . . , N , resample x
(i)
t according to the likelihoods.

– Set t← t + 1 and go to step 2.

The bootstrap filter, thus, approximately provides the filtering distribution
p(xt|y1:t) with a set of discrete finite sample points {x(i)

t | i = 1, 2, . . . , N}. These
sample points are usually called particles (this is the reason that the SMC filters
are often called the particle filters [18]). Theoretically, the discrete distribution
asymptotically converges toward the true one if N →∞ (however, due to limited
computer resource, it is not practical to set the number of sample points, N , to
be extremely large).

This simulated-based approach has some attractive properties. First, it han-
dles nonlinear and non-Gaussian state-space models [19], because an analytical
expression of the state distribution of interest is not required. Second, the compu-
tational complexity does not depend on the dimension of the state; it depends
on the number of particles, namely O(N). Third, this discrete representation
makes it easy to implement a voting-based algorithm for curve tracking in the
framework of the SMC filtering. We will discuss the algorithm in Sec. 4.

4 Voting-Based Curve Tracker with Hypothesis
Propagation

We propose an algorithm for curve tracking in a sequence of binary images. We
aim to design a tracking algorithm that works in noisy binary images robustly
and efficiently. The basic idea is to reuse the curve parameters detected by a
voting-based algorithm at the previous time in order to efficiently search the
curves at the current time, using the bootstrap filter. We call this approach
hypothesis propagation. In other words, the algorithm does not waste the infor-
mation obtained by the voting procedure, which is normally time-consuming, at
each time step.

To implement the idea, the algorithm represents the distribution of votes in
the parameter space by a set of particles, i.e., each particle x

(i)
t represents a

curve a
(i)
t and its likelihood w

(i)
t is evaluated by the received votes I(a(i)

t) that
are normalized to 1. The most attractive property is that the computational
complexity does not depend on the dimension of the curve to be detected. This
property is due to the nature of the SMC filtering. Thus the algorithm efficiently
deals with higher dimensional curves. The storage requirement is O(naN), where
na is the dimension of the state of interest and N is the number of particles.
Therefore the storage size linearly increases as the dimension increases. Note
that the Hough transform exponentially increases in size.

In the following, we describe the algorithm for circle tracking in detail, fol-
lowing the order of the general bootstrap filter in Sec. 3.

156 K. Kawamoto and K. Hirota

4.1 Generation of Initial Distribution: Curve Detection

We treat the problem of generating initial distribution p(x0) as that of detecting
a circle in the first frame of a give image sequence. Thus we first detect the circle
a0 = (xo(0), yo(0), r(0))� using RANSAC or the Hough transform. Then the
algorithm generates a set of particles {x(i)

0 |i = 1, 2, . . . , N} by adding system
noise v = (vxo

, vyo
, vr)� to the parameters:

x
(i)
0 = a0 + v(i) with v(i) ∼ N (0,V), i = 1, 2, . . . , N, (9)

where V = diag(σ2
xo
, σ2

yo
, σ2

r), and v(i) is independently chosen from the Gaus-
sian distribution.

4.2 Prediction: Hypothesis Propagation

Let us assume that the parameters of the circle gradually change over time. We
model the assumption as the system equation xt = xt−1 + v. According to the
model, the set of the particles {x(i)

t |i = 1, 2, . . . , N} at time t is generated from
{x(i)

t−1|i = 1, 2, . . . , N} at time t− 1, that is,

x
(i)
t = x

(i)
t−1 + v(i) with v(i) ∼ N (0,V), i = 1, 2, . . . , N. (10)

This particle set approximates the prediction distribution p(xt|xt−1), which
indicates the set of hypotheses (potential curves) at time t. Note that this ap-
proach can deal with more complicated transition models (theoretically, any
models). This paper focuses on the simplest linear model to examine the basic
performance of the algorithm.

4.3 Filtering: Voting-Based Verification of Curves

The algorithm evaluate the likelihoods of the particles of the prediction distri-
bution by the normalized votes to 1:

w
(i)
t =

I(x(i)
t)∑N

i=1 I(x
(i)
t)

=
∑

k h(rk,x
(i)
t)∑N

i=1
∑

k h(rk,x
(i)
t)

. (11)

Note that we redefine the function h(·, ·) in Sec. 2 as

h(ri,a) =
{

1 if ri ∈ Bresenham(â),
0 otherwise, (12)

that is, the algorithm calculates
∑

k h(rk,x
(i)
t) in eq. (11) by tracing the sequence

of the points on the digital curve

x̂
(i)
t = (#xo(t)(i) + 0.5$, #yo(t)(i) + 0.5$, #r(t)(i) + 0.5$)� (13)

in the image.

Curve Tracking by Hypothesis Propagation and Voting-Based Verification 157

4.4 Resampling and Particle Elimination

The particles x
(i)
t , i = 1, 2, . . . , N, are resampled with replacement according to

the likelihoods w(i)
t , i = 1, 2, . . . , N , i.e., the particles are drawn with probability

Pr(X = x
(i)
t) = w

(i)
t . This resampling enables us to avoid the degeneracy for

which most of the particles have almost zero weight after a few time steps. In
other words, the aim of resampling is to concentrate on the particles with large
weights [13].

However, resampling cannot prevent the tracker from losing the circle of
interest in clutter. For example, consider a tracking problem for noisy binary
images, as shown in Fig. 2 (top). Fig. 2 (middle) shows the results obtained by
the voting-based tracker with resampling. The circles depicted in the images are
the surviving particles after resampling at each time. These results show that the
particles lose the circle and widely diffuse over the image as the time increases.
This phenomenon arises from the fact that, in noisy images, the relatively high
likelihood (votes) is given to the particles which correspond to background noise.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90

V
ar

ia
nc

e
of

 s
ta

te
 d

is
tr

ib
ut

io
n

(p
ix

el
)

Time (frame)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90

V
ar

ia
nc

e
of

 s
ta

te
 d

is
tr

ib
ut

io
n

(p
ix

el
)

Time (frame)

Fig. 2. (Top) examples of a sequence of noisy binary images. (Middle) The tracking
results without variance reduction. (Bottom) Temporal change of the variance of the
state distribution

158 K. Kawamoto and K. Hirota

From a statistical point of view, this phenomenon causes the variance increase
of the state distribution over time. Figure 2 (bottom) shows the trace of the
sample covariance matrix over time:

trV [x] = σ2
xo

+ σ2
yo

+ σ2
r (14)

=
N∑

i=1

(
(x(i)

o − E[xo])2 + (y(i) − E[yo])2 + (r(i) − E[r])2
)
, (15)

where E[·] is the expectation operator. From Fig. 2, one can observe that the
variance of the state distribution after resampling increases as the time in-
crease.

Thus, we introduce a procedure for variance reduction. The procedure first
selects the mode x

(m)
t of the filtering distribution {x(i)

t |i = 1, 2, . . . , N} be-
fore resampling, where the mode is selected by m = arg maxi w

(i)
t . Then it

assigns the weights of the particles which are distance D away from the mode
to 0:

w
(i)
t = 0 if x

(i)
t ∈

{
x

(j)
t | j = 1, 2, . . . , N, d (x

(j)
t ,x

(m)
t)> D

}
, (16)

where d(x,y) is the squared Mahalanobis distance defined by

d(x,y) =
√

(x− y)�V −1(x− y). (17)

We illustrate the particle elimination procedure in Fig. 3.

D

x0

y0

w

D

x0

y0

w

Fig. 3. Eliminating particles away from the mode for variance reduction

Since the particles away from the mode of the distribution have zero weight,
they are eliminated after resampling and the other particles around the mode
survive over time. Figure 4 (top) shows the result obtained by the voting-based
tracker with particle elimination for the input images in Fig. 2(top), and Fig 4
(bottom) shows that the variance does not increase (being almost constant) as
the time increase.

Curve Tracking by Hypothesis Propagation and Voting-Based Verification 159

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90

V
ar

ia
nc

e
of

 s
ta

te
 d

is
tr

ib
ut

io
n

(p
ix

el
)

Time (frame)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90

V
ar

ia
nc

e
of

 s
ta

te
 d

is
tr

ib
ut

io
n

(p
ix

el
)

Time (frame)

Fig. 4. (Top) The tracking results with particle elimination. (Bottom) Temporal change
of the variance of the state distribution

5 Prevention of Redundant Verification

We introduce a procedure for preventing redundant verification by determining
equivalence curves in the digital space in order to reduce the time complexity of
the algorithm in Sec. 4. The most time-consuming part of the algorithm is the
filtering (observation process), i.e., the voting-based verification in Sec. 4.3. This
filtering process evaluates each particle x

(i)
t , i = 1, 2, , . . . , N, by the summation∑

k h(rk,x
(i)
t). Note that h(·, ·) is defined by eq. (12). Therefore, even if the

relation x
(i)
t �= x

(j)
t , for x

(i)
t ,x

(j)
t ∈ Rna , holds, the relation x̂

(i)
t = x̂

(j)
t , for

x̂
(i)
t , x̂

(j)
t ∈ Nna , may hold due to digitization. Then the same calculation

for the verification of potential curves (hypotheses) repeatedly can be performed
for x

(1)
t ,x

(2)
t , . . . ,x

(N)
t ∈ Rna . Figure 5 shows the ratio of the number of “effec-

tive” particles to that of the total ones (N = 500, 1000, 10000), where any pair
of “effective” particles is different from each other in the digital space. In the
case of N = 10000, only less than 20% of the particles are used in effect, i.e.,
conversely, the verification for more than 80% of the particles are redundant.

To prevent redundant verification, we determine equivalence curves in the
digital space before the filtering process; if x̂

(i)
t = x̂

(j)
t for i �= j holds, then we

decide that these two vectors are in the same class. This determination for N
particles is performed with 1

2N(N + 1) steps for sorting and N steps for sweep-
ing [20] (Sec. 8,6, pp. 345-346). To maintain each class, we use a singly linked list,

160 K. Kawamoto and K. Hirota

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

R
at

io
 o

f e
ffe

ct
 p

ar
tic

le
s

(%
)

Time (frame)

N=500

N=1000

N=10000

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

R
at

io
 o

f e
ffe

ct
 p

ar
tic

le
s

(%
)

Time (frame)

N=500

N=1000

N=10000

Fig. 5. Ratio of effective particles to total ones

which points to the next node in the list, or to a null value if it is the last node. If
a particle is evaluated by its normalized votes in the filtering process, the value
is given to the particles in the same class by tracing the elements of the list.

6 Experimental Evaluation in Clutter

To evaluate the basic performance of the proposed algorithm, we use a sequence
of noisy binary images, as shown in Fig. 2 (top). This image sequence consists
of 90 frames with 320 × 240 pixels, and a circle moves with evolving time; the
center (x0(t), y0(t))� and the radius r(t) undergo the transition:

x0(t) = 290− 3t + v, (18)
y0(t) = 100 + v, (19)

r(t) =
{
r(t− 1) + 1 + v, if t < T

2
r(t− 1)− 1 + v, otherwise , (20)

where v is a white noise generated from the Gaussian distribution with mean 0
and variance 22 (pixels), and constant T is the number of the frames. In addition,
we add mutually independent 5000 random noises to each image.

First we examine the successful rates of tracking by the algorithm over 90
frames on 10 trials. Table 1 shows the successful rates with 1000, 2000, . . . , 10000
particles. For example, the algorithm successfully tracks the circle over the 90
frames at 6 out of 10 times with 1000 particles. We here set the variance of the
system noises to be σi = 22(pixels), i = x0, y0, r. Table 1 shows the algorithm

Table 1. Successful rates of tracking over 90 frames on 10 trials

Number of particles 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Successful rate 6/10 9/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Curve Tracking by Hypothesis Propagation and Voting-Based Verification 161

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of particles

Digitization

No digitization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of particles

Digitization

No digitization

Fig. 6. Execution time

Fig. 7. Examples of input images

tends not to lose the target as the number of particles increases. Hence, although
the time and storage complexities increases as the number of particles increases,
we should not set particles to be too small in number.

Second we examine the execution time consumed by the tracking algorithm,
as shown Fig. 6, on 2.0 GHz Pentium 4 with 256 MB memory. In this figure,
“no digitization” and “digitization” indicate the results obtained by the algo-
rithm without and with the digitization, respectively, for preventing redundant
verification in Sec. 5. Figure 6 shows the average time of 10 trials (except the
case that the algorithm loses the target). From Fig. 6, the procedure for deter-
mining equivalence curves in the digital space contributes to the improvement of
the efficiency of the algorithm, especially when the particles are large in number.
For example, in the case of 10000, the execution time decreases by 32.9%.

We also make other experiments using two binary image sequences, as shown
in Fig. 7. In the first case (Fig. 7(left)), we use a circular arc, which lacks part
of the circle, as the target to be tracked. In the second case (Fig. 7(right)),
we create the images having the more cluttered background than that of the
first experiment; we add 20 line segments whose end-points are generated from

162 K. Kawamoto and K. Hirota

the uniform distribution over the image plane. In both of the experiments, the
other conditions, such as the target transition in eq. (20) and the number of
the background noises, are the same as the first experiment. The experimental
results show that the proposed algorithm successfully tracks the circle even if
the occlusion occurs or the background becomes cluttered.

7 Conclusions

We proposes a visual tracking algorithm based on hypothesis propagation and
voting-based verification. The proposed algorithm detects a curve in the image
by evaluating the curve by its received votes, and propagates the detected curve
to the successive image of a given sequence. Although voting-based algorithms,
such as the Hough transform and RANSAC, in general, are time-consuming, this
propagation over time provides an efficient search procedure for finding curves.
In addition, we introduce a procedure for preventing redundant verification by
determining equivalence curves in the digital space. This procedure contributes
to the improvement of the efficiency of the algorithm. The experimental results
shows the execution time decreases by 32.9% when the particles are 10000 in
number. Thus, two combinations of hypothesis propagation and voting-based
verification enable us to track curves in clutter robustly and efficiently. Further-
more, we introduce a particle elimination procedure to suppress rapid diffusion
of particles over time, which phenomenon is likely to happen in clutter. As a re-
sult, the elimination procedure prevents the variance of the filtering distribution
from increasing over time.

It might be worth mentioning those which should be developed in the future.
The paper assumes that transition model of target objects (e.g., eq. (10)) is
known. Then, if the object moves unexpectedly, the algorithm is likely to fail to
track it. An adaptive or self-organized process may be useful for treating such a
situation.

Acknowledgements

This work was supported in part by the Ministry of Education, Culture, Sports,
Science and Technology, Japan, under a Grant-in-Aid for Young Scientists B
(No.16700169) and Inamori Foundation.

References

1. R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and
curves in pictures,” Comm. ACM, vol. 15(1), pp. 11–15, Jan. 1972.

2. M. A. Fischer and R. C. Bolles, “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,”
Comm. ACM, vol. 24(6), pp. 381–395, June 1981.

Curve Tracking by Hypothesis Propagation and Voting-Based Verification 163

3. J. P. Princen, J. Illingworth, and J. V. Kittler, “A Formal Definition of the Hough
Transform: Properties and Relationships,” J. Mathematical Imaging and Vision,
no. 1, pp. 153–168, 1992.

4. “A Linear Algorithm for Incremental Digital Display of Circular Arcs”,
Comm. ACM, vol. 20(2), pp. 100–106, June 1977.

5. L. Xu and E. Oja. “Randomized Hough Transform: Basic Mechanisms, Algorithms,
and Computational Complexities,” CVGIP: Image Understanding, vol. 57(2),
pp. 131–154, 1993.

6. J. R. Bergen and H. Shvaytser, “Probabilistic Algorithm for Computing Hough
Transform,” Journal of Algorithms, vol. 12(4), pp. 639–656, 1991.

7. N. Kiryati, Y. Eldar, and M. Bruckstein, “A Probabilistic Hough Transform,”
Pattern Recognition, vol. 24(4), pp. 303–316, 1991.

8. O. Chum and J. Matas, “Randomized RANSAC with Td,d test,” Proc. the British
Machine Vision Conference, vol. 2, pp. 448-457, Sep. 2002.

9. A. Rosenfeld, J. Jr. Ornelas, and Y. Hung, “Hough Transform Algorithms for Mesh-
Connected SIMD Parallel Processors”, Computer Vision, Graphics, and Image
Processing, vol. 41(3), pp. 293–305, 1988.

10. H. Li, M. A. Lavin, and R.L.Master, “Fast Hough transform: a hierarchical ap-
proach”, Computer Vision, Graphics, and Image Processing, vol. 36, pp. 139–161,
1986.

11. J. Illingworth and J. Kittler, “The adaptive Hough transform”, IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 9(5), pp. 690–698, 1987.

12. P.H.S. Torr, and C. Davidson, “IMPSAC: synthesis of importance sampling and
random sample consensus”, IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 25(3), pp. 354–364.

13. J.S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic systems”, J.
the American Statistical Association, vol. 93, pp. 1033-1044, 1998.

14. A. Doucet, S. Godill, and C. Andrieu, “On Sequential Monte Carlo Sampling Meth-
ods for Bayesian Filtering”, Statistics and Computing, vol. 10(3), pp. 197–208,
2000.

15. A. Doucet, N. de Freitas, and N. J. Gordon, “Sequential Monte Carlo Methods in
Practice”, Springer-Verlag, May 2001.

16. N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation”, IEE Proc.–F, vol. 140(2),
pp. 107–113, April 1993.

17. M. Isard and A. Black, “Condensation – Conditional density propagation for visual
tracking,” Int. J. Computer Vision, vol. 29(1), pp.5–28, 1998.

18. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial on Particle
Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking”, IEEE Trans. Sig-
nal Processing, vol. 50(2), pp. 174–188.

19. G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models”, J. Comput. Graph. Stat., vol.5(1), pp. 1–25, 1996.

20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, “Numerical Recipes in C: The Art
of Scientific Computing”, Cambridge Univ Press, 1993.

3D Topological Thinning by Identifying
Non-simple Voxels

Gisela Klette and Mian Pan

CITR, University of Auckland, Tamaki Campus, Building 731,
Auckland, New Zealand

Abstract. Topological thinning includes tests for voxels to be simple or
not. A point (pixel or voxel) is simple if the change of its image value
does not change the topology of the image. A problem with topology
preservation in 3D is that checking voxels to be simple is more complex
and time consuming than in 2D. In this paper, we review some char-
acterizations of simple voxels and we propose a new methodology for
identifying non-simple points. We implemented our approach by modify-
ing an existing 3D thinning algorithm and achieved an improved running
time.

Keywords: simple points, topology, simple deformations, thinning, shape
simplification.

1 Introduction and Basic Notions

The basic notion of a simple point is used in topology preserving digital defor-
mations in order to characterize a single element p of a digital image I which can
change the value I(p) without destroying the topology of the image. Especially
in 3D it is important to find efficient ways of identifying simple voxels as part
of algorithms that determine a ”central path” [12, 14].

We use common adjacency concepts: 4-,8-(2D), 6-,18-,26-(3D) for the point
model and 0-,1-(2D), 0-,1-,2-(3D) for the grid cell model (see Figure 1). Any
of these adjacency relations Aα, α ∈ {0, 1, 2, 4, 6, 8, 18, 26}, are irreflexive and
symmetric. The α-neighborhood Nα(p) of a pixel location p includes p and its
α-adjacent pixel locations.

In 2D the notions of Crossing numbers or Connectivity numbers are well
known (see [10] for a review). Characterizations of simple voxels based on count-
ing numbers of components are complex and time consuming and other concepts
have been introduced. We review the notion of attachment sets based on the cell
model because we will use this concept in our thinning program.

The frontier of a voxel is the union of its six faces. A face of a voxel includes
its 4 edges, and each edge includes its 2 vertices. Let p be an n-cell, 0 ≤ n ≤ 3.
The frontier of a n-cell p is a union of i -cells with 0 ≤ i < n (i.e., excluding
p itself). For example, if p is a voxel (3-cell) then the frontier consists of eight
0-cells, twelve 1-cells and six 2-cells.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 164–175, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

3D Topological Thinning by Identifying Non-simple Voxels 165

Fig. 1. (a) N6(p) (b) N18(p) (c) N26(p)

Kong [12] defined the I-attachment set of a cell p for the grid cell model as
follows, where I is an image:

Definition 1. Let p and q are grid cells. The I-attachment set of a n-cell p in I
is the union of all i-cells, 0 ≤ i < n, on the frontier of p that also lie on frontiers
of other grid cells q with I(p) = I(q), p �= q.

Note that the cardinality of the I-attachment set of a 0-cell is one, and the
cardinality of an n-cell is that of the real numbers, for n = 1, 2, 3. One example
for a 3D I-attachment set is shown in Figure 2.

Fig. 2. The voxel in the middle of (a) has the I-attachment set S shown in (b) in form
of a Schlegel diagram

To represent the I-attachment set of a voxel we use Schlegel diagrams as
Kong proposed in [12].

Geodesic neighborhoods have been introduced by Bertrand [2] in the following
way:

Definition 2. Let p ∈ M ⊂ Z3. The geodesic neighborhood of p is defined as
follows:

1. G6(p,M) = (A6(p) ∩M) ∪ {q ∈ (A18(p) ∩M) | q is 6-adjacent to a voxel of
(A6(p) ∩M)},

2. G26(p,M) = A26(p) ∩M .

166 G. Klette and M. Pan

Definition 3. The topological number associated to p and M , denoted by
Tα(p,M) for (α, α′) ∈ (6, 26), (26, 6), is defined as the number of α-connected
components of Gα(p,M).

For the introduction of the α-homotopy relation we start with a common
definition:

Definition 4. An α-path π with a length l from a point a to a point b in M ⊂ Z3

is a sequence of voxels (vi)i=0,...,l such that for 0 ≤ i < l the voxel vi is α-adjacent
or equal to vi+1, with v0 = a and vl = b.

The path π is a closed path if v0 = vl, and it is called a simple path if vi �= vj

when i �= j (except for v0 and vl if the path is closed). The voxels v0 and vl

are called extremities of π. Given a path π = (vk)k=0,...,l, we denote by π−1 the
sequence (v′

k)k=0,...,l such that v′
k = vl−k for k ∈ 0, ..., l.

Following [4], let π = (vi)i=0,...,l and π′ = (v′
k)k=0,...,l′ be two α-paths and

vl = v′
0. We denote by π

⊕
π′ the path v0, ..., vi−1, v

′
0, ..., v

′
l′ which is the con-

catenation of the given two paths.
Two closed α-paths π and π′ in M ⊂ Z3 with the same extremities are

identical up to an elementary deformation in M if they are of the form π =
π1
⊕

γ
⊕

π2 and π′ = π1
⊕

γ′⊕π2, the α-paths γ and γ′ have the same ex-
tremities, and they are included in a 2× 2× 2 cube if (α, α′) = (26, 6), and in a
2× 2 square if (α, α′) = (6, 26).

Definition 5. Two α-paths π = (vi)i=0,...,l and π′ = (v′
k)k=0,...,l′ are α-

homotopic with fixed extremities in M ⊂ Z3 if there exists a finite sequence
of α-paths π = π0, ..., πn = π′ such that, for i = 0, ...n − 1, the α-path πi

and πi+1 are identical up to an elementary α-deformation with fixed extremities
(π !α π′).

Let B be a fixed point of M called the base point, and Aα
B(M) the set of all

closed α-paths π = (vi)i=0,...,l which are included in M and B = v0 = vl. The
α-homotopy relation is an equivalence relation on Aα

B(M), and Eα(M,B) is the
set of equivalence classes of this relation. If π ∈ Aα

B(M) then [π]Eα(M,B) is the
equivalence class of π under this relation.

The concatenation of closed α-paths is compatible with the α-homotopy re-
lation. It defines an operation on the set of equivalence classes Eα(M,B) which
associates to the class of π1 and the class of π2 the class of π1

⊕
π2. This op-

eration provides a group structure for the set of all equivalence classes. We call
this group the α-fundamental group of M with base point B. If two base points
B and B′ can be connected by an α-path in M then the α-fundamental group
of M with base point B and the α-fundamental group of M with base point B′

are isomorphic.
Let N ⊂ M and M ⊂ Z3 and let B ∈ N be a base point. A closed α-path

in N is a special α-path in M . If two closed α-paths in N are homotopic then
they are also homotopic in M . We define a canonical morphism i∗ : Eα(N,B)→

3D Topological Thinning by Identifying Non-simple Voxels 167

Eα(M,B) which we call the morphism induced by the inclusion map i : N →M .
To the class of a closed α-path π1 ∈ Aα

B(N) in Eα(N,B), the morphism i∗
associates the class of the same α-path in Eα(M,B).

2 Characterizations of Simple Voxels

The literature offers a long list of definitions of simple points in 3D images. The
following questions arise: can we find analog characterizations for 3D images
based on concepts used for the 2D case; what characterizations are efficient to
determine simple voxels in 3D, and are these existing characterizations equiv-
alent. First we review some definitions. In 1994, Bertrand and Malandain [2]
proposed the following.

Characterization 1. A voxel (p, I(p)) of an image I is a 26-simple grid point
iff it is 26-adjacent to exactly one 26-component of voxels in A26(p) and it is
6-adjacent to exactly one distinct 6-component of voxels in A18(p).

A voxel (p, I(p)) of an image I is a 6-simple grid point iff it is 6-adjacent to
exactly one 6-component of voxels in A18(p) and it is 26-adjacent to exactly one
distinct 26-component of voxels in A26(p).

The calculation of the numbers of components in the 26-neighborhood of p
is time consuming for 3D images. It can be done by using algorithms derived
from graph theory. The number of computations depends on the size of the
components.

The following characterizations are equivalent for 26-simple 1s [15, 19]:

Characterization 2. An object voxel p of a 3D image I is 26-simple in I iff

1. p is 26-adjacent to another object voxel q, and
2. p is 6-adjacent to a background voxel q′, and
3. the set of object voxels which are 26-adjacent to p is connected, and
4. every two background voxels that are 6-adjacent to p are 6-connected by back-

ground voxels that share at least one edge with p.

In terms of topological numbers we can express this characterization as fol-
lows [3]:

Characterization 3. Let p ∈ M and (α, α′) ∈ {(6, 26), (26, 6)}. The object
voxel p is 26-simple iff Tα(p,M) = 1 and Tα′(p,M) = 1.

The following characterization of simple voxels uses the concept of the I-
attachment set of p for 3D images [12]. In Figure 3, the complement of the
I-attachment set of p in the frontier of p is not connected and p is not simple.

Characterization 4. An object voxel p of an image I is 26-simple in I iff the
I-attachment set of p, and the complement of that set in the frontier of p, are
both non-empty and connected.

168 G. Klette and M. Pan

Fig. 3. I-attachment set is not empty, connected and it is not the entire frontier, but
p is not simple

This characterization uses the grid cell model; it is equivalent to the previous
characterization which is based on the grid point model for 26-simple object
voxels [11].

A characterization of 3D simple points based on the α-fundamental group is
given in [4, 12].

Characterization 5. Let M ⊂ Z3 and p ∈ M . An object voxel p is α-simple
(α ∈ 6, 26) iff

1. M and M\p have the same number of connected components.
2. M̄ and M̄ ∪ p have the same number of connected components.
3. For each voxel B in M\p, the group morphism i∗ : Eα(M\p,B)→ Eα(M,B)

induced by the inclusion map i : M\p→M is an isomorphism.

The main result in [4] is that these three items are sufficient to characterize
simple voxels. If a voxel satisfies these three conditions then Tα(p,M) = 1 and
Tα′(p,M) = 1. Also, if Tα(p,M) = 1 and Tα′(p,M) = 1 then these three condi-
tions follow, and even more, the following condition is satisfied as well: for each
voxel B′ in M̄ , the group morphism i′∗ : Eα′

(M̄,B′)→ Eα′
(M̄ ∪ p,B′) induced

by the inclusion map i′ : M̄ → M̄ ∪ p is an isomorphism.

3 Test for Non-simple Voxels

The Euler characteristic of an I-attachment set is easy to compute. We review
the definition.

Definition 6. The Euler characteristic ε(S(p)) of the I-attachment set S of a
voxel p is equal to the number of 0-cells minus the number of 1-cells plus the
number of 2-cells [5].
Characterization 6. A voxel p is 26-simple iff the I-attachment set S of p, and
the complement of that set in the frontier of p are connected and ε(S(p)) = 1.

3D Topological Thinning by Identifying Non-simple Voxels 169

Fig. 4. ε(S(p)) = n0 − n1 + n2 = 1, where n0 = 6, n1 = 5, n2 = 0 and p is not simple

Fig. 5. Voxels that are not simple, for ε(S(p)) = 1 and N6 = 6

Note that a vertex v (0-cell) of a voxel p shares its point with three 1-cells
and three 2-cells in the frontier of p. An edge e (1-cell) shares its points with two
0-cells, four other 1-cells and four 2-cells in the frontier of p. A face f (2-cell)
shares its points with four 0-cells, eight 1-cells and four other 2-cells. Let Cx(p)
be the set of all n-cells (n ∈ 0, 1, 2, 3) of a given n-cell x in the frontier of a voxel
p that share points with x. We say that a given n-cell x in the I-attachment set
S of p is isolated if Cx(p)∩S = x. We say that a given 2-cell y in the complement
of the I-attachment set S̄ of p is isolated if all points in the frontier of y belong
to the I-attachment set S of p.

If p is simple then ε(S(p)) = 1. But, if ε(S(p)) = 1 then it does not follow
that p is simple, because there are two additional conditions. We investigated
the cases where ε(S(p)) = 1 and p is not simple (see figure 4) and we came to
the following characterization for non-simple voxels.

Let N6 be the number of background voxels which are 6-adjacent to p. All
configurations for N6 = 6, where ε(S(p)) = 1 and p is not simple are shown in
Figure 5.

Proposition 1. Let N6 = 6. An object voxel p is not simple and ε(S(p)) = 1
iff the I-attachment set S consists of two or three disjoint connected subsets of
points. For two sets, one of these sets is a simple curve in the Euclidian space,
and the other set is a single point or an arc in the Euclidian space. For three
disjoint sets, one of these sets is a non-simple curve in the Euclidian space, and
the other sets are isolated points in the Euclidian space.

Proof. Let p be an object voxel. Let X be a subset of S (X ⊆ S). If X is a
simple curve in the Euclidian space, then ε(X(p)) = 0 (n0 = n1, n2 = 0) (See

170 G. Klette and M. Pan

Fig. 6. (a)S consists of two disjoint sets. X1 is a simple curve (ε(X1(p)) = 0, n0 = n1,
n2 = 0) and X2 is an arc (ε(X2(p)) = 1, n0 − n1 = 1, n2 = 0) (b)S is a non-simple
curve and (ε(S(p)) = −1, n0 − n1 = −1, n2 = 0) (c)S is a non-simple curve and
(ε(S(p)) = −2, n0 − n1 = −2, n2 = 0)

Figure 6.a). If X is an isolated point or an arc in the Euclidian space, then
ε(X(p)) = 1 (n0−n1 = 1, n2 = 0) (See Figure 6.a). If X is a non-simple curve in
the Euclidian space, then ε(X(p)) ≤ −1 (n0−n1 ≤ −1, n2 = 0) (See Figures 6.b
and 6.c).

1. We assume p is not simple and ε(S(p)) = 1 and n2 = 0. Based on Theorem
2 we know that the I-attachment set S or the complement of S (S̄) are not
connected. ε(S(p)) = 1 if

∑3
i=1 ε(Xi(p)) = 1. If S consists only of one such

subset then ε(X(p)) = 1 if n0 − n1 = 1. But then S and S̄ are connected.
This is a contradiction to our assumption. For two nonempty subsets X1 and
X2 we only have the option that ε(X1(p)) = 1 and ε(X2(p)) = 0. X1 can
only be a 0-cell or an arc. For X2 it follows that n0 = n1 and this is a curve.
For three nonempty subsets we have only the option that n0 − n1 ≤ −1 for
one subset, and there must be two others with ε(X(p)) = 1. This is only
possible if one subset constitutes a non-simple curve and the other two are
both isolated points.

2. Now we assume that S consists of two or three disjoint connected subsets
of points. For two sets, one of these sets is a simple curve in the Euclidian
space, and the other set is a single point or an arc in the Euclidian space. For
three disjoint sets, one of these sets is a non-simple curve in the Euclidian
space, and the other sets are single points in the Euclidian space. It follows
immediately that p is not simple and the ε(S(p)) = 1.

In conclusion, for N6 = 6, all possible cases for a non-simple voxel p and
ε(S(p)) = 1 are shown in Figure 5.

For N6 = 5, all cases for a non-simple voxel p and ε(S(p)) = 1 are shown in
Figure 7. For N6 = 1, 2, 3, 4, only one case meets this condition, which is shown
in Figure 8.

Proposition 2. Let N6 be the number of 6-neighbors of p in M̄ and 1 < N6 ≤ 6,
N26(p) ∩M(p) > 1. A voxel p is 26-non-simple iff ε(S(p)) �= 1, or ε(S(p)) = 1
and S includes an isolated 0-cell or an isolated 1-cell or S̄ includes an isolated
2-cell.

3D Topological Thinning by Identifying Non-simple Voxels 171

Fig. 7. Voxels are not simple and ε(S(p)) = 1 for N6 = 5

Fig. 8. Voxel is not simple and ε(S(p)) = 1 for N6 = 1, 2, 3, 4

4 Topological Thinning Algorithm

A thinning algorithm is subdivided in a finite number of iterations. In each
iteration the object value of voxels satisfying specified deletion conditions are
changed into background values. The algorithm stops in one iteration step if
no voxel can be found which satisfies the conditions. Thinning algorithms are
different with respect to applied local operators. A local operation on a voxel
is called sequential if the arguments of the new value of p are the values of the
already processed neighbors and the old values of the succeeding neighbors in a
defined raster scan sequence. A local operation on a voxel is called parallel if the
arguments of the new value of p are the original values in a defined neighborhood
of voxels. In all parallel thinning procedures, an efficient test of simplicity of a
single voxel is insufficient. We also need to check topology preservation for sets
of voxels because sets of voxels are deleted simultaneously in each iteration.

Kong introduced in [12] a method of verifying that a 3D thinning algorithm
A preserves topology. The set D = d1, d2, ..., dk is called a simple set in I if D
can be arranged in a sequence of dl1 , dl2 , ..., dlk in which each dlj is simple after
dl1 , dl2 , ..., dlj−1 is deleted. Let Ij : 0 ≤ j ≤ m the result of the image after j
iterations and let Aj : 0 < j ≤ m the application of algorithm A after (j − 1)
iterations. A component is small if every two elements of the component are
26-adjacent to each other.

172 G. Klette and M. Pan

Fig. 9. The neighborhood of a voxel p. N6(p) includes the central voxel p and six 6-
adjacent voxels with indicated directions U, D, N, S, E and W for a 6-subiteration
algorithm

A parallel 3D thinning algorithm A preserves topology for (26,6)-images if
the following conditions hold, for every iteration j and every image Ij .

1. Aj deletes only simple voxels in Ij−1.
2. Let T be a set of two or more voxels contained in a block of 1x2x2 or 2x1x2

or 2x2x1 voxels. We have that, if each voxel of T is simple in Ij−1, then each
voxel is still simple after removing the other voxels in T .

3. In case that there is a small component in Ij−1 then Aj does not delete at
least one voxel of this component.

Three main groups of thinning algorithms have been developed. Examin-
ing larger neighborhoods is one possible approach to preserve topology without
subiterations. A different approach divides the image into distinct subsets which
are successively processed. Many algorithms use different numbers of subitera-
tions (6 or 8 or 12) in order to delete only simple sets of voxels per iteration. A set
of border voxels that satisfies specified conditions can be deleted simultaneously
in one subiteration.

The modified 3D thinning algorithm in [16, 18] uses 6 subiterations (U, D, N,
S, W, E, see Figure 9).

In each subiteration only voxels that have a 6-neighbor in the background in
one direction are considered for further tests. Then simple voxels that are not
end points are marked. All marked voxels have a second test to secure that they
are still simple and not end points after some neighbors have been processed.

Fig. 10. 3D object and the skeleton of this object

3D Topological Thinning by Identifying Non-simple Voxels 173

Based on the verification method above we can state that this thinning algorithm
preserves topology because of the following:

1. Only simple voxels are deleted per subiteration (condition 1).
2. Simple voxels that are not end points are marked for deletion, and they will

be deleted in a second step in case they stay simple after processed neighbors
are deleted (condition 2).

3. Condition 3 is verified based on the end point condition.

In [16, 18] the deletion conditions assigned to a subiteration are described by
a set of masks. A boolean lookup table indexed by the values of p’s 26 neighbors
is used. The actual test for simplicity is based on characterization 1.

We applied our approach by replacing the programming code for the test to
identify simple voxels in the algorithm provided on the internet.

In case N6 = 1, a voxel is always simple. For N6 = 2, we have only two possi-
bilities: two faces in S̄ share an edge or not. For the test of a voxel to be simple
or not in a thinning algorithm, the number of 6-neighbors in the background
should be counted before a complex procedure starts. For the identification of
non-simple voxels can be achieved by the following sequence of tests:

1. If N6 = 1 then voxel p is simple.
2. If N6 = 2 then check whether two of its 6-neighbors are opposite; if not then

p is simple.
3. If N6 > 2 then calculate the Euler number ε(S(p)). If ε(S(p)) �= 1 then p is

not simple; otherwise do the following test.
4. If an isolated 0-cell is in S then p is not simple; otherwise do the following

test.
5. If an isolated 1-cell is in S then p is not simple; otherwise do the following

test.
6. If an isolated 2-cell is in S̄ then p is not simple.

5 Conclusions

Simple voxels are of fundamental interest for topology-preserving deformations
in 3D binary images. The literature offers characterizations of simple voxels
based on different concepts. In this paper we reviewed some characterizations
and we characterized non-simple voxels. We used this approach for modifying
an existing algorithm and we achieved a significant speed up in running time.

References

1. C. Arcelli and G. Sanniti di Baja: Skeletons of planar patterns. in: Topological
Algorithms for Digital Image Processing (T. Y. Kong, A. Rosenfeld, eds.), North-
Holland, (1996), 99–143.

174 G. Klette and M. Pan

2. G. Bertrand and G. Maladain: A new characterization of three-dimensional simple
points. Pattern Recognition Letters, 15, (1994), 169–175.

3. G. Bertrand: Simple points, topological numbers and geodesic neighborhoods in
cubic grids. Pattern Recognition Letters, 15, (1994), 1003–1011.

4. S. Fourey and R. Malgouyres: A concise characterization of 3D simple points.
Discrete Applied Mathematics, 125, (2003), 59-80.

5. C. J. Gau and T. Y. Kong: 4D Minimal Non-simple Sets. in: Discrete Geometry for
Computer Imagery, LNCS 2301, Proc. 10th International Conference, Bordeaux,
(2002), 81–91.

6. R. W. Hall: Fast parallel thinning algorithms: parallel speed and connectivity
preservation. Comm. ACM, 32(1989), 124–131.

7. R. W. Hall: Parallel connectivity-preserving thinning algorithms. in: Topological
algorithms for Digital Image Processing (T. Y. Kong, A. Rosenfeld, eds.), North-
Holland, (1996), 145–179.

8. C. J. Hilditch: Linear skeletons from square cupboards. in: Machine Intelligence 4
(B. Meltzer, D. Mitchie, eds.), Edinburgh University Press, (1969), 403–420.

9. G. Klette: Characterizations of simple pixels in binary images. in Proceedings:
Image and Vision Computing New Zealand 2002, Auckland, (2002), 227–232.

10. G. Klette: A Comparative Discussion of Distance Transformations and Simple
Deformations in Digital Image Processing. Machine Graphics & Vision,12, (2003),
235-256.

11. G. Klette: Simple Points in 2D and 3D Binary Images. in Proceedings of CAIP
2003, LNCS 2756,Springer, Berlin, (2003), 57-64.

12. T. Y. Kong: On topology preservation in 2-D and 3-D thinning. Int. J. for Pattern
Recognition and Artificial Intelligence, 9, (1995) 813–844.

13. C. N. Lee, A. Rosenfeld: Simple connectivity is not locally computable for con-
nected 3D images. Computer Vision, Graphics, and Image Processing, 51, (1990)
87–95.

14. C. Lohou and G. Bertrand: A New 3D 6-Subiteration Thinning Algorithm Based
on P-Simple Points. in: Discrete Geometry for Computer Imagery, LNCS 2301,
Proc. 10th International Conference, Bordeaux, (2002), 102–113.

15. G. Maladain and G. Bertrand: Fast characterization of 3D simple points. in: Proc.
11th IAPR Int. Conf. on Pattern Recognition, vol. III, The Hague, The Nether-
lands, (1992), 232–235.

16. K. Palagyi, E. Sorantin, E. Balogh, A. Kuba, C. Halmai, B. Erdohelyi and K.
Hausegger: A Sequential 3D Thinning Algorithm and Its Medical Applications,
IPMI 2001, LNCS 2082, pages 409-415, Springer Berlin, 2001.

17. K. Palagyi and A. Kuba: Directional 3D Thinning Using 8 Subiterations, in Pro-
ceedings: DGCI’99, LNCS 1568, (2003), 325-336.

18. K. Palagyi and A. Kuba: A 3D 6-subiteration thinning algorithm for extracting
medial lines, Pattern Recognition Letters, 19: 613-627, 1998.

19. P. K. Saha, B. Chanda, and D. D. Majumder: Principles and algorithms for 2D and
3D shrinking, Tech. Rep. TR/KBCS/2/91, NCKBCS Library, Indian Statistical
Institute, Calcutta, India, (1991).

20. A. Rosenfeld and J. L. Pfaltz: Sequential operations in digital picture processing.
Comm. ACM, 13 (1966) 471–494.

21. A. Rosenfeld: Connectivity in digital pictures. Comm. ACM, 17 (1970) 146–160.

3D Topological Thinning by Identifying Non-simple Voxels 175

22. A. Rosenfeld and T. Y. Kong and A. Nakamura: Topology- preserving deformations
of two-valued digital pictures. Graphical Models and Image Processing, 60,(1998)
24-34.

23. J. Serra: Image Analysis and Mathematical Morphology, vol.2, Academic Press,
New York (1982).

24. S. Yokoi and J. I. Toriwaki and T. Fukumura: An analysis of topological properties
of digitized binary pictures using local features. Computer Graphics and Image
Processing, 4, (1975), 63-73.

Convex Hulls in a 3-Dimensional Space

Vladimir Kovalevsky1 and Henrik Schulz2

1 Berlin, Germany
kovalev@tfh-berlin.de

2 Dresden University of Technology, Dresden, Germany
hs24@inf.tu-dresden.de

Abstract. This paper describes a new algorithm of computing the con-
vex hull of a 3-dimensional object. The convex hull generated by this
algorithm is an abstract polyhedron being described by a new data struc-
ture, the cell list, suggested by one of the authors. The correctness of the
algorithm is proved and experimental results are presented.

1 Introduction

The convex hull is a good tool to economically describe a convex object. We
present here a new method to compute the convex hull of a three-dimensional
digital object using a new data structure, the two-dimensional cell list, sug-
gested by one of the authors [Kov89]. The cell list is well suited to efficiently
perform intermediate steps of the algorithm and to economically encode the
convex hull.

Since the convex hull is often used in a great number of applications it is an
often treated problem in many articles and books on computational geometry.
Preparata and Shamos [Pre85] describe a 3D convex hull algorithm of the divide-
and-conquer type. The first step in this approach consists in sorting the given
points by one of their coordinates. After sorting, the convex hull is computed by
a recursive function consisting of two parts: generation of the convex hull of a
small subset of points and merging two convex hulls. Since the set of points is
sorted, every two subsets are non-intersecting polytopes.

Other approaches such as [Ber00, Cla92] use an incremental method. Accord-
ing to [Ber00] an initial polyhedron of four points is created and then modified
by taking the given points into the polyhedron in a random order until it con-
tains the whole set of points. The algorithm connects each point P with the
edges of the ”horizon”, i.e. of the boundary of the subset of faces visible from
P . The convex hull is described by a doubly connected edge list. It should be
mentioned that the most of these approaches use only simplicial polyhedrons,
i.e. the convex hull of the point set is a triangulation.

The algorithm described in this paper can construct the convex hull of any
finite set of points which are given by their Cartesian coordinates. However,
in the case of a set of voxels, consisting of a few connected components, the
algorithm may be essentially accelerated. The idea of this acceleration is based

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 176–196, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Convex Hulls in a 3-Dimensional Space 177

on the fact, that the convex hull of the whole set is equal to the convex hull
of a relatively small subset of ”distinguished” voxels or of their ”distinguished”
vertices.

Let us present some basic definitions necessary for the following sections.
The description of the algorithm and the proof of its correctness are based

on the theory of abstract cell complexes (AC complexes) [Kov89]. To remind the
reader some basic notions of this theory we have gathered the most important
definitions in the Appendix.

Let V be a given set of voxels in a Cartesian three-dimensional space. The
voxels of V are specified by their coordinates. In particular the set V may be
specified by labeling some elements of a three-dimensional array of bytes or bits.
Our aim is to construct the convex hull of the set V while remaining in the frame
of abstract cell complexes without using notions from the Euclidean geometry.
We consider the convex hull as an abstract polyhedron according to the following
definition:

Definition AP: An abstract polyhedron is a three-dimensional AC complex
containing a single three-dimensional cell whose boundary is a two-dimensional
combinatorial manifold without boundary (see Appendix). The two-dimensional
cells (2-cells) of the polyhedron are its faces, the one-dimensional cells (1-cells)
are its edges and the zero-dimensional cells (0-cells) are its vertices or
points.

An abstract polyhedron is called a geometric one if coordinates are assigned
to each of its vertices. We shall call an abstract geometric polyhedron an AG-
polyhedron. Each face of an AG-polyhedron PG must be planar. This means that
the coordinates of all 0-cells belonging to the boundary of a face Fi of PG must
satisfy a linear equation Hi(x, y, z) = 0. If these coordinates are coordinates of
some cells of a Cartesian AC complex A then we say that the polyhedron PG is
embedded into A or that A contains the polyhedron PG.

Definition CP: An AG-polyhedron PG is called convex if the coordinates of
each vertex of PG satisfy all the linear inequalities Hi(x, y, z) ≤ 0 corresponding
to all faces Fi of PG. The coefficients of the linear form Hi(x, y, z) are the
components of the outer normal of Fi.

A cell c of the complex A containing the convex AG-polyhedron PG is said
to lie in PG if the coordinates of c satisfy all the inequalities Hi(x, y, z) ≤ 0 of
all faces Fi of PG.

Definition CH: The convex hull of a finite set S of points is the smallest
convex AG-polyhedron PG containing all points of the set S. ”Smallest” means
that there exists no convex AG-polyhedron different from PG which contains all
points of S and whose all vertices are in PG.

The aim of this paper is to describe the algorithm which constructs the
convex hull of an arbitrary set of voxels given by their Cartesian coordinates in
a three-dimensional space.

178 V. Kovalevsky and H. Schulz

2 The Algorithm

In this section we describe the algorithm of constructing the convex hull of a
set V of voxels given as a three-dimensional array in which the voxels of V
are labeled. As already mentioned in the Introduction, the algorithm may be
essentially accelerated if the set V consists of a few connected components. We
shall demonstrate in the next section that the convex hull of the whole set V is
equal to the convex hull of a relatively small subset of the so called local corners.
It is also possible, if desired, to construct the convex hull of the vertices of the
voxels, while considering each voxel as a small cube. The latter convex hull is
slightly greater than the first: it contains the cubes completely. From this point
of view the first convex hull is that of the centers of voxels. Fig. 1 illustrates the
idea of these two convex hulls for the 2D case.

a b

Fig. 1. The convex hull of pixels (a) and that of their vertices (b)

Our algorithm for constructing the convex hull consists of two parts: in the
first part a subset of vectors (pointing either to voxels or to the vertices) must be
found which are candidates for the vertices of the convex hull. The coordinates
of the candidates are saved in an array L. The second part constructs the convex
hull of the set L.

A vector v is obviously not suitable as a candidate for a vertex if in the given
set V there are two other vectors v1 and v2 such that v lies on the straight line
segment connecting v1 and v2, i.e. the vector v is a convex combination of v1
and v2. A vector v is also not suitable as a candidate for a vertex if it may be
represented as a convex combination of more than two, say of n voxels vi. Then
the vector v may be represented as

v =
∑

αi · vi with 0 ≤ αi ≤ 1 and
∑

αi = 1; i = 1, 2, ..., n (1)

It is hardly reasonable to test each vector of V whether it is a convex combina-
tion of some other vectors, since this problem is equivalent to that of constructing

Convex Hulls in a 3-Dimensional Space 179

the convex hull. Really, if one knows the convex hull of V , then one also knows
the vertices of the convex hull. The vertices are the only vectors which are no
convex combinations of other vectors.

However, it is reasonable to test each vector, whether it is a convex com-
bination of vectors in its neighborhood. We call a vector which is no convex
combination of vectors in its neighborhood a local corner of V . The greater the
tested neighborhood the less the number of local corners found. Thus, for exam-
ple, a digital ball B of diameter 32 contains 17077 voxels. The number of local
corners of B is 776 when testing 6 neighbors and 360 when testing 26 neighbors
of each voxel. We have decided to test 26 neighbors.

When testing a vector v with coordinates (x, y, z) the procedure calculates
the coordinates of 13 pairs of vectors from the neighborhood of v. The vectors v1
and v2 of each pair are symmetric with respect to v, e.g. v1 = (x−1, y−1, z−1)
and v2 = (x + 1, y + 1, z + 1). If both vectors v1 and v2 are in the set V then
the vector v is not a local corner and will be dropped. Only if in each of the 13
pairs the number of vectors belonging to V is 0 or 1, the vector v is recognized
as a local corner. The procedure saves the coordinates of each local corner in an
array L.

We prefer to consider the problem of recognizing the local corners from the
point of view of AC complexes. This gives us the possibility to uniformly examine
two different problems: that of constructing the convex hull either of a set of
voxels or of the vertices of the voxels.

From the point of view of AC complexes the given set V is the set of three-
dimensional cells (3-cells) of a subcomplex M of a three-dimensional Cartesian
AC complex A. The complex A represents the topological space in which our
procedure is acting. It is reasonable to accept that M is homogeneously three-
dimensional (see the Appendix). This means that each cell of M whose dimension
is less than 3 is incident to at least one 3-cell of M . With other words, M has
no ”loose” cells of dimensions less than 3.

Under these assumptions our problem consists in constructing the convex
hull either of the interior Int(M) or of the closure Cl(M) of M . The first case
corresponds to the convex hull of the set of voxels and the second case to that
of the vertices of voxels.

The development of algorithms in digital geometry, to which our problem ob-
viously belongs, and the proof of their correctness becomes easier and more de-
scriptive when using topological coordinates (see Appendix and [Kov01]) rather
than standard ones. Using topological coordinates enables one to recognize the
dimension of a cell from its coordinates, to easily calculate the coordinates of
cells incident to a given cell etc. However, the representation of a Cartesian AC
complex in a topological raster [Kov01] demands 8 times more memory space
than its representation in a standard raster, where only the voxels get mem-
ory elements assigned. The best way to proceed consists in using the standard
raster in the computer program, while thinking about the problem in terms of
a topological raster.

180 V. Kovalevsky and H. Schulz

Consider now the problem of finding the 0-cells which are local corners of the
closure Cl(M). When considering only 6 neighbors of a 0-cell then it is easily
seen that a 0-cell is a local corner iff it is incident to a single 3-cell of M.

Fig. 2. A 0-cell is a local corner iff it bounds a single 3-cell of M

Really, consider Fig. 2. Here we represent the 0-cells by small dark disks, the
1-cells by line segments, the 2-cells by squares and the 3-cells by cubes. There
is only one 3-cell in Fig. 2 and it is in M . If one of the three 1-cells shown in
Fig. 2 by dashed lines would be in M then its end points would be also in M
since M is closed. In such a case the 0-cell P would be a convex combination of
the end points of two 1-cells and thus it would be not a local corner. To each
1-cell of M there must be an incident 3-cell of M since M is homogeneously
three-dimensional. Thus in this case there must be at least two 3-cells incident
to P . Inversely, if there are more than one 3-cell of M incident to P , then the
0-cells incident to them are also in M , since M is closed. Then there is at least
one pair of 0-cells of M such that P is a convex combination of the cells of the
pair.

Thus testing the 6-neighborhood of P is rather simple in the topological raster
where both the 0-cells and the 3-cells are represented: it is sufficient to test the
eight 3-cells incident to P and to count those which are in M . The procedure
testing 26 neighbors of P is more complicated.

We have found another solution which needs no topological raster and uses
the same procedure which we have described above as the procedure for testing
26 neighbors of a vector. The procedure uses the possibility to interpret the el-
ements of a standard raster as the 0-cells rather than the 3-cells. It is possible
to uniquely assign each 0-cell P (except some 0-cells lying in the border of the
space) to a 3-cell, e.g. to the farthest one from the coordinate origin among those
incident to P . This idea is illustrated by the arrows in the 2D example of Fig.
3a. Thus the given set of voxels may be converted into the set of vertices of
these voxels. As the result of the conversion of the given set V some additional
elements of the standard raster at the boundary parts of V most remote from
the origin become labeled (black squares in the example of Fig. 3b). After this

Convex Hulls in a 3-Dimensional Space 181

conversion the procedure of testing 26 neighbors of each element of the raster
may be applied without any change.

Fig. 3. Converting the coordinates of pixels (gray squares) into those of their vertices;
the assignment (a) and the additionally labeled elements (black squares in b)

The second part of our algorithm is that of constructing the convex hull of
the set L of the local corners found by the first part.

To build the convex hull of L we first create a simple convex polyhedron
spanning four arbitrary non-coplanar local corners of L. It is a tetrahedron. It
will be extended step by step until it becomes the convex hull of L. We call it
the current polyhedron CP .

The surface of the current polyhedron is represented with the data structure
called the two-dimensional cell list [Kov89] which is now generalized to repre-
sent complexes in which a 0-cell may be incident to any number of 1-cells. In
the original version the list was designed for block complexes [Kov89, Kov01]
embedded into a Cartesian complex, where a 0-cell is incident to at most four
1-cells.

The cell list of a two-dimensional complex consists in the general case of three
sublists. The kth sublist contains all k-dimensional cells (k-cells), k = 0, 1, 2. The
0-cells are the vertices, the 1-cells are the edges, the 2-cells are the faces of the
polyhedron. Each entry in the kth sublist corresponds to a k-cell ck. The entry
contains indices of all cells incident to ck. The entry of a 0-cell contains also its
coordinates.

The contents of the cell list is illustrated in Tables 1 to 3 for the case of the
surface of a tetrahedron (Fig. 4).

Let us explain the contents of the cell list. The surface is considered as a
two-dimensional non-Cartesian complex consisting of vertices (0-cells), edges (1-
cells) and faces (2-cells). The sublist of the vertices (Table 1) contains in the first
column the identifiers of the vertices, which are simultaneously their indices in
the corresponding array.

182 V. Kovalevsky and H. Schulz

Fig. 4. The tetrahedron and its cells

Table 1. Vertices of the tetrahedron

Vertex Coordinates Edges
1 (x1, y1, z1) -1, 3, -5
2 (x2, y2, z2) 1, -2, 4
3 (x3, y3, z3) 2, -3, 6
4 (x4, y4, z4) -4, 5, -6

Table 2. Edges of the tetrahedron

Edge StartP EndP LeftF RightF
1 1 2 1 2
2 2 3 1 3
3 3 1 1 4
4 4 2 2 3
5 1 4 2 4
6 4 3 3 4

Table 3. Faces of the tetrahedron

Face n Pairs (P, L)
1 3 (1, 1), (2, 2), (3, 3)
2 3 (1, 5), (4, 4), (2, −1)
3 3 (2, −4), (4, 6), (3, −2)
4 3 (1, −3), (3, −6), (4, −5)

The second column contains three integers (xi, yi, zi) for each vertex. These
are the coordinates of the vertex. The third column contains in each row the
indices of all edges incident to the corresponding vertex. The indices of the edges

Convex Hulls in a 3-Dimensional Space 183

are signed: the minus sign denotes that the oriented edge points away from the
vertex while the plus sign corresponds to an edge pointing to the vertex.

The second sublist (Table 2) is that of edges. Its first column contains the
indices. The subsequent columns contain the indices of the starting vertex, of
the end vertex, of the left and of the right face, when looking from outside of
the polyhedron.

The third sublist (Table 3) is that of faces. The topological relation of a face
to other cells is defined by the boundary of the face. The surface of a convex
polyhedron is a combinatorial manifold. Therefore the boundary of each face is
a 1-manifold, i.e. a simple closed polygon. It is a closed sequence of pairs each
of which contains a vertex and an edge. The sequence of pairs stays in a linked
list whose content is shown in the third column. The second column contains
the number of pairs, which may be different for different faces.

This version of the cell list is redundant because it contains for a pair of two
incident cells ck and cm both the reference from ck to cm and from cm to ck.
Therefore, for example, the sublist of edges may be computed starting from the
sublist of faces. Also the content of the third column of Table 1 may be computed
from that data. The redundancy makes the calculation of the convex hull faster
because cells incident to each other may be found immediately, without a search.
When the calculation of the convex hull is ready, the redundancy of the cell list
can be eliminated to save memory space. To exactly reconstruct a convex object
from the cell list of its convex hull it suffices to have the coordinates of the vertices
and the sublist of the faces where the indices of the edges may be omitted. This
is the economical encoding of the convex hull.

The next step in constructing the convex hull is to extend the current polyhe-
dron while adding more and more local corners, some of which become vertices
of the convex hull. When the list of the local corners is exhausted the current
polyhedron becomes the convex hull of M . The extension procedure is based on
the notion of visibility of faces which is defined as follows.

Definition VI. The face F of a convex polyhedron is visible from a point P ,
if P lies in the outer open half-space bounded by the face F , i.e. if the scalar
product (N,W) of the outer normal N of the face F and the vector W pointing
from a point Q in F to P , is positive. If the scalar product is negative then F is
said to be invisible from P . If the scalar product is equal to zero then F is said
to be coplanar with P .

It should be mentioned that the choice of a point Q in F as the starting point
of W does not influence the value of the scalar product, since all vectors lying
in F are orthogonal to N and therefore their scalar product with N is zero.

To extend the current polyhedron the algorithm takes one local corner after
another. For any local corner P it computes the visibility of the faces of the
polyhedron from P . Consider first the simpler case when there are no faces of
the current polyhedron, which are coplanar with P . The algorithm labels each
face of the current polyhedron as being visible from P or not. If the set of visible

184 V. Kovalevsky and H. Schulz

faces is empty, then the point P is located inside the polyhedron and may be
discarded. If one or more faces are visible, then the polyhedron is extended by
the point P and some new faces. Each new face connects P with the boundary
of the set of visible faces. A new face is a triangle having P as its vertex and one
of the edges of the said boundary as its base. All triangles are included into the
cell list of the current polyhedron while all visible faces are removed. Also each
edge incident to two visible faces and each vertex incident only to visible faces
is removed.

Fig. 5. The current polyhedron (a cube) being extended by the vertex P

In Fig. 5 the boundary of the visible subset is shown by bold lines (solid or
dashed). The edges shown by dotted lines must be removed together with the
three faces visible from P . The algorithm repeats this procedure for all local
corners.

Consider now the problem of coplanar faces. In principle it is possible to treat
a face coplanar with the new local corner P in the same way as either a visible
or an invisible face. Both variants have its advantages and drawbacks.

Fig. 6. Treating coplanar faces as visible ones

So when considering faces coplanar with a new vertex P as visible (Fig. 6)
then unnecessary many new triangles are constructed some of which are coplanar
with each other. They must be merged together later on, and this makes the
procedure slower.

When, however, treating a coplanar face as invisible (Fig. 7a) then the number
of new faces being constructed may be made smaller: it is possible to connect P
only with the end points P1 and P2 of the common boundary of the coplanar face
Q2 and of the visible region, rather than with all points of the common boundary.
However, in this case some of the faces are no triangles. Their common boundary
may consist of more than one edge. The procedure of merging such faces proved

Convex Hulls in a 3-Dimensional Space 185

Fig. 7. Treating coplanar faces as invisible; coplanar quadrangles Q2 and Q3 (a) and
collinear edges L1 and L2 (b)

to be much more complicated than that of merging triangles. An example is
shown in Fig. 7a: the point P is coplanar with the square Q2 and with the new
quadrangle Q3. Their common boundary consists of two edges.

When considering coplanar faces as invisible ones some collinear edges may
occur (L1 and L2 in Fig. 7b). For merging them to a single edge some additional
means are necessary.

The best solution seams to consist in considering coplanar faces neither as
visible nor as invisible. In this case it is possible to extend a coplanar face towards
the point P by a procedure similar to the construction of a two-dimensional
convex hull (Fig. 8).

Fig. 8. Constructing a 2D convex hull in the case of a coplanar face: the initial (a) and
the resulting (b) face

The number of the new faces being constructed is small. However, the pro-
cedure of extending a face towards a coplanar point proved to be still more
complicated than that of merging two polygons with more than one common
edge. Also some collinear edges may occur in this case (the edges E and (P2, P)
in Fig. 8a). The extension becomes especially complicated in the case when the
point P lies on the crossing line of the planes of two adjacent faces (Fig. 6b).
Then both of these faces are coplanar with P .

After having tested all three variants we came to the decision that the best
solution consists in treating coplanar faces as visible. In this case the program

186 V. Kovalevsky and H. Schulz

creates sometimes many coplanar triangles which must be merged together. But
the procedure of merging triangles is rather simple and fast.

It should be noticed here that merging triangles is not always necessary: many
programs of computer graphics work with sets of triangles. Our algorithm gives
the possibility to represent the surface of the convex polyhedron as a simplicial
complex whose all faces are triangles. To achieve this it suffices to switch off the
subroutine of merging. For example, the convex hull of a digital ball of diameter
32 contains 1404 triangles. After merging coplanar triangles the hull contains
only 266 faces.

The procedure of adding new faces to the current polyhedron ends after
having processed all local corners.

3 Proof of the Correctness

The described algorithm of constructing the convex hull gets a set V of voxels as
input and generates an AG-polyhedron K defined by the cell list of its surface.
In this section we prove the correctness of the algorithm (Theorem PL). We need
the following lemmas LZ, CH and BE.

Lemma LZ. Let V be a set of three-dimensional vectors v = (vx, vy, vz) (point-
ing to voxels or to vertices of voxels). Let T be a subset of V such that all vectors
of T satisfy some given linear inequality, i.e. the inequality cuts T from V . Then
T contains at least one vector which is no convex combination of vectors of V .

Proof. Let H(x, y, z) ≥ 0 be the said inequality. Let us find all vectors of T
having H(x, y, z) = max. We denote by TH ⊂ T the subset of all vectors
c = (cx, cy, cz) having the maximum value of H:

c ∈ TH −→ H(cx, cy, cz) ≥ H(vx, vy, vz) for each vector v ∈ V. (2)

The vector c satisfying (2) can only be a convex combination of vectors from
TH since H is linear and its value for a convex combination

c = α · v1 + (1− α) · v2; with 0 < α < 1; v1,v2 ∈ V. (3)

with other vectors would be less than the maximum value of H. If the subset
TH contains a single vector c then we are done: c is no convex combination of
vectors of V . If, however, TH contains more than one vector, then consider the
subset TX ⊂ TH of vectors having the maximum value of the coordinate X.
If there is a single such vector then we are done. If not, then all vectors of TX
have the same coordinate x = xmax and we consider the subset TY ⊂ TX of
vectors having the maximum value of the coordinate Y . This process ends at
the latest with the subset TZ ⊂ TY of vectors having the maximum value of
the coordinate Z since there exits only one vector with x = xmax, y = ymax,
z = zmax. This vector is no convex combination of vectors of V . ��

Convex Hulls in a 3-Dimensional Space 187

Lemma CH. Let V be a set of three-dimensional vectors and K an AG-
polyhedron satisfying the following three conditions:

1. K is convex;
2. K contains all local corners of V ;
3. each vertex of K is identical with one of the local corners of V .

Then K is the convex hull of V according to the Definition CH given in the
Introduction.

Proof. First of all let us show that K contains all vectors of V . Suppose there
is a subset T ⊂ V which is not contained in K. This means that the vectors of
T do not satisfy at least one of the linear inequalities corresponding to the faces
of K. According to Lemma LZ the subset T contains at least one vector which
is not a convex combination of vectors of V and thus it is a local corner. This
contradicts the second condition of the Lemma. Therefore there is no subset
T ⊂ V outside of K, i.e. K contains all vectors of V .

The polyhedron K is convex and contains all vectors of the set V . To fulfill
all conditions of the Definition CH it remains to show that K is the smallest
such polyhedron. With other words, we must show that each convex polyhedron
K ′ different from K which is contained in K does not fulfill the conditions of
Lemma CH.

If the convex polyhedron K ′ is contained in K and is different from K then at
least one vertex of K ′ lies in the interior of K. Let us construct the polyhedron
K ′ at first by moving a vertex P of K by a small amount into its interior. Then
the original vertex P does not belong to K ′. According to the conditions of
Lemma CH the vertex P is a local corner of V . Thus there is a local corner of V
which is not in K ′. Therefore K ′ does not meet the conditions of Lemma CH.

Each other transformation of K to some polyhedron lying inside of K may
be represented as a sequence of movements of vertices of K into its interior. It
follows that such a polyhedron does not contain some vertices of K and hence
is not in accordance with the conditions of Lemma CH. ��

Lemma BE. If an edge E of a polyhedron K lies between a face Fv visible from
a point P and another face Fn which is not visible from P then the polyhedron
K lies completely in the closed half-space bounded by the plane (P,E) going
through P and E.

This means that the coordinates of all vertices of K satisfy the linear in-
equality H(x, y, z) ≤ 0 while the linear form H(x, y, z) takes the value zero at
the point P and at the endpoints of E. The coefficients of H(x, y, z) are the
coordinates of the normal of the plane (P,E), which points to the outside of K.

Proof. If the face Fv is visible from P then the outer normal Nv of Fv and the
line segment (Q,P) compose an acute angle αv < 90◦ while Q is an arbitrary
point in E (Fig. 9). Conversely, the outer normal Nn of the invisible face Fn

and the line segment (Q,P) compose an obtuse angle αn > 90◦. The angle βv

between the outer normal NH to the plane (P,E) and Nv is equal to 90◦ − αv

188 V. Kovalevsky and H. Schulz

Fig. 9. A section through the polyhedron K and the plane (Q, P)

and is acute. The angle βn between NH and Nn is equal to βn = αn − 90◦

and is also acute. Consequently the normal NH to the plane (P,E) is a linear
combination of the normals Nv and Nn with positive coefficients (proportional
to cosβv and to cosβn):

NH = a ·Nv + b ·Nn; a, b > 0 (4)

The vector W pointing from Q to an arbitrary point in the polyhedron K has
a non-positive scalar product with both Nv and with Nn because K is convex
and all its inner point lie on the inner side of each of its faces. According to
(4) the scalar product of NH with the vector W for an arbitrary point of K is
non-positive. Thus all points of K lie in the closed half-space bounded by the
plane (P,E) which proves the Lemma. ��

An angle between two vectors whose end points are cells of a 3D Cartesian
AC complex is specified by the scalar and vector product of these vectors.

Theorem PL. The algorithm described in the previous Section constructs the
convex hull of the given set of voxels or of vertices of voxels.

Proof. We consider the coordinates of voxels or of vertices of voxels as three-
dimensional vectors composing the set V . At its first stage the algorithm saves
the local corners of V . Only these vectors are used as candidates for the ver-
tices of the polyhedron being constructed. Thus the third condition of Lemma
CH is fulfilled. To fulfill the remaining two conditions it remains to show that
the constructed polyhedron is convex and that it contains all local corners
of V .

The algorithm starts with a polyhedron Ki, i = 0; which is a tetrahedron.
It is convex. Then the algorithm takes the next not used local corner P and
defines the set of faces which are visible from P (Definition VI in the pre-
vious Section). The boundary of the set of visible faces consists of vertices
and edges while each edge bounds exactly one visible face. The algorithm con-
structs a new face for each edge of the boundary. The face spans the edge and
the point P . The visible faces become deleted. According to Lemma BE the

Convex Hulls in a 3-Dimensional Space 189

Table 4. Comparison of the memory requirements of the cell list and of the triangu-
lation for the example in Fig. 10

faces vertices integers to save
MC-triangulation 3560 ∼1780 16020
convex hull 63 60 495

Table 5. Experimentally acquired values for half-balls of various diameters

MC-triangulation convex hull
integers integers inegers in integersdiameter triangles
to save per triangle

faces
cell list per face

8 504 2268 4.5 30 324 10.80
10 760 3420 4.5 62 454 7.32
12 1072 4824 4.5 50 442 8.84
14 1416 6372 4.5 30 426 14.20
16 1840 8280 4.5 118 1010 8.56
18 2296 10332 4.5 142 1070 7.53
20 2784 12528 4.5 94 938 9.98
22 3488 15696 4.5 118 1142 9.68

polyhedron Ki lies completely in the closed half-space defined by the plane of
the new face F . It also lies in the closed half-space corresponding to the in-
ner side of each old not deleted face. Thus the new polyhedron is an intersec-
tion of half-spaces and thus it is convex. This is true for any new added local
corner P .

Let us show now that K contains all local corners of V . The algorithm pro-
cesses all local corners of V . Some of them turn out to lie in the current poly-
hedron. They are not used for the construction of K, but they are nevertheless
already contained in K. Other local corners are put into K as their vertices and
thus they also become contained in K. All local corners being in K remain in
K since the modified polyhedron contains the old one. Thus all local corners are
contained in K, all three conditions of Lemma CH are fulfilled and therefore K
is the convex hull of V .

��

4 Results of Computer Experiments

We have implemented and tested the described algorithm of constructing the
convex hull of a set of voxels or of vertices of voxels. To make a numerical
comparison of the memory efficiency we have tested some examples with our
algorithm and with the well known Marching Cubes algorithm [Lor87]. It should
be mentioned here that we only compare the encoding efficiency of the surface,
because the Marching Cubes algotithm does not produce the convex hull of an
object.

190 V. Kovalevsky and H. Schulz

Fig. 10. Example ”future car”. Top left: The voxel object. It has 3571 voxels and 1782
faces. Top right: Convex hull of this object. Bottom: Triangulation with the Marching
Cubes method

We have compared the number of integer values necessary to save a non-
redundant cell list with that necessary to save the triangulation of the same
object. For the Marching Cubes triangulation method (MC-triangulation) we
have assumed the following: one needs to save three coordinates for each vertex
and three vertex indices for each triangle.

Since the number NT of triangles is nearly twice the number NV of the
vertices, we must save on the average

sizetr = 3 ·NV + 3 ·NT = (3/2 + 3) ·NT (5)

integers, i.e. about 4.5 integers for each triangle.
As mentioned above in the Section ”The Algorithm” the non-redundant cell

list of the convex hull contains the coordinates of the vertices and the sublist of
the faces where the indices of the edges are omitted. The later list contains for
each face the sequence of the vertex indices in its boundary. In our experiments

Convex Hulls in a 3-Dimensional Space 191

0

2000

4000

6000

8000

10000

12000

14000

16000

8 10 12 14 16 18 20 22

Marching Cubes
Convex Hull

Fig. 11. Number of integers to be saved for half-balls with diameters from 8 to 22
voxels

each face have had on the average about 5 vertices in its boundary. Thus the
memory amount necessary to store the non-redundant cell list is approximately
equal to

sizecl = 3 ·NV + 5 ·NF ; (6)

where NV and NF are the numbers of vertices and faces correspondingly.
A simple example is shown in Fig. 10: the object has 3571 voxels and 1782

faces. The convex hull contains only 63 faces.
The following values for the memory requirements have been computed:
The same investigation was made for half-balls with diameters from 8 to 22

voxels (Fig. 12).
The following diagram shows the number of integers necessary to save either

the results of the triangulation or the cell list.
As it can be seen from Fig. 12, the convex hull preserves the symmetry of

digital objects. The polygons composing the surface are all symmetric. This is an
important property of the convex hull, besides its property to be economic, and
it is its great advantage as compared with other means representing surfaces
of digital objects, e.g. the triangulation or the subdivision into digital plane
segments [Kle01].

5 Conclusion

In this paper we present a new algorithm of computing the convex hull of a
three-dimensional digitized object represented as a set of voxels. The computed
convex hull is an abstract polyhedron which is a particular case of an abstract
cell complex. The surface of the polyhedron is encoded by the data structure
known as the two-dimensional cell list. This data structure is well suited both

192 V. Kovalevsky and H. Schulz

to handle the intermediate data during the computation of the convex hull as
well as to economically encode the resulting hull. The cell list also provides the
possibility to exactly reconstruct the original digitized object. The correctness
of the presented algorithm has been proved. Numerous computer experiments
demonstrate the memory efficiency of the cell list for convex objects as compared
with the well known triangulation method.

Fig. 12. Convex hulls of the half-ball examples with diameters from 8 to 22 voxels

Convex Hulls in a 3-Dimensional Space 193

References

[Ber00] de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry - Algorithms and Applications. Springer-Verlag. 2000.

[Cla92] Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incre-
mental constructions. Comp. Geom.: Theory and Applications, pages 185-
221, 1993. Preliminary version in Proc. Symp. Theor. Aspects of Comp. Sci.,
1992.

[Kle01] Klette, R., Sun, H.J.: A Global Surface Area Estimation Algorithm for Digital
Regular Solids. University of Auckland, CITR-TR-69. 2001.

[Kov89] Kovalevsky, V. A.: Finite Topology as Applied to Image Analysis. Computer
Vision, Graphics and Image Processing, Vol.45, No.2, pp.141-161. 1989.

[Kov93] Kovalevsky, V. A.: Digital Geometry based on the Topology of Abstract
Cell Complexes. In Proceedings of the Third International Colloquium ”Dis-
crete Geometry for Computer Imagery”. University of Strasbourg. pp.259-284.
1993.

[Kov01] Kovalevsky, V. A.: Algorithms and Data Structures for Computer Topology.
In: Bertrand, G., Imiya, A., Klette, R. (Eds): Digital and Image Geome-
try. Lecture Notes in Computer Science, Vol.2243, pp.37-58. Springer-Verlag.
2001.

[Kov02] Kovalevsky, V.A.: Multidimensional Cell Lists for Investigating 3-Manifolds.
Discrete Applied Mathematics, Vol. 125, Issue 1, pp.25-43. 2002.

[Lor87] Lorensen, W.E., Cline, H.E.: Marching Cubes: A High-Resolution 3D Sur-
face Construction Algorithm. Computer Graphics, Vol. 21, No. 4, pp.163-169.
1987.

[Pre85] Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction.
Springer-Verlag. 1985.

A Abstract Cell Complexes

In this section we want to remind the reader the basic definitions of the theory
of abstract cell complexes [Kov89, Kov93].

Definition ACC: An abstract cell complex (AC complex) C = (E,B, dim) is
a set E of abstract elements called cells provided with an antisymmetric, irreflex-
ive, and transitive binary relation B ⊂ E × E called the bounding
relation, and with a dimension function dim : E −→ I from E into the set
I of non-negative integers such that dim(e′) < dim(e′′) for all pairs
(e′, e′′) ∈ B.

The bounding relation B is a partial order in E. The bounding relation is
denoted by e′ < e′′ which means that the cell e′ bounds the cell e′′.

If a cell e′ bounds another cell e′′ then e′ is called a side of e′′. The sides of
an abstract cell e′′ are not parts of e′′. The intersection of two distinct abstract
cells is always empty, which is different from Euclidean complexes.

194 V. Kovalevsky and H. Schulz

If the dimension dim(e′) of a cell e′ is equal to d then e′ is called d-dimensional
cell or a d-cell. An AC complex is called k-dimensional or a k-complex if the
dimensions of all its cells are less or equal to k. Cells of the highest dimension k
in an k-complex are called ground cells.

Definition SC: A subcomplex S = (E′, B′, dim′) of a given AC complex C =
(E,B, dim) is an AC complex whose set E′ is a subset of E and the relation B′

is an intersection of B with E′ ×E′. The dimension dim′ is equal to dim for all
cells of E′. A subcomplex of a given complex is uniquely defined by the subset
E′. Therefore it is usual to say ”subset” instead of ”subcomplex”.

Definition OP: A subset OS of cells of a subcomplex S of an AC complex C
is called open in S if OS contains each cell of S which is bounded by a cell of
OS.

Definition SON: The smallest subset of a set S which contains a given cell
c ∈ S and is open in S is called smallest neighborhood of c relative to S and is
denoted by SON(c, S).

Definition CS: A subset CS of cells of an AC complex C is called closed if CS
contains all cells of C bounding cells of CS.

Definition CL: The smallest subset of a set S which contains a given subset
M ⊂ S and is closed in S is called the closure of M relative to S and is denoted
by Cl(M,S).

Definition IN: The greatest subset of a set S which is contained in a given
subset M ⊂ S and is open in S is called the interior of M relative to S and is
denoted by Int(M,S).

Definition BD: The boundary ∂S of an n-dimensional subcomplex S of an
n-dimensional AC complex C is the closure of the set of all (n-1)-cells of C each
of which bounds exactly one n-cell of S.

Definition MA: An n-dimensional combinatorial manifold (n-manifold) with-
out boundary is an n-dimensional complex M in which the SON(P,M) of each
0-cell P is homeomorphic to an open n-ball with the cell P lying in the interior
of SON(P,M). In a manifold with boundary the SON(P,M) of some 0-cell P
may be homeomorphic to a ”half-ball”, i.e. the 0-cell P lies in the boundary of
SON(P,M) rather than in its interior.

Definition IC: Two cells e′ and e′′ of an AC complex C are called incident to
each other in C iff either (e′, e′′) ∈ B, or (e′′, e′) ∈ B, or e′ = e′′. The incidence
relation is symmetric, reflexive and non-transitive.

Convex Hulls in a 3-Dimensional Space 195

Definition CN: Two cells e′ and e′′ of an AC complex C are called connected
to each other in C iff either e′ is incident to e′′ or there exists a cell c ∈ C
which is connected to both e′ and e′′. Because of this recursive definition the
connectedness relation is the transitive hull of the incidence relation.

Definition HN: An n-dimensional AC complex C is called homogeneously n-
dimensional if every k-dimensional cell of C with k < n is incident to at least
one n-cell of C.

Definition RG: A region is an open connected subset of the space.

Definition SO: A region R of an n-dimensional AC complex C is called solid
if every cell c ∈ C which is not in R is incident to an n-cell of the complement
C −R.

Definition DHS: A digital half-space is a solid region of a three-dimensional
Cartesian AC complex containing all voxels whose coordinates satisfy a linear
inequality.

Definition TL: A connected one-dimensional complex in which all cells, ex-
cept two of them, are incident to exactly two other cells is called a topological
line.

Definition CA: By assigning subsequent integer numbers to the cells of a topo-
logical line L in such a way that a cell with the number x is incident to cells
having the numbers x − 1 and x + 1, one can define coordinates in L which is
a one-dimensional space. AC complexes of greater dimensions may be defined
as Cartesian products of such one-dimensional AC complexes. A product AC
complex is called a Cartesian complex.

Definition TR: An n-dimensional array whose each element is assigned to a
cell of an n-dimensional Cartesian AC complex while the topological coordinates
of the cell serve as the index of the corresponding element of the array is called
the topological raster.

In a topological raster it is possible to access each cell of any dimension and
save a label of any cell. By means of topological coordinates it is easy to find all
cells incident to a given cell without a search. It is also possible to specify the
dimension of a cell by means of its topological coordinates.

Definition SG: A standard raster is an n-dimensional array whose elements
represent only the ground cells (i.e. the n-dimensional cells) of an n-dimensional
complex, e.g. only the pixels in the 2D case or only the voxels in the 3D
case.

A cell c of some lower dimension gets in the standard raster the same coordi-
nates as the ground cell incident to c and lying farther away from the origin of

196 V. Kovalevsky and H. Schulz

the coordinate system. The dimension of c cannot be specified by means of its
coordinates, it must be specified explicitly. To save a label of a cell of some lower
dimension (if necessary) some special means are necessary, e.g. it is possible to
assign different bits of a byte in the standard raster to cells of different dimension
having all the same coordinates.

A Near-linear Time Algorithm for Binarization
of Fingerprint Images Using Distance Transform

Xuefeng Liang, Arijit Bishnu, and Tetsuo Asano

JAIST, 1-1, Asahidai, Tatsunokuchi, 9231292, Japan
{xliang, arijit, t-asano}@jaist.ac.jp

Abstract. Automatic Fingerprint Identification Systems (AFIS) have
various applications to biometric authentication, forensic decision, and
many other areas. Fingerprints are useful for biometric purposes be-
cause of their well known properties of distinctiveness and persistence
over time. Fingerprint images are characterized by alternating spatial
distribution of gray-level intensity values of ridges and ravines/valleys of
almost equal width. Most of the fingerprint matching techniques require
extraction of minutiae that are the terminations and bifurcations of the
ridge lines in a fingerprint image. Crucial to this step, is either detect-
ing ridges from the gray-level image or binarizing the image and then
extracting the minutiae. In this work, we focus on binarization of finger-
print images using linear time euclidean distance transform algorithms.
We exploit the property of almost equal widths of ridges and valleys for
binarization. Computing the width of arbitrary shapes is a non-trivial
task. So, we estimate width using distance transform and provide an
O(N2 log M) time algorithm for binarization where M is the number
of gray-level intensity values in the image and the image dimension is
N ×N . With M for all purposes being a constant, the algorithm runs in
near-linear time in the number of pixels in the image.

1 Introduction

Automatic fingerprint identification systems (AFIS) provide widely used bio-
metric techniques for personal identification. Fingerprints have the properties
of distinctiveness or individuality, and the fingerprints of a particular person
remains almost the same (persistence) over time. These properties make finger-
prints suitable for biometric uses. AFISs are usually based on minutiae matching
[9, 14, 17, 18]. Minutiae, or Galton’s characteristics [11] are local discontinuities
in terms of terminations and bifurcations of the ridge flow patterns that consti-
tute a fingerprint. These two types of minutiae have been considered by Federal
Bureau of Investigation for identification purposes [29]. A detailed discussion
on all the aspects of personal identification using fingerprint as an important
biometric technique can be found in Jain et al. [17, 19]. AFIS based on minutiae
matching involves different stages (see Figure 1 for an illustration):

1. fingerprint image acquisition;
2. preprocessing of the fingerprint image;

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 197–208, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

198 X. Liang, A. Bishnu, and T. Asano

3. feature extraction (e.g. minutiae) from the image;
4. matching of fingerprint images for identification.

The preprocessing phase is known to consume almost 90-95% of the total time
of fingerprint identification and verification [3]. That is the reason a considerable
amount of research has been focussed on this area.

Fingerprint image
 acquisition

Fingerprint image
 preprocessing

Enhancement

Ridge Extraction

 Feature extraction
e.g. minutiae extraction,
fingerprint classification

Matching Reference fingerprint
 database

Final result

 Segmentation
 and/or
 binarization

Fig. 1. A flowchart showing different phases of fingerprint analysis. The highlighted
module shows the area of our work

Our work proposed in this paper involves binarization of fingerprint images
that is to be preceded by an enhancement step. So, below we discuss briefly
enhancement. Also, we briefly discuss and review segmentation and binarization
methods applied to fingerprint images.

1.1 Enhancement of Fingerprint Images

Fingerprint images require specialised enhancement techniques owing to their
inherent characteristics like high noise content, particular structural content of
alternating ridges and valleys. Conventional image processing enhancement tech-
niques are not very suitable for a fingerprint image [8]. Fingerprint image en-
hancement algorithms are available both for binary and gray level images. A
binary fingerprint image consists of ridges marked as object (1) pixels and the

Binarization of Fingerprint Images Using Distance Transform 199

rest as background pixels (0). Hung [8] designed an algorithm for enhancing a
binary fingerprint image based on the structural information of its ridges. Ridge
widths are normalized based on some region index. Ridge breaks are corrected
using the dual relationship between ridge breaks and valley bridges. However,
obtaining a binary fingerprint image from a gray-tone image involves inherent
problems of binarization and thinning or ridge extraction procedures [6]. Thus,
most of the enhancement algorithms are designed for gray-level fingerprint im-
ages. The much widely used PCASYS package [5] uses an enhancement algorithm
described earlier [1]. It involves cutting out subregions of the images (a 32× 32
block to be specific), taking their FFT and suppression of a band of low and high
frequency components followed by some non-linear operations in the frequency
domain and transforming it back to the spatial domain. This algorithm was also
used by Kovács-Vajna [18]. We have also used this enhancement algorithm in
our work owing to its simplicity and elegance.

1.2 Segmentation of Fingerprint Images

In literature concerning fingerprints, some authors have used the term
segmentation to mean the process of generating a binary image from a gray-
level fingerprint image. But, as suggested in [19], the most widely held view
about segmentation of a fingerprint image is the process of separation of fin-
gerprint area (ridge, valley and slope areas in between ridge and valley areas)
from the image background. The process of segmentation is useful to extract
out meaningful areas from the fingerprint, so that features of the fingerprint
are extracted from these areas only. Fingerprint images are characterized by
alternating spatial distribution of varying gray-level intensity values of ridges
and ravines/valley. This pattern is unique to a fingerprint area compared to the
background which does not have this spatial distribution of gray-level values.
Also, global thresholding for segmentation does not work as the spatial distri-
bution of gray-level values keeping their alternating structure intact, can vary
in the absolute magnitude of their gray-level values. Thus, local thresholding is
needed. Exploitation of these property have been the key of most of the seg-
mentation algorithms. O’Gorman and Nickerson [24] used a k × k spatial filter
mask with an appropriate orientation based on user inputs for labeling the pix-
els as foreground (crest) or background. Mehtre and Chatterjee [21] described
a method of segmenting a fingerprint image into ridge zones and background
based on some statistics of local orientations of ridges of the original image. A
gray-scale variance method is used in the image blocks having uniform gray-
level, where the directional method of segmentation fails. Ratha et al. [25] used
the fact that noisy regions show no directional dependence, whereas, fingerprint
regions exhibit a high variance of their orientation values across the ridge and a
low variance along the ridge to design a segmentation algorithm that works on
16 × 16 block. Maio and Maltoni [20] used the average magnitude of gradient
values to discriminate foreground and background regions. The idea behind this
is that fingerprint regions are supposed to have more edges than background
region and as such would have higher gradient values.

200 X. Liang, A. Bishnu, and T. Asano

1.3 Binarization of Fingerprint Images

The general problem of image binarization is to obtain a threshold value so
that all pixels above or equal to the threshold value are set to object pixel
(1) and below the threshold value are set to background (0). Thresholding can
be done globally where a single threshold is applied globally or locally where
different thresholds are applied to different image regions. Images, in general,
have different contrast and intensity, and as such local thresholds work better.
The thresholding problem can be viewed as follows. Given an image I with N×N
pixel entries, and gray-level intensity value g ranging from 0, 1, . . . to M − 1,
select a value t ∈ [0,M − 1] based on some condition so that a pixel (i, j) is
assigned a value of 1 if the gray-level intensity value is greater or equal to t, else
assign 0 to the pixel (i, j). The condition mentioned above is decided based on the
application at hand. The binarization methods applicable to fingerprint images
draw heavily on the special characteristics of a fingerprint image. Moayer and Fu
[23] proposed an iterative algorithm using repeated convolution by a Laplacian
operator and a pair of dynamic thresholds that are progressively moved towards
an unique value. The pair of dynamic thresholds change with each iteration
and control the convergence rate to the binary pattern. Xiao and Raafat [30]
improved the above method by using a local threshold, to take care of regions
with different contrast, and applied after the convolution step. Both of these
methods requiring repeated convolution operations are time consuming and the
final result depends on the choice of the pair of dynamic thresholds and some
other design parameters. Coetzee and Botha [7] proposed an algorithm based on
the use of edges in conjunction with the gray-scale image. The resultant binary
image is a logical OR of two binary images. One binary image is obtained by a
local threshold on the gray scale image and the other binary image is obtained by
filling in the area delimited by the edges. The efficiency of this algorithm depends
heavily on the efficiency of the edge finding algorithm to find delimiting edges.
Ratha et al. [25] proposed a binarization approach based on the peak detection
in the gray-level profiles along sections orthogonal to the ridge orientation. The
gray-level profiles are obtained by projection of the pixel intensities onto the
central section. This heuristic algorithm though working well in practice has a
deficiency that it does not retain the full width of the ridges, and as such is not
a true binary reflection of the original fingerprint image.

In this work, we propose a combinatorial algorithm for binarization of fin-
gerprint images based on Euclidean distance transform. Most of the previous
algorithms discussed here are heuristics in that they do not start with a defini-
tion of an optimal threshold. In contrast, we define a condition for an optimal
threshold based on equal widths of ridges and valleys. We show how distance
transform can be used as a measure for width and then design an algorithm to
efficiently compute the threshold for binarization. Using distance transform for
binarization has also got another distinct advantage. The next step following
binarization is ridge extraction and ridges can be efficiently extracted using dis-
tance transform values. As the same feature can be used for both binarization
and ridge extraction, a lot of time savings can be obtained in real applications.

Binarization of Fingerprint Images Using Distance Transform 201

The rest of the paper is organised as follows. In Section 2, we briefly review
Euclidean Distance Transform algorithm. Section 3 has a discussion on measur-
ing width of shapes using average Distance Transform values. Section 4 discusses
the threshold criteria and discusses the algorithm for thresholding and shows re-
sults on different fingerprint images. Finally, we finish with some discussions in
Section 5.

2 Distance Transform

A two-dimensional binary image I of N × N pixels is a matrix of size N × N
whose entries are 0 or 1. The pixel in a row i and column j is associated with
the Cartesian co-ordinate (i, j). For a given distance function, the Euclidean
distance transform of a binary image I is defined in [4] as an assignment to
each background pixel (i, j) a value equal to the Euclidean distance between
(i, j) and the closest feature pixel, i.e. a pixel having a value 1. Breu et al. [4]
proposed an optimal O(N ×N) algorithm for computing the Euclidean distance
transform as defined using Voronoi diagrams. Construction and querying the
Voronoi diagrams for each pixel (i, j) take time θ(N2 logN). But, the authors
use the fact that both the sites and query points of the Voronoi diagrams are
subsets of a two-dimensional pixel array to bring down the complexity to θ(N2).
In [13], Hirata and Katoh define Euclidean distance transform in an almost same
way as the assigment to each 1 pixel a value equal to the Euclidean distance to
the closest 0 pixel. The authors use a bi-directional scan along rows and columns
of the matrix to find out the closest 0. Then, they use an envelope of parabolas
whose parameters are obtained from the values of the bi-directional scan. They
use the fact that two such parabolas can intersect in at most one point to show
that each parabola can occur in the lower envelope at most once to compute the
Euclidean distance transform in optimal θ(N2) time. In keeping with the above,
we define two types of Euclidean distance transform values. The first one DT1,0
is the same as the above. The second one is DT0,1 which is the value assigned
to a 0 pixel equal to the Euclidean distance to the nearest 1 pixel. Using the
results given in [13], we have the following fact:

Fact 1. Both DT1,0 and DT0,1 can be computed in optimal time O(N2) for an
N ×N binary image. Also, the values of both DT1,0 and DT0,1 are greater than
or equal to 1.

3 Distance Transform and Width

The fingerprint images are characterized by almost equal width ridges and valleys
as shown in Figure 2. We will use this particular characteristic of the fingerprint
image for binarization. Measuring the width for arbitrary shapes is a difficult,
non-trivial problem. In this section, we model the problem in a continuous do-
main to show how distance transform can be used to find equal width ridges and
valleys.

202 X. Liang, A. Bishnu, and T. Asano

Fig. 2. Magnified view of a part of the gray scale topology of a fingerprint image

3.1 Model in the Continuous Domain

The fingerprint image can be modeled as shown in Figure 3. In the continuous
domain, the image is a continuous function f : (x, y)→ IR. A cross section of this
function along a direction perpendicular to the ridge increases till it reaches the
ridge point which is a maxima, then decreases till it reaches the valley, which
is a minima; and this cycle repeats. Let t ∈ [0,M] be a threshold, such that
if f is thresholded at t, and if the value of f is greater than t, it is mapped
to 1, else to 0. See Figure 3. The highlighted part shown on the right is the
part mapped to 1. After thresholding, the parts would be rectangles as shown
in Figure 3. We compute the total distance transform values of the rectangles.
Consider a rectangular object ABCD of width w and height h, with h > w.
The medial axis of this object is given by the line segments AE, BE, EF , FD,
FC. The medial axis divides the rectangular shape into four regions such that
the nearest boundary line from any point in the region is determined. As an
example, the region 1 has AD as its nearest boundary line and region 3 has
AB as its nearest boundary line. The total distance transform value for region
1 is

∫ wi/2
0

∫ y+(h−wi/2)
−y+wi/2 (wi/2 − y) dxdy = (w2

i h)/8 − w3
i /12. Similarly, the total

distance transform value for region 3 is
∫ −x+wi/2

x−wi/2

∫ wi/2
0 x dxdy = w3

i /24. So,
the total distance transform value φdt(wi) of the rectangle is w2

i h/4 − w3
i /12

= w2
i /4(h − wi/3). Note that, the total distance transform value increases (de-

creases) with the increase (decrease) of width because φdt(wi)′ > 0 and h > w.
Now, the total distance transform DT1,0 is w2

1h/4−w3
1/12+w2

3h/4−w3
3/12 and

the total distance transform DT0,1 is w2
2h/4− w3

2/12. Now, as t increases, both
w1 and w3 decrease and w2 increases. This implies that with increase of t, DT1,0
decreases and DT0,1 increases. So, DT1,0 and DT0,1 can intersect only once and
evidently, DT1,0 is equal to DT0,1 when w1 = w2. That is, the optimal value
of threshold is reached when DT0,1 = DT1,0, implying w1 = w2. This simple
analysis shows that total distance transform can be used as a measure of finding
a threshold that gives equal width ridges and valleys. Our goal in this work is
to find an optimal threshold to binarize the fingerprint image. The optimality

Binarization of Fingerprint Images Using Distance Transform 203

w

w2 w3w1

t

w1

w2

w3

h

0

M
f

Fig. 3. Diagram of the model

1

43

2

wi

h

x

y

A

E

D

C

F

B

Fig. 4. Diagram for computing total distance transform

criteria is given by the equal width of ridge and valley. So, more formally we
have the following definition.

Definition 1. The optimal threshold is a value t ∈ [0,M] that binarizes the
image such that the ridge width is equal to the valley width or sum total of
distance transform values are equal.

3.2 Discrete Image and Distance Transform

In the discrete model, the co-ordinates are discrete given by the pixel loca-
tions. The gray-level values g are also discrete taking values from 0 to M − 1.
So, the observations from the previous subsection do not directly apply. But, the

204 X. Liang, A. Bishnu, and T. Asano

crucial observation from the previous subsection is that sum total of DT1,0 values
decreases with t and the sum total of DT0,1 values increases with t. Then, the
optimal threshold t can be obtained as that value of t that makes the width
of the 1 region and 0 region equal and can be computed from the intersection
of the curves of the sum total of DT0,1 and DT1,0 values. For, the analysis, we
make the following assumption. The pixels take the gray-level intensity values
such that all the intermediate gray-level values between the maximum and the
minimum are present. With that assumption, we have the following lemma.

Lemma 1. The sum total of DT1,0 values decreases with the threshold t. Simi-
larly, the sum total of DT0,1 values increase with the threshold t.

The proof is easy. We know that each of the Euclidean distance transform
values in the discrete domain is greater than or equal to 1 (see Fact 1). So, with
the threshold t increasing, pixels in the binary image move from the regions of 1
to 0, thus making DT1,0 and DT0,1 decreasing and increasing respectively. Also,
note that the assumption that the pixels take the gray-level intensity values
such that all the intermediate gray-level values between the maximum and the
minimum are present, ensures the strictly decreasing and increasing relations
of sum total of DT1,0 and DT0,1 values. Otherwise, it would have been non-
increasing and non-decreasing respectively.

Also, in the discrete case, we may not be able to locate a single value, where
the functions of sum total of DT1,0 and DT0,1 meet. So, we modify the definition
of the optimal threshold in the discrete case as follows.

Definition 2. The optimal threshold can be two values t1 and t2 such that t2−
t1 = 1 and the sum total of DT1,0 values is greater than the sum total of DT1,0
values at t1 and their relation reverses at t2.

With this definition in place, we are in a position to design the algorithm in
the next section.

4 Algorithm and Results

4.1 Algorithm for Binarization

To take care of different contrast and intensity across different image regions,
we apply local thresholding. We cut out sub-blocks of image region and apply
the enhancement algorithm due to [1] followed by our binarization algorithm.

Algorithm for Binarization.
Input: A gray-level fingerprint image I with gray-level intensity

varying from 0 to M − 1, and of size N ×N ;
Output: A thresholded binary image

1. do for all sub-block Bi of the image I;
2. Apply the enhancement algorithm given in [1];

Binarization of Fingerprint Images Using Distance Transform 205

3. t1 = 0, t2 = M − 1; mid← 	(t1 + t2)/2
;
4. do
5. mid← 	(t1 + t2)/2
;
6. Compute SumDTmid

1,0 and SumDTmid
0,1 ;

7. if(SumDTmid
1,0 > SumDTmid

0,1) t1 ← mid;
8. else t2 ← mid;

while(t2 − t1 > 1)
9. Threshold obtained for binarization is t1 or t2;

The loop originating in Step 4 runs O(logM) times and the dominant com-
putation is the computation of Euclidean Distance Transform and its sum which
takes O(N2) time (see Fact 1). Thus the total time complexity of the binarization
process is O(N2 logM). With M , the number of gray-levels, being a constant for
all practical purposes, the algorithm for binarization runs in time that is linear
in the number of pixel entries which is O(N2).

4.2 Results on Fingerprint Images

We used the fingerprint images from (i) NIST Special Database 4[28], (ii) NIST
Special Database 14[5], (iii) Database B1 of FVC2000[10], and (iv) Database B2
of FVC2000[10]. The images of (i) and (ii) are of size 480 × 512. The images
of (iii) are of size 300 × 300 and (iv) are of size 364 × 256. All of the images
are of 500 dpi resolution. Figures 5-8(a) show the original image, Figures 5-8(b)
show the enhanced image due to [1] and Figures 5-8(c) show the resultant binary
image obtained by application of our algorithm.

5 Discussions and Conclusions

We have developed a combinatorial algorithm for binarization of fingerprint im-
ages expoiting the fingerprint characteristics of equal width ridge and valleys.
We used Euclidean Distance Transform as a measure of width as determining
width for arbitrary discrete shapes is a non-trivial task. We have reported rel-
evant results from standard image databases widely used. But, the definition 2

(a) Original image. (b) Enhanced image. (c) Binary image

Fig. 5. Binarization on an image sample from NIST-4 fingerprint image database

206 X. Liang, A. Bishnu, and T. Asano

(a) Original image. (b) Enhanced image. (c) Binary image

Fig. 6. Binarization on an image sample from NIST-14 fingerprint image database

(a) Original image. (b) Enhanced image. (c) Binary image

Fig. 7. Binarization on an image sample from FVC2000 DB1 fingerprint image
database

used for our algorithm has a drawback in realistic terms. During the acquisition
of fingerprints, ridges, being the elevated structures on the finger, exert more
pressure on the device making the acquisition. And as such, the widths of the
ridges should be greater than the width of the valley for a more realistic model.
But, still the lemma 1 will hold and the algorithm instead of trying to find the
crossover point of sum total of SumDT1,0 and SumDT0,1 will terminate when
SumDT1,0 is greater than SumDT0,1 by a certain ε. Determining this ε from
real fingerprint images is a future problem we would like to address. Also, note
that our binarization algorithm using distance transform has a distinct benefit.
Please refer to Figure 1. The module following binarization is ridge extraction.
Ridge is the skeleton of the thick binary structures obtained from the binariza-
tion. Euclidean Distance Transform can be effectively used to find the skeleton
[31].

Thus the same feature of distance transform can be used for both binarization
and ridge extraction which in real applications can save a lot of time.

Acknowledgment

This research for the first author was conducted as a program for the ”Fostering
Talent in Emergent Research Fields” in Special Coordination Funds for Promot-

Binarization of Fingerprint Images Using Distance Transform 207

(a) Original image. (b) Enhanced image. (c) Binary image

Fig. 8. Binarization on an image sample from FVC2000 DB2 fingerprint image
database

ing Science and Technology by Ministry of Education, Culture, Sports, Science
and Technology. This research for the third author was partially supported by
the same Ministry, Grant-in-Aid for Scientific Research (B) and Exploratory
Research.

References

1. Automated Classification System Reader Project (ACS), Technical Report, De-
LaRue Printrak Inc., Feb., 1985.

2. Bhanu, B. and Tan, X., “Fingerprint Indexing Based on Novel Features of Minutiae
Triplets”, IEEE Trans. PAMI, vol. 25, no. 5, pp. 616-622, 2003.

3. Blue, J. L., Candela G. T., Grother, P. J., Chellappa, R., Wilson, C. L., and Blue,
J.D., “Evaluation of Pattern Classifiers for Fingerprint and OCR Application”,
Pattern Recognition, vol. 27, no. 4, pp. 485-501, 1994.

4. Breu, H., Gil, J., Kirkpatrick, D., and Werman, M., “Linear Time Euclidean Dis-
tance Transform Algorithms”, IEEE Trans. PAMI, vol. 17, no. 5, pp. 529-533,
1995.

5. Candela, G. T., Grother, P. J., Watson, C. I., Wilkinson, R. A. and Wilson, C.
L., PCASYS - A Pattern-Level Classification Automation System for Fingerprints,
NISTIR 5647, National Institute of Standards and Technology, August, 1995.

6. Chang, J. -H., Fan, K. -C., “Fingerprint Ridge Allocation in Direct Gray-Scale
Domain”, Pattern Recognition, vol. 34, no. 10, pp. 1907-1925, 2001.

7. Coetzee, L., and Botha, E. C., “Fingerprint Recognition in Low Quality Images”,
Pattern Recognition, vol. 26, no. 10, pp. 1441-1460, 1993.

8. Douglas Hung, D. C., “Enhancement and Feature Purification of Fingerprint Im-
ages”, Pattern Recognition, vol. 26, no. 11, pp. 1661-1771, 1993.

9. Farina, A., Zs. M. Kovács-Vajna, Zs., M. and Leone, A., “Fingerprint Minutiae
Extraction from Skeletonized Binary Images”, Pattern Recognition, vol. 32, pp.
877-889, 1999.

10. Fingerprint Verification Competition, 2000,
http://bias.csr.unibo.it/fvc2000/download.asp.

11. Galton, F., “Fingerprints”, London: Macmillan, 1892.
12. Haralick, R., “Ridges and Valleys on Digital Images”, Computer Vision Graphics

Image Processing, vol. 22, pp. 28-38, 1983.

208 X. Liang, A. Bishnu, and T. Asano

13. Hirata, T., and Katoh, T., “An Algorithm for Euclidean distance transformation”,
SIGAL Technical Report of IPS of Japan, 94-AL-41-4, pp. 25-31, September, 1994.

14. Hollingum, J., “Automated Fingerprint Analysis Offers Fast Verification”, Sensor
Review, vol. 12, no. 13, pp. 12-15, 1992.

15. Hong, L., Wan, Y., and Jain, A. K., “Fingerprint Image Enhancement: Algorithm
and Performance Evaluation” , IEEE Trans. PAMI, vol. 20, no. 8, pp. 777-789,
1998.

16. Jain, A. K., Hong, L., and Bolle, R., “On-Line Fingerprint Verification” , IEEE
Trans. PAMI, vol. 19, no. 4, pp. 302-314, 1997.

17. Jain, A. K., Hong, L., Pankanti, S. and Bolle, R., “An Identity-Authentication
System Using Fingerprints”, Proc. of IEEE, vol. 85, no. 9, pp. 1365-1388, 1997.

18. Kovács-Vajna, Z. M., “A Fingerprint Verification System Based on Triangular
Matching and Dynamic Time Warping”, IEEE Trans. PAMI, vol. 22, no. 11, pp.
1266-1276, 2000.

19. Maltoni, D., Maio, D., Jain, A. K., and Prabhakar, S., Handbook of Fingerprint
Recognition, Springer-Verlag, New York, 2003.

20. Maio, D. and Maltoni, D., “Direct Gray-Scale Minutiae Detection In Fingerprints”,
IEEE Trans. PAMI, vol. 19, no. 1, pp. 27-39, 1997.

21. Mehtre, B. M. and Chatterjee, B., “Segmentation of Fingerprint Images - A Com-
posite Method”, Pattern Recognition, vol. 22, pp. 381-385, 1989.

22. Mehtre, B. M., “Fingerprint Image Analysis for Automatic Identification”, Ma-
chine Vision and Applications, vol. 6, no. 2, pp. 124-139, 1993.

23. Moayer, B. and Fu, K., “A Tree System Approach for Fingerprint Pattern Recog-
nition”, IEEE Trans. PAMI, vol. 8, no. 3, pp. 376-388, 1986.

24. O’Gorman. L. and Nickerson, J. V., “An Approach to Fingerprint Filter Design”,
Pattern Recognition, vol. 22, pp. 29-38, 1989.

25. Ratha N. K., Chen, S. Y., and Jain, A. K., “Adaptive Flow Orientation-Based
Feature Extraction in Fingerprint Images”, Pattern Recognition, vol. 28, no. 11,
pp. 1657-1672, 1995.

26. Rosenfeld, A. and Kak, A. C., Digital Image Processing, vol. 2, Academic Press
Inc., Orlando, Florida, 1982.

27. Senior A., “A Combination Fingerprint Classifier”, IEEE Trans. PAMI, vol. 23,
no. 10, pp. 1165-1174, 2001.

28. Watson, C. I., Wilson, C. L., Fingerprint Database, National Institute of Standards
and Technology, Special Database 4, FPDB, April, 1992.

29. Wegstein, J. H., “An Automated Fingerprint Identification System”, US Govern-
ment Publication, Washington, 1982.

30. Xiao, Q., and Raafat, H., “Fingerprint Image Post-Processing: A Combined Statis-
tical and Structural Approach”, Pattern Recognition, vol. 24, no. 10, pp. 985-992,
1991.

31. Shih, F. Y. and Pu, C. C.,“A Skeletonization Algorithm by Maxima Tracking on
Euclidean Distance Transform”, Pattern Recognition, vol. 28, no. 3, pp. 331-341,
March 1995.

On Recognizable Infinite Array Languages

S. Gnanasekaran1 and V.R. Dare2

1 Department of Mathematics, Periyar Arts College,
Cuddalore - 607 001, Tamil Nadu, India

sg vianna@sancharnet.in
2 Department of Mathematics, Madras Christian College,

Tambaram, Chennai - 600 059, Tamil Nadu, India
rchristian@eth.net

Abstract. A recognizable infinite array language or recognizable ωω-
language is defined as the image of a local ωω-language by an alphabetic
morphism. Here, we introduce Wang systems for ωω-languages and prove
that the class of ωω-languages obtained by Wang systems is the same
as the class of recognizable ωω-languages. We give automata character-
ization to the recognizable ωω-languages. We provide an algorithm for
learning recognizable infinite array languages from positive data and re-
stricted superset queries.

Keywords: array, prefix, local language, recognizable array language,
on-line tesselation automaton, learning.

1 Introduction

Local sets of words play a considerable role in the theory of recognizable string
languages. For example, it is well known that every recognizable string language
can be obtained as the image of a local set by an alphabetic morphism [6].

Gimmarresi and Restivo [7] have generalized this notion to picture languages
that are sets of rectangular arrays of symbols. Then they have defined the class
of recognizable array languages as the set of languages which can be obtained
by projection of local array languages. Latteux and Simplot [11] have defined
hv-local array languages by replacing in the definition of local array languages
the 2 × 2 tiles by horizontal and vertical dominoes and have proved that every
recognizable array language can be obtained as the projection of a hv-local array
language. De Prophetics and Varricchio [5] have introduced the notion of labeled
Wang tiles. They have defined Wang systems and have shown that the family
of array languages recognized by Wang systems coincides with the family of rec-
ognizable array languages. Inoue and Nakamura [10] have introduced a model
of two-dimensional tape acceptor, called two-dimensional on-line tesselation au-
tomaton. Inoue and Takanami have proved that the class of languages accepted
by this type of automata is the class of recognizable array languages.

These different notions of recognizability of a set of arrays are extended to
infinite array languages or ωω-languages. Dare et al [4] have introduced local

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 209–218, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

210 S. Gnanasekaran and V.R. Dare

ωω-languages and have shown that the set of local ωω-languages is the set of
adherence of local array languages. We [8] have defined hv-local ωω-language and
proved that recognizable ωω-language is a projection of a hv-local ωω-language.

In the study of inductive inference of formal languages, Gold [9] has proved
that the class of languages containing all finite sets and one infinite set is not
identifiable in the limit from postive data only. This implies that even the class
of regular languages is not identifiable in the limit from positive data. Angluin [1]
has developed several conditions for identifying, a class of languages, in the limit
from positive data and presented some examples of these identifiable classes.

In this paper, we introduce Wang systems for ωω-languages and show that
the class of ωω-languages recognized by Wang systems is the same as the class of
recognizable ωω-languages. We provide automata characterization for the class
of recognizable ωω-languages. We give an algorithm for learning recognizable
infinite array languages from positive data and restricted superset queries [2].

2 Basic Definitions and Results

Let Σ be a finite alphabet. An array or a two-dimensional picture over Σ of
size (m,n) is a two-dimensional rectangular arrangement of symbols from Σ in
m rows and n columns. We adopt the convention that the bottom-most row is
the first row and the left-most column is the first column. For p ∈ Σ∗∗, let l1(p)
denote the number of rows of p and l2(p) denote the number of columns of p.
The set of all arrays over Σ is denoted by Σ∗∗. An array language over Σ is a
subset of Σ∗∗.

For any array p of size (m,n), p̂ is the array of size (m+2, n+2) obtained by
surrounding p with a special symbol # �∈ Σ and p̂ is the array of size (m+1, n+1)
obtained by placing a row of #s below the first row of p and placing a column
of #s to the left of the first column of p.

An infinite array has infinite number of rows and columns. The set of all
infinite arrays over Σ is denoted by Σωω. An ωω-language over Σ is a subset of
Σωω. For p ∈ Σωω, p̂ is the infinite array obtained by placing a row of #s below
the first row of p and placing a column of #s to the left of the first column of p.
For p ∈ Σ∗∗ ∪Σωω, we denote by Bh,k(p), the set of all blocks of p of size (h, k).
A square array of size (2,2) is called a tile.

If an array p has entry aij ∈ Σ in the i − th row and j − th column, then
we write p = (aij), i = 1, . . . ,m; j = 1, . . . , n if p ∈ Σ∗∗ is of size (m,n) and
p = (aij), i = 1, 2, . . . ; j = 1, 2, . . . if p ∈ Σωω. If p = (aij) ∈ Σω, a prefix of p is
an array q = (aij), i = 1, . . . , l; j = 1, . . . , r, 1 ≤ l, r < ∞. The set of all prefixes
of p is denoted by Pref(p). If L ⊆ Σ∗∗ ∪Σωω, then Pref(L) = ∪

p∈L
Pref(p).

A language L ⊆ Σωω is called ωω-local [4] if there exists a finite set θ of tiles
over Σ ∪ {#} such that

L = {p ∈ Σωω : B2,2(p̂) ⊆ θ}

The set of all ωω-local languages is denoted by ωω-LOC.

On Recognizable Infinite Array Languages 211

Let π be a mapping from Σ to Γ where Σ and Γ are finite alphabets. We call π
a projection. If p = (aij) ∈ Σωω, then π(p) = (π(aij)), i = 1, 2, . . . ; j = 1, 2,
We say that L ⊆ Σωω is recognizable ωω-language if there exists a local ωω-
language L′ over Γ and a projection π : Γ → Σ such that L = π(L′). The class
of all recognizable ωω-languages is denoted by ωω-REC.

A domino is an array whose size is (1, 2) or (2, 1). L ⊆ Σωω is called hv-local
[8] if there exists a finite set Δ of dominoes over Σ ∪ {#} such that

L = {p ∈ Σωω : B1,2(p̂) ∪B2,1(p̂) ⊆ Δ}
and we write L = Lωω(Δ).

We say that L ⊆ Σωω is recognized by a domino system if there exists a
hv-local ωω-language L′ over Γ and a projection π : Γ → Σ such that L =
π(L′). The class of all ωω-languages recognized by domino systems is denoted
by Lωω(DS).

Proposition 1. [8] If L ⊆ Σωω is hv-local, then L is an ωω-local language.

Proposition 2. [8] L ⊆ Σωω is hv-local if and only if L = L1 ⊕ L2 where L1
and L2 are local ω-languages.

Theorem 1. [8] ωω-REC = Lωω(DS).

3 Labeled Wang Tiles

In this section we use a different formalism to recognize ωω-language. Wang tiles
are introduced in [3] for the tiling of Euclidean plane. Then De Prophetics and
Varricchio [5] have introduced the notion of labelled Wang tiles simply adding
a label, taken in a finite alphabet, to a Wang tile. They have also defined Wang
systems and have proved that the family of array languages recognized by Wang
systems coincides with the family of recognizable array languages.

We extend the concept of Wang systems to ωω-languages in this section and
prove that the family of ωω-languages recognized by Wang systems is the same
as the family of recognizable ωω-languages.

A labelled Wang tile is a 5-tuple, consisting of 4 colours, choosen in a finite
set of colours Q and a label choosen is a finite alphabet Σ.

Definition 1. A Wang system is a triplet W = (Σ,Q, T) where Σ is a finite
alphabet, Q is a finite set of colours and T is a finite set of Wang tiles, T ⊆
Q4 ×Σ.

Definition 2. Let W = (Σ,Q, T) be a Wang system. An ωω-array M over T
is a tiling, if it satisfies the following conditions:

1. M(1, 1) =
q

B a p
B

, M(1, n) =
q

r b p
B

, n = 1, 2, ...

M(m, 1) =
r

B c q
p

,m = 1, 2, ...

212 S. Gnanasekaran and V.R. Dare

2. M(m,n) =
r

s a q
p

,m, n = 2, 3, ...

Here p, q, r, s �= B.
If M is a tiling of W , the label of M , denoted by |M |, is an ωω-array over

Σ, defined by

|M |(m,n) = a⇔M(m,n) =
r

s a q
p

, for some p, q, r, s

Definition 3. Let W be a Wang system. An ωω-array w is generated by W if
there exists a tiling M such that |M | = w.

We denote by Lωω(W), the language of ωω-arrays generated by the Wang
system W .

Definition 4. The ωω-array language L ⊆ Σωω is Wang recognizable if there
exists a Wang system W such that L = Lωω(W). The family of all Wang recog-
nizable ωω-languages is denoted by Lωω(WS).

Proposition 3. Lωω(WS) is closed under projection.

Proof. Let W = (Γ,Q, T) be a Wang system and π : Γ → Σ be a projection. We
have to show that if L = Lωω(W), then L′ = π(L) = Lωω(W ′) for some Wang
system W ′.

Let W ′ = (Σ,Q, T ′) where

T ′ = {
r

s π(a) q
p

:
r

s a q
p
∈ T}

Then L′ = Lωω(W ′).

Proposition 4. Lωω(WS) ⊆ ωω-REC.

Proof. Let L ∈ Lωω(WS) and L = Lωω(W) where W = (Σ,Q, T). Let Γ = T
and θ = θ1 ∪ θ2 ∪ θ3 ∪ θ4 where

θ1 =

⎧⎪⎪⎨⎪⎪⎩
#

q
B a p

B
#

:
q

B a p
B

∈ T

⎫⎪⎪⎬⎪⎪⎭

θ2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
#

r
B a q

p

#
p

B b s
t

:
r

B a q
p

,
p

B b s
t
∈ T

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

On Recognizable Infinite Array Languages 213

θ3 =

⎧⎪⎪⎨⎪⎪⎩
r

q a p
B

s
p b t
B

#

:
q

r a p
B

,
s

p b t
B
∈ T

⎫⎪⎪⎬⎪⎪⎭

θ4 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r
s a q
p

v
q b u
t

p
x c z
y

t
z d f
w

:
r

s a q
p

,
v

q b u
t

,
p

x c z
y

,
t

z d f
w

∈ T

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Let L1 = Lωω(θ). Define π : Γ → Σ by π

⎛⎝ r
s a q
p

⎞⎠ = a. Then L = π(L1)

and therefore L ∈ ωω-REC.

Proposition 5. ωω-REC ⊆ Lωω(WS).

Proof. Let L ∈ ωω-REC. Then there exists a local ωω-language L1 over Γ and
a projection π : Γ → Σ such that L = π(L1). Let L1 = Lωω(θ) where θ is a
finite set of tiles over Γ ∪ {#}.

Consider the Wang system W = (Γ,Q, T) where

Q = (Γ ∪ {#})2 ∪ {B} where B �∈ Γ ∪ {#}
T = T1 ∪ T2 ∪ T3 ∪ T4 where

T1 =

⎧⎨⎩
a#

B a #a
B

:
a
#

∈ θ

⎫⎬⎭
T2 =

⎧⎨⎩
ba

#a b #b
B

:
a b
#

∈ θ

⎫⎬⎭
T3 =

⎧⎨⎩
b#

B b ab
a#

:
b
a

∈ θ

⎫⎬⎭
T4 =

⎧⎨⎩
da

ba d cd
cb

:
a d
b c
∈ θ

⎫⎬⎭
Then L = Lωω(W). Thus L ∈ Lωω(WS) and therefore ωω-REC ⊆ Lωω(WS).

Combining Propositions 4 and 5, we have the result.

Theorem 2. ωω-REC = Lωω(WS).

214 S. Gnanasekaran and V.R. Dare

4 Automata Characterization of ωω-Recognizable
Languages

In this section, we give automata characterization of recognizable ωω-languages.
A non-deterministic (deterministic) two-dimensional online tesselation au-

tomaton (2-OTA (2-DOTA)) is M = (Q,Σ, δ, I, F) where

Σ is a finite alphabet
Q is a finite set of states
I ⊆ Q(I = {qo} ⊆ Q) is the set of initial states,
F ⊆ Q is the set of final states and
δ : Q×Q×Σ → 2Q(δ : Q×Q×Σ → Q) is the transition function.

Let p be a finite or an infinite array.
A run of M on p consists of associating a state to each position (i, j) of p̂.

Such state is given by the transition function δ and it depends on the state
already associated to positions (i− 1, j) and (i, j− 1) and on the symbol p(i, j).

At time t = 0, an initial state qo ∈ I is associated with all positions of
p̂ holding #. At time t = 1, a state from δ(qo, qo, a11) is associated with the
position (1, 1) holding a11. At time t = 2, states are associated simultaneously
with positions (1, 2) and (2, 1) respectively holding a12 and a21. If q11 is the state
associated with the position (1, 1), then the states associated with the position
(2, 1) is an element of δ(q11, q0, a21) and to the position (1, 2) is an element of
δ(q0, q11, a12). We then proceed to the next diagonal. The states associated with
the position (i, j) by δ depend on the states already associated with the states
in the positions (i− 1, j), (i, j − 1) and the symbol aij . A 2-OTA M recognizes
a finite array p if there exists a run of M on p such that the states associated to
position (l1(p), l2(p)) is a final state. We say that L is recognized by M if L is
equal to the set of all arrays recognized by M and we write L = L∗∗(M). The
set of all array languages recognized by a 2-OTA is denoted by L∗∗(2-OTA).

A run of an infinite array p is a sequence of states q11q12q21q31q22q13.... The
run of p is denoted by r(p). We define inf(r(p)) as the set of all states which
repeat infinitely many times in r(p). We say that L ⊆ Σωω is recognized by a
2-OTA M = (Q,Σ, δ, q0, F) if

L = {p ∈ Σωω : inf(r(p)) ∩ F �= φ, for some run r(p)}

and we write L = Lωω(M).

Theorem 3. L ∈ ωω-REC, if and only if L is recognized by a 2-OTA in which
every state is a final state.

Proof. Let L ∈ Lωω. Then there exists a finite set θ of tiles such that L = Lωω(θ).
Consider the 2-OTA M = (Q,Σ, δ, q0, Q) where Q = θ

On Recognizable Infinite Array Languages 215

q0 =
{

a
#

:
a
#

∈ θ

}
and δ : Q×Q×Σ → 2Q is defined by

δ

(
a b
c d

,
d e
f g

, x

)
=
{

b x
d e

:
b x
d e
∈ θ

}
Then L = Lωω(M). Since the languages recognized by 2-OTA is closed under

morphism, every L ∈ ωω-REC is recognized by a 2-OTA with F = Q.
Conversely let L be recognized by a 2-OTA M = (Q,Σ, δ, q0, Q).
Let

Γ = Q× (Σ ∪ {#})

θ1 =
{

(q0,#) (p, a)
(q0,#) (q0,#)

: p ∈ δ(q0, q0, a)
}

θ2 =
{

(q0,#) (q, b)
(q0,#) (p, a)

: q ∈ δ(q0, p, b)
}

θ3 =
{

(p, a) (q, b)
(q0,#) (q0,#)

: q ∈ δ(p, q0, b)
}

θ4 =
{

(p, a) (q, b)
(r, e) (s, d)

: q ∈ δ(p, s, b)
}

and θ = θ1 ∪ θ2 ∪ θ3 ∪ θ4.
Then L1 = Lωω(θ). Define π : Γ → Σ by π(p, a) = a. Then L = π(L1).

Therefore L ∈ ωω-REC.

Remark 1. If L is recognized by a 2-OTA, M = (Q,Σ, δ, q0, F), we show that L
is morphic image of a hv-local ωω-language.

Using the notation of the previous theorem, let

Γ1 = θ

Δ1 =
{

(p, a) (q, b) (q, b) (t, e)
(r, c) (s, d) (s, d) (u, f) :

(p, a) (q, b) (q, b) (t, e)
(r, c) (s, d) (s, d) (u, f) ∈ θ

}

Δ2 =

⎧⎪⎪⎨⎪⎪⎩
(t, e) (u, f)
(p, a) (q, b)
(p, a) (q, b)
(r, c) (s, d)

:
(p, a) (q, b)
(r, c) (s, d) ,

(p, a) (q, b)
(r, c) (s, d) ∈ θ

⎫⎪⎪⎬⎪⎪⎭
and Δ = Δ1 ∪Δ2. Let L2 = Lωω(Δ). Define π1 : Γ1 → Σ by

π

(
(p, a) (q, b)
(r, c) (s, d)

)
= b. Then L2 is hv-local and L = π1(L2).

216 S. Gnanasekaran and V.R. Dare

5 Learning of Recognizable Infinite Array Languages

In this section, we give learning algorithm for recognizable infinite array lan-
guages.

We [8] have given algorithm to learn hv-local ωω-languages in the limit from
positive data that are ultimately periodic arrays.

An infinite array p ∈ Σωω is called ultimately periodic if p = T ′ ⊕ T ′′ where
T ′ and T ′′ are finite sets of ultimately periodic infinite words over Σ.

If T ′ = {u1v
ω
1 , . . . , ukv

ω
k } is a finite set of ultimately periodic infinite words,

let l(T ′) = max{|u1v
2
1 |, . . . , |ukv

2
k|}. Let p(2) be the prefix of p of size (l(T ′′),

l(T ′)). If p(2) is of size (m,n), the area A(p) of p is mn. The time complexity
of the algorithm given in [8] depends on the area of the positive data provided
and is bounded by O(N), where N = sum of the areas of the given positive
data.

We have proved (Theorem 1) that an ωω-language is recognizable if and only
if it is a projection of a hv-local ωω-language. We will show how to derive a
learning algorithm, for recognizable ωω-languages, from one that learns hv-local
ωω-languages.

Let L ∈ ωω-REC. Let L be recognized by a 2-DOTA M = (Q,Σ, δ, q0, Q).
Let Γ = Q × (Σ ∪ {#}) and let π1 and π2 be projections on Γ defined by
π1((q, a)) = q and π2((q, a)) = a. An array p over Γ is called a computation
description array if π1(p) is an accepting run of M on π2(p).

Note that

1. The alphabet Γ contains m(n+1) elements, where n is the number of states
of minimum 2-OTA for L and m = |Σ|.

2. For any positive example p of L, let C(p) denote the set of all computation
description array for p. Then C(p) has at most nA(p) arrays.

3. If U is a hv-local ωω-language over Γ such that π(U) = L and E is a
characteristic sample for U , then there is a finite set SL of positive data of
L such that E ⊆ π−1(SL).

From the above note, we obtain a learning algorithm for ωω-REC.

Algorithm REC

Input: A positive presentation of an unknown recognizable ωω-language L,
n=the number of states of the minimum 2-OTA for L.

Output: A finite set Δ for dominoes such that L = π(Lωω(Δ)).
Query: Restricted superset query.
Procedure:

Initialize all parameters:
E0 := φ,Δ0 := φ, answer := “no”

On Recognizable Infinite Array Languages 217

repeat
while answer := “no” do

i := i + 1;
read the next positive example p;
let C(p) = {w1, . . . , wk} be the set of all computation descriptions for p;
let C(p(2)) = {w′

1, . . . , w
′
k} where w′

i is the prefix of wi and size
of w′

i = size of p(2);
let j := 0;
while (j < k) and answer := “no” do

j := j + 1;
Ei := Ei ∪ {wj};
scan w′

j to compute B2,2(w′
j);

let Δi := Δi ∪ { α β : α, β ∈ B2,2(w′
j) and first column of

β = second column of α} ∪ {α
β

: α, β ∈ B2,2(w′
j) and first row

of β = second row of α} be the new conjecture;
let answer := Is-superset of (π(Lωω(Δi), L);
If answer := “yes” then Δ = Δi;

end
until answer := “yes”;

end

To prove that the learning Algorithm REC terminates, we need to prove the
following result.

Proposition 6. Let n be the number of states for the 2-OTA recognizing the
unknown recognizable ωω-language L. After at most t(n) number of queries,
Algorithm REC produces a conjecture Δi such that Ei includes a characteristic
sample for a hv-local ωω-language U with the property that L = π(U) where t(n)
is a polynomial in n, depending on L.

Proof. Let L be an unknown recognizable ωω-language. Let M = (Q,Σ, δ, q0, Q)
be a 2-OTA which accepts L. Let |Q| = n and |Σ| = n. Then there is a hv-local
ωω-language U over Γ = Q× (Σ∪{#}) and a projection π such that π(U) = L.
Let E be a characteristic sample for U . In [8], we have proved that U = U1⊕U2
where U1 and U2 are local ω-languages and E = E1 ⊕ E2 where E1 and E2 are
characteristic samples for U1 and U2 respectively. If M1 = (Q1, Σ, δ1, q

′
0, Q1) and

M2 = (Q2, Σ, δ2, q
′′
0 , Q2) are B-machines which accept U1 and U2 respectively,

Saoudi and Yokomori [12] have mentioned (in the proof of Lemma 15) that the
lengths of all strings in E1 and E2 are not more than 3m2

1 and 3m2
2 respectively,

where m1 = |Σ||Q1|2 and m2 = |Σ||Q2|2. Therefore the sizes of the arrays in
E = E1⊕E2 are (i, j) where 1 ≤ i ≤ 3m2

2 and 1 ≤ j ≤ 3m2
1. Now find a finite set

of positive data SL of L such that E ⊆ π−1(SL). Since π is area preserving, the
areas of all the arrays in SL are not more that 9m2

1m
2
2. Let SL = {w1, . . . , wp}

and l = max{A(w1), . . . , A(wp)}. Then the number of computation description
in π−1(SL) is at most nA(w1) + · · · + nA(wp) ≤ pnl = t(n). Now with at most

218 S. Gnanasekaran and V.R. Dare

t(n) number of queries, Algorithm REC finds a finite set Ei of positive data of U
with the property that Ei includes a characteristic sample for U and π(U) = L.

Theorem 4. Given an unknown recognizable ωω-language L, Algorithm REC
learns, from positive data and superset queries, a finite set of dominoes Δ such
that L = π(Lωω(Δ)).

References

1. D. Angluin, Inductive inference of formal languages from positive data, Information
and Control, 45 (1980), 117-135.

2. D. Angluin, Queries and concept learning, Machine Learning, 2 (1988), 319-342.
3. K. Culik II and J. Kari, An aperiodic set of Wang cubes, Lecture Notes in Computer

Science, Vol. 1046, Springer Verlag, 1996, 137-147.
4. V.R. Dare, K.G. Subramanian, D.G. Thomas and R. Siromoney, Infinite arrays

and recognizability, International Journal of Pattern Recognition and Artificial
Intelligence, Vol. 14, No. 4, (2000), 525-536.

5. L. De Prophetis and S. Varricchio, Recognizability of rectangular pictures by Wang
systems, Journal of Automata, Languages and Combinatorics, 2, (1997), 4, 269-
288.

6. S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New
York, (1974).

7. D. Giammerresi and A. Restivo, Recognizable picture languages, Int. J. Pattern
Recognition and Artificial Intelligence 6 (1992), 241-256.

8. S. Gnanasekaran and V.R. Dare, Infinite arrays and domino systems, Electronic
Notes in Discrete Mathematics, Vol. 12 (2003).

9. E.M. Gold, Language identification in the limit, Information and Control, 10
(1967), 447-474.

10. K. Inoue and A. Nakamura, Some properties of two-dimensional on-line tesselation
acceptor, Inf. Sci. 13, (1977), 95-121.

11. M. Latteux and D. Simplot, Theoretical Computer Science, 178, (1997), 275-283.
12. A. Saoudi and T. Yokomori, Learning local and recognizable ω-languages and

monodic logic programs, Proc. Euro COLT’93.

On the Number of Digitizations of a Disc
Depending on Its Position

Martin N. Huxley1,� and Jovǐsa Žunić2,��

1 School of Mathematics, Cardiff University,
23 Senghennydd Road, Cardiff CF 24 4YH, U.K.

Huxley@cf.ac.uk
2 Computer Science Department, Exeter University,

Harrison Building, Exeter EX4 4QF, U.K.
J.Zunic@ex.ac.uk

Abstract. The digitization D(R, (a, b)) of a real disc D(R, (a, b)) having
radius R and the centre (a, b) consists of all integer points inside of
D(R, (a, b)), i.e., D(R, (a, b)) = D(R, (a, b)) ∩ Z2. In this paper we show
that that there are

3πR2 + O
(
R339/208 · (log R)18627/8320)

different (up to translations) digitizations of discs having the radius R.
More formally,

#{D(R, (a, b)) | a and b vary through [0, 1)}

= 3πR2 + O
(
R339/208 · (log R)18627/8320) .

The result is of an interest in the area of digital image processing
because it describes (in, let say, a combinatorial way) how big the impact
of the object position on its digitization can be.

Keywords: Digital disc, lattice points, enumeration.

1 Introduction

A digital disc is the binary picture (digitization) of a real disc. Formally, it is
defined as the set of all integer points inside of a given real disc. It is clear that
the digitization of a real disc depends on its size (radius) but also on its position
with respect to the integer grid.

The problem of estimating the number of integer points inside a real disc is
intensively studied in the literature, particularly in the area of number theory.

� This work is a part of INTAS research project on ‘Analytical and combinatorial
methods in number theory and geometry’.

�� J. Žunić is also with the Mathematical Institute, Serbian Academy of Sciences and
Arts, Belgrade.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 219–231, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

220 M.N. Huxley and J. Žunić

Most attention was given to real discs centred at the origin – for a detailed
overview we refer to [7]. A very recent result by Huxley [5], related to the number
of lattice points inside a closed convex curve which satisfies some smoothness
conditions, says that the number of lattice points inside a disc having the radius
R approximates the area of this disc within an O

(
R

131
208 · (logR)

18627
8320

)
error.

Even though this estimate is related to discs in a general position it is still
better than the previously known bounds for discs centred at the origin.

How efficiently a real disc D(R, (a, b)) : (x − a)2 + (y − b)2 ≤ R2 can be
reconstructed from its digitization D(R, (a, b)) ∩ Z2 is the problem considered
in [13]. Combining this result with the results from [5] and [6], we have that the
approximations

R ≈
√√√√ 1

π
·

∑
(i,j)∈D∩Z2

1, a ≈

∑
(i,j)∈D∩Z2

i∑
(i,j)∈D∩Z2

1
, b ≈

∑
(i,j)∈D∩Z2

j∑
(i,j)∈D∩Z2

1
. (1)

are within an O
(
R− 285

208 · (logR)
18627
8320

)
error.

Obviously, there are infinitely many real discs (not isometric necessarily)
with the same digitization and due to the digitization process there is always
an inherent loss of information. Estimates such as those from (1) are commonly
used to describe such digitization effects.

On the other side, the position of a real disc has also some impact on the
digitization result. Figure 1 illustrates that isometric real discs could have very
different digitizations depending on their position. Generally speaking, it could
be said that the number of different digitizations of the same object caused by
the different positions of it could be (somehow) a measure of the digitization
effects, as well. Here, we consider such kind of the problem. Precisely, we study
the following question: How many different (up to translation) digital discs are
digitizations of real discs having the same radius?

We will show that there are

3πR2 +O
(
R339/208 · (logR)18627/8320

)
different (up to translations) digital discs which are digitizations of real discs
having the radius R.

2 Definitions and Preliminaries

We will use the following definitions and basic statements.
The set of integers is denoted by Z, while R means the set of real numbers.
Throughout this paper we consider closed discs of fixed radius R in the Eu-

clidean plane.
For a point P = (a, b) we write:

– D(R, (a, b)) (or simply D(P) and D(a, b)) for the disc having the radius R
and the centre (a, b);

On the Number of Digitizations of a Disc Depending on Its Position 221

.

.

.

.

.

..
.

..
.

..

.

. .
.

.
.

.

.

.

(b)(a) (c)

(d) (e) (f)

.

..

.

..
.

.
.

.

..
..

.

Fig. 1. There are 6 nonisometric digitizations of a disc having the radius
√

2. They
can be obtained as the digitization of the following discs: (a) (x − 1)2 + (y − 1)2 ≤ 2;
(b) (x−1.1)2+(y−1)2 ≤ 2; (c) (x−1.5)2+(y−1)2 ≤ 2 (d) (x−1.5)2+(y−1.5)2 ≤ 2;
(e) (x − 1+

√
3

2)2 + (y − 1+
√

3
2)2 ≤ 2 (f) (x − 1+

√
3

2 − 0.001)2 + (y − 1+
√

3+0.001
2)2 ≤ 2

– D(R, (a, b)) (or simply D(P) and D(a, b)) for the set of integer points in the
disc D(P);
D(R, (a, b)) is the digitization of D(R, (a, b)), i.e.,
D(R, (a, b)) = D(R, (a, b)) ∩ Z2.

– N(a, b) (i.e., N(P)) for the number of integer points in D(P).

If the point P ′ is obtained by adding an integer vector (u, v) to P , then the
set D(P ′) consists of the points of D(P) translated by the vector (u, v), so that
N(P ′) = N(P). We regard translation by an integer vector as an equivalence
relation between the sets D(P). We call the equivalence classes digital discs of
radius R, and ask how many different digital discs of radius R there are. Each
class contains exactly one representative D(P) with P in the unit square

Q = {(x, y)|0 ≤ x < 1, 0 ≤ y < 1}.

We consider the sets

E1 = ∩
P∈Q

D(P), E2 = ∪
P∈Q

D(P), and E = E2 \ E1.

The set E1 is bounded by four quarter-circles of radius R with centres at the
opposite corners of the square Q – see Fig. 2 (a). The set E2 is bounded by four
quarter-circles of radius R with centres at the nearest corners of the square Q,

222 M.N. Huxley and J. Žunić

1

1

(a)

1

1

(b)

Fig. 2. (a) The bold line is the boundary of E1, while four circles cetred at (0, 0), (0, 1),
(1, 0), and (1, 1) are presented by dashed lines; (b) The bold line is the boundary of
E2. The straight line segments on it are: [(1 + R, 0), (1 + R, 1)], [(0, 1 + R), (1, 1 + R)],
[(−R, 0), (−R, 1)], and [(0, −R), (1, −R)]

and by line segments of length one parallel to the sides of the square – see Fig. 2
(b). In each case part of the boundary lies within the set, and part lies outside.

We need the following lemma.

Lemma 1. The strip
E = E2 \ E1

is 1 + O(1/R) in width when measured in the direction of either the x-axis or
the y-axis, whichever is closer to being normal to the boundary curves. The area
of E is therefore 4

√
2R +O(1).

We use a special case of Theorem 5 of [5].

Proposition 1. Let S be a plane region bounded by c1 arcs with the following
smoothness property. There is a length scale R ≥ 2 and positive constants c2,
c3 and c4 such that on each arc, when we regard the radius of curvature ρ as a
function of the tangent angle ψ, then

c2R ≤ ρ ≤ c3R,

∣∣∣∣ dρdψ
∣∣∣∣ ≤ c4R.

Then the number of integer points in S is

Area of S +O(c1Rκ(logR)λ)

with κ = 131/208, λ = 18627/8320. The constant implied in the O-notation is
constructed from c2, c3 and c4.

On the Number of Digitizations of a Disc Depending on Its Position 223

Taking the set S in Proposition 1 as the disc D(P), we have N(P) = πR2 +
O(Rκ(logR)λ) uniformly in the position of P within the unit square Q.

We call integer points (m,n) in the strip E critical points. If (m,n) is a
critical point, then (m,n) lies in the disc D(P) for some positions of the disc
D(P), but not for other positions. The straight sections of the boundary of E
can be replaced by circular arcs of radius R without changing the set of integer
points in E , so another appeal to Proposition 1 (together with Lemma 1) gives
the number of critical points as

#(E ∩ Z2) = 4
√

2R +O(Rκ(logR)λ). (2)

For each critical point (m,n) we draw a circular arc C(m,n) centre (m,n) of
radius R.

C(m,n) cuts the boundary of the square Q in two points denoted by A1(m,n)
and A2(m,n).

If the point P of the square Q is inside the arc C(m,n) then (m,n) lies in the
disc D(P). If the point P is outside the arc C(m,n) then (m,n) does not lie in
the disc D(P). These arcs divide the square Q into regions. Points P in the same
region have the same set D(P) of integer points, and points in different regions
have different sets D(P). In the next section, we will estimate the number of
such regions and consequently, the number of different digitizations of real discs
having the same radius.

3 Main Result

To estimate the number of regions of Q made by the arcs C(m,n) (while (m,n) ∈
E), we will use the well-known Euler’s formula, related to planar graphs, which
says that the number of faces plus the number of vertices equals the number of
edges plus two.

Let us consider the crossing points of arcs C(m,n) and C(m′, n′). There is
a rare case when C(m,n) and C(m′, n′) cross twice within the square Q, so the
points A1(m,n) and A2(m,n) both lie outside the arc C(m′, n′). This can only
happen when m′ = −m+O(1), n′ = −n+O(1), so (by (2)) there are O(R) pairs
of arcs with double crossing points. If C(m,n) and C(m′, n′) cross once inside
the square Q, then the points A1(m,n) and A2(m,n) lie on opposite sides of
the arc C(m′, n′). Let E1(m,n) be the subset of the strip E consisting of those
points inside the disc D(A1(m,n)) and outside the disc D(A2(m,n)), and let
E2(m,n) be the subset of the strip E consisting of those points inside the disc
D(A2(m,n)) and outside the disc D(A1(m,n)), i.e.,

E1(m,n) = E ∩ (D(A1(m,n)) \D(A2(m,n)))

and
E2(m,n) = E ∩ (D(A2(m,n)) \D(A1(m,n))).

If the arcs C(m,n) and C(m′, n′) cross, then (m′, n′) lies in the union E(m,n)
of the sets E1(m,n) and E2(m,n),

224 M.N. Huxley and J. Žunić

E(m,n) = E1(m,n) ∪ E2(m,n).

Lemma 2. Let L be the number of intersection of arcs C(m,n) and C(m′, n′)
(while (m,n) ∈ E and (m′, n′) ∈ E) counted accordingly to multiplicity. Then

L = 6πR2 +O
(
Rκ+1(logR)λ

)
.

Proof. To calculate asymptotics, we use a continuous model of the discrete inte-
ger lattice. For any point (x, y) in the strip E , not necessarily an integer point,
we can form the arc C(x, y), set E(x, y), point A1(x, y), and point A2(x, y) by
the same construction. Let d = d(x, y) be the distance from A1(x, y) to A2(x, y),
and let e(x, y) be the area of E(x, y). Then e(x, y) is the sum of the areas of
two equal circles radius R with centres d apart, minus twice the area of their
intersection. Let φ = φ(x, y) be the small angle with

sinφ =
d

2R
.

The common chord of the two circles subtends an angle π− 2φ at the centre
of either circle. The area of the intersection is

(π − 2φ)R2 − 2dR cosφ,

so we have
e(x, y) = 4φR2 + 4dR cosφ.

As an approximation we have

e(x, y) = 6dR +O(1). (3)

We want to add up, for each integer point (m,n) in E , the number of arcs
C(m′, n′) that cross C(m,n) once. By Proposition 1, the sum is∑

(m,n)∈E

(
e(m,n) +O(Rκ(log R)λ)

)
=

∑
(m,n)∈E

e(m,n) +O(Rκ+1(log R)λ). (4)

We would like to replace the first term in (4) by∫
E

∫
e(x, y)dxdy.

The function e(x, y) is zero on the boundary of the strip E , and has partial
derivatives of size R, so the integer lattice has too few grid points to be used for
straightforward numerical integration.

On the Number of Digitizations of a Disc Depending on Its Position 225

Let S(t) be the subset of E on which e(x, y) ≥ t, and let T be the maximum
of e(x, y). The Riesz interchange principle gives

∑
(m,n)∈E

e(m,n) =
∫ T

0

⎛⎝ ∑
(m,n)∈S(t)

1

⎞⎠ dt. (5)

The region S(t) is bounded by contour lines of the function e(x, y). These
are the locus of points (x, y) for which the distance d = d(x, y) between A1 =
A1(x, y) and A2 = A2(x, y) takes a fixed value. If we are given A1 and A2, then
there are two possible points (x, y), both lying on the perpendicular bisector of
the line A1A2. For example, if A1 is (d cos θ, 0) and A2 is (0, d sin θ), then the
two possible points (x, y) are

(
1
2
d cos θ ± R cosφ sin θ,

1
2
d sin θ ±R cosφ cos θ

)
= (±R sin(θ ± φ),±R cos(θ ∓ φ)), (6)

where the upper signs are taken together. Since φ is a small angle, we can see
that this part of the contour still has radius of curvature approximately R.
There are congruent curves when A1 and A2 lie on other adjacent pairs of sides
of the square Q, whilst if A1 and A2 lie on the same side of the square or on
opposite sides of the square, then we get a short straight segment of the contour
line, which can be approximated by an arc of a circle radius R as before with
negligible corrections to the area and the number of integer points in S(t). Let
f(t) be the area of S(t). By Proposition 1 we have∑

(m,n)∈S(t)

1 = f(t) +O(Rκ(log R)λ),

and in (5) since T = O(R) we have∑
(m,n)∈E

e(m,n) =
∫ T

0
f(t)dt +O(Rκ+1(logR)λ). (7)

Since e(x, y) = 0 if the point (x, y) lies on the boundary of the strip E , for
t > 0 the contour lines of e(x, y) bounding S(t) lie entirely within the strip E .
For d ≤ 1 the set S(t) forms a narrower strip within the strip E , bounded by
contour lines which are piecewise of the type (6). For 1 < d ≤

√
2 the set S(t)

is in four disconnected parts, with contour lines of the type (6) ending where
d cos θ = ±1 or d sin θ = ±1, so that either A1 or A2 becomes a vertex of the
square Q. These curves are joined by a short line segment parallel to x- or y-axis
as the points A1 and A2 move in parallel along opposite sides of the square.

The component of S(t) in the first quadrant is bounded by contour lines
parametrised by(

R cosφ sin θ +
1
2
d cos θ, R cosφ cos θ +

1
2
d sin θ

)

226 M.N. Huxley and J. Žunić

and (
R cosφ sin θ − 1

2
d cos θ + 1, R cosφ cos θ − 1

2
d sin θ + 1

)
,

whose polar coordinates are of the form(
R +

1
2
d sin 2θ +O

(
1
R

)
, θ +O

(
1
R

))
,(

R + sin θ + cos θ − 1
2
d sin 2θ +O

(
1
R

)
, θ +O

(
1
R

))
respectively.

For d ≤ 1 we have

f(t) = 4
∫ π

2

0
(sin θ + cos θ − d sin 2θ)Rdθ +O(1)

= 4(2− d)R +O(1).

For 1 < d ≤
√

2 we define an angle δ by cos δ = 1/d, and then

f(t) = 4
∫ π

2 −δ

δ

(sin θ + cos θ − d sin 2θ)Rdθ +O(1)

= 4R(2 cos δ − 2 sin δ − d cos 2δ) +O(1)

= 4R

(
d− 2

√
d2 − 1
d

)
+O(1).

It is convenient to rescale by u = t/6R. Then (3) gives d = u + O(1/R), so
the integral in (7) is

6R
∫ T/6R

0
f(6Ru)du

= 6R
∫ 1

0
4R(2− u)du + 6R

∫ √
2

1
4R

(
u− 2

√
u2 − 1
u

)
du +O(R)

= 24R2

(
3− 1

2
− 1

2
− 2

∫ π/4

0
tan2 θ dθ

)
+O(R)

= 48R2 − 48R2
(
1− π

4

)
+O(R)

= 12πR2 +O(R).

That completes the proof. [[]]

On the Number of Digitizations of a Disc Depending on Its Position 227

In order to compute the number of vertices of the planar graph made by
the arcs C(m,n) and the edges of the unit square Q we have to estimate the
maximum number of arcs C(m,n) which intersect in the same point.

Let us call the point P in the square Q a bad point if three or more arcs
C(m,n) meet at P – i.e, there are critical points (m1, n1), . . . , (mk, nk) on the
circumference of the disc D(P), with k ≥ 3. We give the following upper bounds
for k and for the number of bad points.

Lemma 3. Let P ∈ Q. Then the number of bad points is upper bounded by

O
(
R1+ε

)
while the maximum number of arcs C(m,n) coincident with P is upper bounded
by

O (Rε)

for any ε > 0.

Proof. Let (m1, n1), . . . , (mk, nk) be critical points on the circumference of the
disc D(P), with k ≥ 3. We will prove k = O (Rε) .

The point P lies on the perpendicular bisectors

2(mj −mi)x + 2(nj − ni)y = m2
i −m2

j + n2
i − n2

j ,

for 1 ≤ i < j ≤ k, so P is a rational point (a/q, b/q) with highest common factor
(a, b, q) = 1, and denominator

q ≤ 2(2R + 1)2.

The critical points (mj , nj) lie on the circle(
x− a

q

)2

+
(
y − b

q

)2

= R2.

Here R2 must be a rational number g/h in its lowest terms. Let q0 be the
smallest positive integer with h|q2

0 , so that q2
0R

2 is some positive integer G. By
unique factorisation q2R2 is a positive integer if and only if q0|q, so we can write
q = q0q

′. The critical points (mj , nj) satisfy

(q0q′mj − a)2 + (q0q′nj − b)2 = q2R2 = q′2G. (8)

We use the unique factorisation of Gaussian integers (see [3]). From (8) there
are integers ej , fj , rj , sj with

q0q
′mj − a + i(q0q′nj − b) = (rj + isj)2(ej + ifj), (9)

q′ = r2
j + s2

j = (rj + isj)(rj − isj), (10)

G = e2
j + f2

j = (ej + ifj)(ej − ifj). (11)

228 M.N. Huxley and J. Žunić

Now (rj + isj)|(a+ ib), and since (a, b, q′) = 1, the Gaussian highest common
factor of a+ ib and a− ib is an ideal generated by 1 or by 1+ i. In both cases the
factor rj + isj is unique up to multiplication by ±1 or ±i. We can make a fixed
choice of r+is, and absorb the remaining factor ±1 into the factor ej +ifj in (9).
Subtracting the equations (9) corresponding to two critical points (mj , nj) and
(m�, n�), we have

q0q
′(mj −m�) + iq0q

′(nj − n�) = (r + is)2(ej − e� + ifj − if�). (12)

The left-hand side of (12) is divisible by r − is, so

(r + is)|(i + i)(ej − e� + ifj − if�). (13)

We are now ready for a counting argument. We have

G = q2
0R

2 ≤ 4R2(2R + 1)4 = D,

say. Let Δ be the maximum, over positive integers n ≤ 8D, of the number of
ways of writing n as a sum of two squares of integers. Then

Δ = O(Rε) (14)

for any ε > 0 (see [3]). There are at most Δ possible factors ej + ifj in (11), so
in (13) r−is is a factor of one of at most Δ2 Gaussian integers α with |α|2 ≤ 8D.
For each pair j and �, there are at most Δ possibilities for r−is, which determines
q′. We can identify the bad point P (a/q, b/q) from (11) if we are given one of the
critical points (m,n) for which the arc C(m,n) goes through P . There are K
critical points, so there can be at most Δ3K bad points (a/q, b/q) in the square
Q. Since the number of critical points is O(R) (see Lemma 1) the first statement
of the lemma is proved.

Finally, if we are given a bad point P on k arcs C(mj , nj), then each arc
corresponds to a factor ej + ifj in (11), so k ≤ Δ. [[]]

Now, we give the main result of the paper.

Theorem 1. The number of different (up to translation) digitizations of real
discs having the radius R is

3πR2 +O
(
Rκ+1 · (logR)λ

)
with κ = 131/208 and λ = 18627/8320.

Proof. Suppose that there are F different sets D(P), each corresponding to a
subregion of the square Q. These subregions are bounded by the boundary of Q
and the arcs C(m,n) corresponding to the K critical points. We consider this
configuration as a graph whose vertices are the crossing points of arcs C(m,n),
and at most 2K distinct points where the arcs C(m,n) cut the boundary of Q.
Each bad crossing point is counted with multiplicity at most Δ2 (see (14)) in

On the Number of Digitizations of a Disc Depending on Its Position 229

the sum L (from Lemma 2), and each good crossing point is counted twice, so,
by Lemma 1 and Lemma 3, the number of vertices is

V =
L

2
+O(Δ5K) +O(K) =

L

2
+O(R1+ε) (15)

for any ε > 0.
The good crossing points have valency 4, and the number of edges is similarly

E = L +O(Δ5K) +O(K). (16)

The exterior of the square Q counts as one face in Euler’s formula “faces plus
vertices equals edges plus two”, so we have

F + 1 + V = E + 2, (17)

and finally, by (15)-(17) and Lemma 2,

F =
L

2
+O(R1+ε) = 3πR2 +O(Rκ+1(log R)λ).

Each of the F different regions corresponds to a different digital disc D(P). [[]]

4 Concluding Remarks

In this paper we illustrate how the digitization of a given real disc can depend
on its position with respect to the digitization (integer) grid. We prove that if a
real disc having the radius R is digitized then the number of its different (up to
translation) digitizations is

3πR2 +O
(
R339/208 · (logR)18627/8320

)
.

There is a variety of digital objects enumeration problems which are already
considered in the literature. The problem which comes from the area of digital
image analysis is the problem of estimating the number of digital straight line
segments that are realizable on a squared integer grid of a size, let say, n × n.
This problem can be reformulated noticing that a digital straight line segment
corresponds uniquely to a linear dichotomy of an n×n integer grid. Then, we can
use [8] which says that the number Pn of such linear dichotomies (partitions) is

Pn =
3 · n4

π2 + O
(
n3 · log n

)
.

It has been done by using the concept of adjacent pairs from [9], which enables
an efficient characterization of linear dichotomies of an arbitrary planar finite
number point set.

Another related problem is studied in [1]. The authors defined a corner cut as
a set A ⊂ N2

0 of non negative integer points which can be separated from N2
0 \A

230 M.N. Huxley and J. Žunić

by a straight line and investigated how many different corner cuts consist of n
points. It turns out that such a number Cn has the order of magnitude n · log n,
i.e., there are constants k1 > 0 and k2 > 0 such that k1 · n · log n ≤ Cn ≤
k2 · n · log n. The results is extended ([10]) to an arbitrary d-dimensional space
and shows that there are O

(
nd−1 · (logn)d−1

)
different n point sets A ⊂ Nd

0
which can be separated from Nd

0 \A by a hyperplane.
The number of different n-point sphere corner cuts in d-dimensions is upper

bonded by O
(
nd+1 · (logn)d−1) (see [11]). An upper bound for the number of

digital discs consisting on a fixed number of points is given in [12]. As another
kind of problems related to digital discs, let us mention the recognition problem
which is solved in [2].

To close, let us mention that the number S(n,m) of different digital point
sets which can be realized as a set intersection of an m×n-integer grid and a real
disc (see Fig. 3) is also of interest. S(m,n) can be understood as the number of

.. ..
..

.
..
.

..

..
..

......
..

...
. .
.
.
. .
.
. . .

.

.
.
. .

.
. .

.

.

.

.

..
.

.

.

.

.
.
.

.

.

. ..

.

.
..

..

.
.
.

..
..

. ..

..

..

.. ..

.

.

Fig. 3. “Signatures” of two nonisometric discs on a 8 × 8 integer grid

different “signatures” which real discs can have on an integer grid (i.e., a binary
picture) of a given size.

References

1. S. Corteel, G. Rémond, G. Schaeffer, and H. Thomas, “The Number of Plane
Corner Cuts,” Advances in Applied Mathematics, 23 (1999) 49-53.

2. S. Fisk, “Separating point sets by circles, and the recognition of digital discs,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, 8 (1984) 554-556.

3. G. H. Hardy, E. M. Wright, “An Introduction to the Theory of Numbers,” 4th edn
Oxford University Press, 1959.

4. M. N. Huxley, “Area, Lattice Points, and Exponential Sums,” London Math. Soc.
Monographs 13, Oxford University Press 1996.

5. M. N. Huxley, “Exponential Sums and Lattice Points III,” Proc. London Math.
Soc., 87 (2003) 591-609.

6. R. Klette, J. Žunić, “Multigrid convergence of calculated features in image analy-
sis,” Journal of Mathematical Imaging and Vision 13 (2000) 173-191.

On the Number of Digitizations of a Disc Depending on Its Position 231

7. E. Krätzel, Lattice Points (VEB Deutscher Verlag der Wissenschaften, Berlin,
1988).

8. J. Koplowitz, M. Lindenbaum, A. Bruckstein, “On the number of digital straight
lines on a squared grid,” IEEE Trans. Information Theory 15 (1993) 949-953.

9. M. Lindenbaum, J. Koplowitz, “A new parametrization of digital straight lines,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, 13 (1991) 847-852.

10. U. Wagner, “On the Number of Corner Cuts,” Advances in Applied Mathematics,
29 (2002) 152-161.

11. J. Žunić, “Cutting Corner with Spheres in d-dimensions,” Advances in Applied
Mathematics, 32 (2004) 609-614.

12. J. Žunić, “On the Number of Digital Discs,” Journal of Mathematical Imaging and
Vision, accepted.

13. J. Žunić, N. Sladoje, “Efficiency of Characterizing Ellipses and Ellipsoids by Dis-
crete Moments,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 22
(2000) 407-414.

On the Language of Standard Discrete
Planes and Surfaces

Damien Jamet

LIRMM, Université Montpellier II, 161 rue Ada, 34392 Montpellier Cedex 5 - France
jamet@lirmm.fr

Abstract. A standard discrete plane is a subset of Z
3 verifying the

double Diophantine inequality μ ≤ ax + by + cz < μ + ω, with
(a, b, c)
= (0, 0, 0). In the present paper we introduce a generalization of
this notion, namely the (1, 1, 1)-discrete surfaces. We first study a combi-
natorial representation of discrete surfaces as two-dimensional sequences
over a three-letter alphabet and show how to use this combinatorial point
of view for the recognition problem for these discrete surfaces. We then
apply this combinatorial representation to the standard discrete planes
and give a first attempt of to generalize the study of the dual space of
parameters for the latter [VC00].

1 Introduction

The works related to discrete lines and planes can be roughly divided in two
kinds of approaches. In [And93], É. Andrès introduced the arithmetic discrete
planes, as a natural generalization of the arithmetic discrete lines introduced
by J.P. Réeveillès [Rév91]. Since then, using different approaches, many authors
have investigated the recognition problem of discrete planes, that is, « given
V ⊆ Z3 a set of voxels, does there exist a discrete plane containing V? » (using
linear programming [Meg84, PS85, VC00, Buz02], arithmetic structure [DRR96]
and Farey series [VC00]). An interesting review of these algorithms can be found
in [BCK04].

On the other hand, a wide literature has been devoted to the study of Stur-
mian words, that is, the infinite words over a binary alphabet which have n + 1
factors of length n [Lot02]. These words are also equivalently defined as a discrete
approximation of a line with irrational slope. Then, many attempts have been
investigated to generalize this class of infinite words to two-dimensional words.
For instance, in [Vui98, BV00b, ABS04], it is shown that the orbit of an element
μ ∈ [0, 1[under the action of two rotations codes a standard discrete plane. Fur-
thermore, the generating problem of one or two-dimensional words characterizing
discrete lines or planes is investigated in [BV00b, Lot02, ABS04, BT04].

Let us now introduce some basic notions and notation used in the present
paper. Let {−→e1 ,

−→e2 ,
−→e3} denote the canonical basis of the Euclidean space R3. An

element of Z3 is called a voxel. It is usual to represent a voxel (x, y, z) ∈ Z3 as
a unit cube of R3 centered in (x, y, z). Another equivalent representation is to

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 232–247, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Language of Standard Discrete Planes and Surfaces 233

consider the unit cube {(x + λ1, y + λ2, z + λ3) | (λ1, λ2, λ3) ∈ [0, 1]}. In the
present paper, for clarity issues, we consider the last representation.

Let (a, b, c, μ, ω) ∈ R5. An arithmetic discrete plane with normal vector
(a, b, c), with translation parameter μ, and with thickness ω, is the subset of
Z3 defined as follows:

P(a, b, c, μ, ω) =
{
(x, y, z) ∈ Z3 | μ ≤ ax + by + cz < μ + ω

}
. (1)

If ω = max{|a|, |b|, |c|}, then P(a, b, c, μ, ω) is said to be a naive discrete plane.
If ω = |a|+ |b|+ |c|, then P(a, b, c, μ, ω) is said to be a standard discrete plane.

Considering the action of the group of isometries on the set of the discrete
planes, we can suppose, with no loss of generality, that 0 ≤ a ≤ b ≤ c and c �= 0.

It is well known that the naive discrete planes are functional, that is, if 0 ≤
a ≤ b ≤ c, the naive discrete plane P (a, b, c, μ,max{|a|, |b|, |c|}) is in bijection
with the integral points of the plane z = 0 by the projection map πz : R3 →
{(x, y, z) ∈ R3 | z = 0} along the vector (0, 0, 1). In a similar way, in [ABS04],
it is shown that, given the affine orthogonal projection along the vector (1, 1, 1)
onto the plane x+ y + z = 0, namely π : R3 −→ {(x, y, z) ∈ R3 | x+ y + z = 0},
and given Γ = π

(
Z2
)
, then the restriction π : P(a, b, c, μ, |a| + |b| + |c|) −→ Γ

is a bijection. In other words, any standard discrete plane can be recoded on a
regular lattice (see Section 2).

From now on, let us denote P(a, b, c, μ) the standard discrete plane
P(a, b, c, μ, |a| + |b| + |c|). We call unit cube any translate of the fundamental
unit cube with integral vertices, that is, any set (x, y, z) + C where (x, y, z) ∈ Z3

and C is the fundamental unit cube (see Figure 2(a)):

C =
{
λ1e1 + λ3e3 + λ3e3 | (λ1, λ2, λ3) ∈ [0, 1]3

}
.

Let us now define the three basic faces (see Figure 1):

E1 = {λ2
−→e2 + λ3

−→e3 | (λ2, λ3) ∈ [0, 1[2},
E2 = {−λ1

−→e1 + λ3
−→e3 | (λ1, λ3) ∈ [0, 1[2},

E3 = {−λ1
−→e1 − λ2

−→e2 | (λ1, λ2) ∈ [0, 1[2}.

Let (x, y, z) ∈ Z3. We call pointed face of type k pointed on (x, y, z) the
set (x, y, z) + Ek with k ∈ {1, 2, 3}. Notice that each face contains exactly one
integral point. We call it the distinguished vertex of the face.

Let P be the plane with equation ax + by + cz = μ with (a, b, c) ∈ R3 and
0 ≤ a ≤ b ≤ c, let CP be the union of the unit cubes intersecting the open half-

space ax+ by+ cz < μ, and let PP = CP \
◦
CP , where CP (resp.

◦
CP) is the closure

(resp. the interior) of the set CP in R3, provided with its usual topology. In
[ABS04], it is proved that the set PP is partitioned by pointed faces. Moreover,
let VP = PP ∩ Z3 be the set of vertices of PP . Then, VP = P(a, b, c, μ) (see
(1)). From now on, up to the context and if no confusion is possible, we will call
discrete plane indifferently PP and P(a, b, c, μ).

234 D. Jamet

−→e1
−→e2

−→e3

(a) Face of
type 1.

−→e1
−→e2

−→e3

(b) Face of
type 2

−→e1
−→e2

−→e3

(c) Face of
type 3

Fig. 1. The three fundamental faces

In the present paper we introduce a generalization of the concept of standard
discrete planes: the (1, 1, 1)-discrete surfaces (see Figure 3). Roughly speaking, a
(1, 1, 1)-discrete surface is a subset of R3, partitionable by the pointed faces and
in one-to-one correspondence, by the projection map π : R3 → {(x, y, z) ∈ R3 |
x + y + z = 0} with the diagonal plane {(x, y, z) ∈ R3 | x + y + z = 0}. Then,
as performed in the case of the standard discrete planes, given a discrete surface
S, we associate to it a two-dimensional coding depending on the type of the
pointed faces partitioning S. Then, it becomes natural to try to characterize the
two-dimensional sequences coding the (1, 1, 1)-discrete surfaces. In other words,
given a two-dimensional sequence U ∈ {1, 2, 3}Z2

, does U code a (1, 1, 1)-discrete
surface S? Is this problem local? that is, does there exist a finite set of two-
dimensional finite patterns E such that: « U codes a (1, 1, 1)-discrete surface if
and only if, for all ω ∈ E , ω does not belong to the language of U »?

This paper is organized as follows. In Section 2, we define the (1, 1, 1)-discrete
surfaces and their two-dimensional codings. In Section 3, after introducing the
notions of τ -shape, τ -patterns, τ -complexity and τ -language, we investigate
the characterization problem of the sequences U ∈ {1, 2, 3}Z2

coding discrete
surfaces. Then we give the list A of permitted τ -patterns (see Figure 4), and
prove:

Theorem 1. Let U ∈ {1, 2, 3}Z2
. Then U codes a (1, 1, 1)-discrete surface if and

only if Lτ (u) ⊆ A, where Lτ (U) is the subset of subwords of U of shape τ .

In Section 4, we show that the standard discrete planes have a canonical
structure of (1, 1, 1)-discrete surface and the language of their two-dimensional
codings is completely defined by their normal vector and does not depend on
their translation parameter. Next, we prove that the τ -complexity of a standard
discrete planes is bounded by 6 and equal to 6 for the standard discrete planes
with a Q-free normal vector. Finally, in Section 5, we give a first attempt to
generalize the study of the dual space of parameters and its corresponding Farey
tessellation [VC00].

On the Language of Standard Discrete Planes and Surfaces 235

2 (1, 1, 1)-Discrete Surfaces and Two-Dimensional
Codings

In this section, we introduce the (1, 1, 1)-discrete surfaces and we show how we
can recode each discrete surface on a regular lattice.

Let π : R3 −→ {(x, y, z) ∈ R3 | x + y + z = 0} be the affine projection along
the vector (1, 1, 1). Then, π is explicitly defined by:

π : R3 −→ {(x, y, z) ∈ R3 | x + y + z = 0}
(x, y, z) �→ (x− z)π (−→e1) + (y − z)π (−→e2) . (2)

Let us recall [BV00b, ABS04] that each standard discrete plane is in one-to-
one correspondence with the regular lattice Γ = Zπ (−→e1) + Zπ (−→e2) = π

(
Z3
)

and is partitioned by integral translates of the three basic faces E1, E2 and E3.
Using these properties of standard discrete planes, we define the (1, 1, 1)-discrete
surfaces as follows:

ht −→e1
−→e2

−→e3

(a) The fundamental
unit cube

−→e1
−→e2

−→e3

(b) Its projection by π

Fig. 2. The projection of the fundamental unit cube

Definition 1 ((1, 1, 1)-Discrete Surface). Let S ⊆ R3. Then S is said to be
a (1, 1, 1)-discrete surface (or just a discrete surface) if the following conditions
hold:

i) the projection map π : S→ {(x, y, z) ∈ R3 | x + y + z = 0} is a bijection;
ii) S is partitioned by pointed faces.

Even if, unfortunately, the terminology can be ambiguous, in particular for
the ones who are are accustomed with [Fra95, KI00, Mal97, RKW91], we will
use the terminology discrete surface instead of (1, 1, 1)-discrete surface in the
present paper, in order to simplify notations.

Since the plane x + y + z = 0 is a disjoint union of a countable set
of translates of the tiles π(E1), π(E2) and π(E3), then there exist two se-
quences (xn, yn, zn)n∈N ∈

(
Z3
)N and (in)n∈N ∈ {1, 2, 3}N such that S =⋃

n∈N

(xn, yn, zn) + Ein
.

236 D. Jamet

−→e1
−→e2

−→e3

π(−→e1) π(−→e2)

Fig. 3. A piece of a discrete surface and its projection under π

A first property of discrete surfaces is that, given n ∈ N, the point (xn, yn, zn)
cannot have two different types. Moreover, the projection map π : R3 →
{(x, y, z) ∈ R3 | x + y + z = 0} provides a one-to-one correspondence between
{(xn, yn, zn) | n ∈ N} and Γ . More precisely,

Lemma 1. Let S =
⋃

n∈N
(xn, yn, zn) + Ein

be a discrete surface. Then, the
following assertions hold:

i) ∀(m,n) ∈ N2, (xm, ym, zm) = (xn, yn, zn) implies in = im;
ii) the function π : {(xn, yn, zn) | n ∈ N} −→ Zπ(−→e1) + Z−→e2 is a bijection. In

other words, {(xn − zn, yn − zn) | n ∈ N} = Z2.

In the present paper, we suppose that the representation of a discrete surface
S is reduced, that is, Lemma 1 i) and ii) are assumed to hold, and we denote by
VS = S ∩ Z3 the set of vertices of S.

Since every vertex of S has a unique type, then, to each (m,n) ∈ Z2, we can
associate the type of the antecedent (x, y, z) ∈ S of the element mπ(−→e1)+n−→e2 ∈
Γ . Thus, we obtain the two-dimensional coding of S as follows:

Definition 2 (Two-Dimensional Coding). Let S =
⋃

n∈N
(xn, yn, zn) + Ein

be a discrete surface. The two-dimensional coding of S is the sequence U ∈
{1, 2, 3}Z2

defined as follows:

∀n ∈ N, Uxn−zn,yn−zn = in.

Since we have a two-dimensional coding over the three-letter alphabet
{1, 2, 3} of each discrete surface, it becomes natural to investigate the language
of these sequences and to study the characterization problem of such a sequence,
that is, given a two-dimensional sequence U ∈ {1, 2, 3}Z2

, does it code a discrete
surface S? In the next section, we prove that the language of a discrete surface
coding is of finite type and we provide the set of permitted patterns.

For every (m,n) ∈ Z2, let τm,n = {(m,n), (m,n + 1), (m + 1, n + 1)}. A
τ -pattern is a pattern with shape τ . Hence, following the definitions above, one
can define the τ -language and the τ -complexity of a two-dimensional sequence.

On the Language of Standard Discrete Planes and Surfaces 237

3 Characterization of the Two-Dimensional Coding of
the Discrete Surfaces

3.1 Basic Notions on Two-Dimensional Sequences Over a Finite
Alphabet

In this section, we recall some basic notions and terminology concerning the
two-dimensional sequences over a finite alphabet.

Let ∼ be the equivalence relation over the set P(Z2) of the finite subsets of
Z2, as follows:

∀(Ω,Ω′) ∈ P(Z2)2, Ω ∼ Ω′ ⇐⇒ ∃(v1, v2) ∈ Z2, Ω = Ω′ + (v1, v2).

An element Ω of P(Z2)/ ∼ is said to be a shape.
Let A be a finite alphabet. Let Ω be a finite subset of Z2. A function ω : Ω →

A is called a finite pointed pattern over the alphabet A. The equivalence relation
defined above provides an equivalence relation over the set of the finite pointed
patterns over the alphabet A, also denoted ∼, as follows: ∀(ω, ω′) ∈ W2

A, ω ∼ ω′

if and only if

∃(v1, v2) ∈ Z2, Ω = Ω′ + (v1, v2) and ∀(m,n) ∈ Ω, ωm,n = ω′
m+v1,n+v2

.

Let us notice, that given two finite pointed patterns over the alphabet A,
ω : Ω → A and ω′ : Ω′ → A, one has ω ∼ ω′ implies that Ω ∼ Ω′. The
equivalence class ω of ω is said to be a pattern of shape Ω. In order to simplify
the notation, when no confusion is possible, we will use ω (resp. Ω) instead of ω
(resp. Ω).

Let U ∈ AZ
2

be a two-dimensional sequence and let ω : Ω → A be a pattern
of shape Ω. An occurrence of ω in U is an element (m0, n0) ∈ Z2 such that for
all (m,n) ∈ Ω, ωm,n = Um0+m,n0+n. The set of patterns occurring in U is called
the language of U and is denoted L(U). Given a shape Ω, the set of patterns
with shape Ω occurring in U is called the Ω-language of U and is denoted by
LΩ(U).

Let Ω be a shape. The Ω-complexity map is the function pΩ : AZ
2 −→

N ∪ {∞} defined as follows:

pΩ : AZ
2 −→ N ∪ {∞}

U �→ |LΩ(U)|,

where |LΩ(U)| is the cardinality of the set LΩ(U).

3.2 Characterization of the Two-Dimensional Coding of a Discrete
Surface

Let us first reduce the characterization problem to a two-dimensional tiling prob-
lem of the plane {(x, y, z) ∈ R3 | x+ y + z = 0}. Indeed, a direct consequence of
Definitions 1 and 2 is:

238 D. Jamet

Lemma 2. Let U ∈ {1, 2, 3}Z2
be a two-dimensional sequence. The following

assertions are equivalent:

i) the set S =
⋃

(m,n)∈Z2{m−→e1 + n−→e2 + EUm,n
} is a discrete surface;

ii) the sequence U codes a discrete surface;
iii) the set {mπ(−→e1) + nπ(−→e2) + π(EUm,n)|(m,n)∈Z2} is a partition of the plane

x + y + z = 0.

Let P0 = Rπ(−→e1) + Rπ(−→e2) be the two-dimensional R-vector space of basis
{π(−→e1), π(−→e2)}. Let | · |∞ : P0 −→ R+ be the norm on P0 defined by:

∀(x, y) ∈ (R2)2, |xπ(−→e1) + yπ(−→e2)|∞ = max{|x|, |y|}.

Let d∞ be the distance on P0 associated to the norm | · |∞, that is,

∀(z, z′) ∈ P2
0 , d∞(z, z′) = |z − z′|∞.

The following lemma is immediate (see Figure 1):

Lemma 3. Let z, z′ ∈ Γ = π(S), z′′ ∈ P0 and (i, i′) ∈ {1, 2, 3}2. Then,

i) z + π(Ei) ∩ z′ + π(Ei′) �= ∅ =⇒ d∞(z, z′) ≤ 1;
ii) z′′ ∈ z + π(Ei) =⇒ d∞(z, z′′) < 2.

An interesting consequence of Lemma 3 is that, given a two-dimensional
sequence U ∈ {1, 2, 3}Z2

, deciding whether U codes a discrete surface is a local
problem. Now, it remains to exhibit a set A of permitted patterns.

Roughly speaking, the characterization problem can be divided in two parts:
an « injection problem » and a « surjection problem ». The « injection problem
» consists in deciding whether a given union of projections of pointed faces is
disjoint. The « surjection problem » consists in deciding whether a given union
of projections of pointed faces covers P0.

Then, let us first investigate the « injection problem ».

Lemma 4. Let U ∈ {1, 2, 3}Z2
be a two-dimensional sequence. The following

assertions are equivalent:

i) The sets mπ(−→e1) + nπ(−→e2) + π(EUm,n), with (m,n) ∈ Z2 are relatively dis-
joint.

ii) For every (m,n) ∈ Z2, the sets m′π(−→e1)+n′π(−→e2)+π(EUm,n), with (m′, n′) ∈
τm,n are relatively disjoint.

Hence, we have obtained a necessary and sufficient condition to decide
whether a union of projections of pointed faces is a disjoint union. It remains to
find a similar condition for the « surjection problem ». Since the characterization
problem is local, a disjoint union of projections of pointed faces will cover the
plane P0 = {(x, y, z) ∈ R3 | x+y+z = 0} if and only if each point z of P0 will be
covered by the projection of a pointed face close to x. This is a direct consequence
of Lemma 3. Consequently, given a point g = mπ(−→e1) + nπ(−→e2) ∈ Γ , a union

On the Language of Standard Discrete Planes and Surfaces 239⋃
(m,n)∈Z2 mπ(−→e1) + nπ(−→e2) + π(EUm,n

) of projections of pointed faces will cover

P0 if and only if g+π(E3) ⊂
⋃

z=(z1,z2)
d∞(z,g)<2

∈Γ

z1π(−→e1) + z2π(−→e2) + π(EUz1,z2
). In fact,

this problem can be reduced to the study of the τ -patterns.

Lemma 5. Let U ∈ {1, 2, 3}Z2
be a two-dimensional sequence. The following

assertions are equivalent:

i) for every (m0, n0) ∈ Z2,

(m0+1)π(−→e1)+n0π(−→e2)+π(E3) ⊆
⋃

(m,n)∈τm0,n0

mπ(−→e1) + nπ(−→e2) + π(EUm,n
).

ii)
⋃

(m,n)∈Z2

mπ(−→e1) + nπ(−→e2) + π(EUm,n
) = P0.

A simple enumeration gives the permitted τ -patterns (see Figure 4). In fact,
we have proved that:

1

1

1

1

1 3

1

2

1

2 3

2

1

2

2 2

2

3 1

2

3 3

3

2 2

3

3 1

3

3 3

n

m

3

1 2

1

2

τ1 τ2 τ3 τ4

τ5 τ6 τ7 τ8

τ9 τ10 τ11 τ12

Fig. 4. The set A of permitted τ -patterns of a discrete surface

Theorem 2. Let A be the set of allowed τ -patterns (see Figure 4). Let U ∈
{1, 2, 3}Z2

be a two-dimensional sequence over the three-letter alphabet {1, 2, 3}.
Then U codes a discrete surface S if and only if Lτ (U) ⊆ A.

240 D. Jamet

4 A Particular Case of Discrete Surfaces: the Standard
Discrete Planes

In this section, we investigate the standard discrete planes with a positive normal
vector and show that they admit a canonical structure of discrete surface. From
now on, we suppose that (a, b, c) ∈ R3

+.

4.1 Preliminaries

For the moment, we have defined the discrete surfaces via a one-to-one condition
on the projection map π : S −→ {(x, y, z) ∈ R3 | x + y + z = 0}. In [BV00b,
ABS04], it is proved that a standard discrete plane is in bijection with Γ = π(Z3).
Let P be a plane with equation ax+ by+ cz = μ. To prove that PP (see Section
2) is a discrete surface, we have to show that π : PP −→ {(x, y, z) ∈ R3 |
x + y + z = 0} is a bijection, or equivalently, that the coding of PP codes a
discrete surface. Let us recall how to build the two-dimensional coding of PP .
It is based on Lemma 6.

Lemma 6. [ABS04] Let (x, y, z) ∈ VP and k ∈ {1, 2, 3}. Let I1 = [0, a[, I2 =
[a, a+ b[and I3 = [a+ b, a+ b+ c[. Then, the following assertions are equivalent:

i) the point (x, y, z) is of type k, that is,(x, y, z) + Ek ⊆ PP ;
ii) ax + by + cz − μ ∈ Ik;
iii) a(x− z) + b(y − z)− μ mod (a + b + c) ∈ Ik.

The two-dimensional sequence U coding PP is defined as follows:

∀(m,n) ∈ Z2, ∀k ∈ {1, 2, 3}, Um,n = k ⇐⇒ am + bn− μ ∈ Ik.

The discrete surface structure of PP follows from:

Theorem 3. The set PP is a discrete surface.

Proof. Let U be the two-dimensional coding of PP . Let us show that U codes a
discrete surface. Indeed, since U codes PP , we will deduce that PP is a discrete
surface. Let k ∈ {1, 2, 3} and let us consider a τ -pattern ω such that ω0,0 = 1.
Let (m,n) ∈ Z2 be an occurrence of ω, that is, Um+i,n+j = ωki,j for (i, j) ∈
τ0,0. Let us first suppose that (m,n) = (0, 0). Then, we deduce that μ ∈ [0, a[
mod (a + b + c). Hence μ + a + b ∈ [a + b, 2a + b[mod (a + b + c). If a < c,
then μ + a + b ∈ [a + b, a + b + c[mod (a + b + c) and ω1,1 = 3. Conversely, if
a > c, then 2a + b ∈ [0, a[mod (a + b + c) and ω1,1 = 1. In all cases, ω1,1 �= 2.
If (m,n) �= (0, 0), we similarly prove that ω1,1 ∈ {1, 3}. The other forbidden
τ -patterns can be excluded in the same way.

4.2 Characterization of the Language of a Standard Discrete Plane

In this section, given a standard discrete plane P, we call language of a standard
discrete plane the language of the two-dimensional coding of P.

On the Language of Standard Discrete Planes and Surfaces 241

Let (α, β) ∈ R2
+. The rotation Rα of angle α modulo β is the function Rα :

[0, β[−→ [0, β[defined as follows:

Rα : [0, β[−→ [0, β[
x �→ x + α mod β.

From now on, Ra (resp. Rb) denotes the rotation of angle a (resp. of angle b)
modulo a + b + c.

Lemma 7. Let U ∈ {1, 2, 3}Z2
be the two-dimensional coding of the standard

discrete plane P(a, b, c, μ). Let ω : Ω → {1, 2, 3} be a pattern. Then, the following
assertions are equivalent:

i) ω ∈ L(U), that is, there exists (k, k′) ∈ Z2 such that:

∀(m,n) ∈ Ω, ωm,n = Um+k,n+k′ .

ii) there exists (k, k′) ∈ Z2 such that:

ak + bk′ − μ ∈
⋂

(i,j)∈Ω

R−i
a ◦R

−j
b

(
Iωi,j

)
.

In [Rév91, And93, VC00], the authors considered standard discrete planes
P(a, b, c, μ) with (a, b, c, μ) ∈ Z4 and gcd(a, b, c) = 1. In [BV00b, Lot02, ABS04],
the authors investigated the standard discrete lines or planes with a Q-free nor-
mal vector. Let us recall that a n-uple (a1, . . . , an) ∈ Rn is said to be Q-free if
for every (x1, . . . , xn) ∈ Qn, one has:

n∑
i=1

aixi = 0 ⇐⇒ ∀i ∈ [[1, n]], xi = 0.

In fact, this two-case division is not necessary to study the language of the
two-dimensional coding of a standard discrete plane. More precisely:

Corollary 1. Let U ∈ {1, 2, 3} be the two-dimensional coding of the standard
discrete plane P(a, b, c, μ). Let ω be an Ω-pattern. Then,

ω ∈ L(U) ⇐⇒ Iω =
⋂

(i,j)∈Ω

R−i
a ◦R

−j
b

(
Iωi,j

)
�= ∅.

A direct consequence of Corollary 1 is:

Corollary 2. Let U ∈ {1, 2, 3}Z2
(resp. U ′ ∈ {1, 2, 3}Z2

) be the two-dimensional
coding of the standard discrete plane P(a, b, c, μ) (resp. P(a′, b′, c′, μ′)). Let us
suppose that P is parallel to P′, that is, there exits α ∈ R such that (a, b, c) =
α(a′, b′, c′). Then L(U) = L(U ′).

242 D. Jamet

Since two sequences coding two parallel standard discrete planes have the
same language, it becomes natural to investigate the following problem: given
two standard discrete planes P = P(a, b, c, μ) and P′ = P(a′, b′, c′, μ′) and
given U ∈ {1, 2, 3}Z2

(resp. U ′ ∈ {1, 2, 3}Z2
) the two-dimensional coding of P

(resp. P′). Let us suppose that L(U) = L(U ′). Are the standard discrete planes
P and P′ parallel? The answer is given by the following theorem:

Theorem 4. Let (a, b, c, μ) ∈ Z4 (resp. (a′, b′, c′, μ′) ∈ Z4). Let U ∈ {1, 2, 3}Z2

(resp. U ′ ∈ {1, 2, 3}Z2
) be the two-dimensional coding of the standard discrete

plane P = P(a, b, c, μ) (resp. P′ = P(a′, b′, c′, μ′)). Then, the following asser-
tions are equivalent:

i) the planes ax + by + cz = μ and a′x + b′y + c′z = μ′ are parallel;
ii) there exists (m0, n0) ∈ Z2 such that, for every (m,n) ∈ Z2, Um,n =

U ′
m+m0,n+n0

;
iii) L(U) = L(U ′).

Proof. Let us first prove that given a square S of edge a + b + c, the number of
a (resp. b, c) in a subwords ω : S → {1, 2, 3} is a(a + b + c) (resp. b(a + b + c),
c(a+ b+ c)). In fact, it is sufficient to study the case S = [[0, a+ b+ c− 1]]2. The
general case is a direct consequence of Corollary 1.

Let us assume that gcd(a, b, c) = 1. Then, gcd(a, b, a+ b+ c) = 1. Hence, for
every element k ∈ [[0, a− 1]], there exists (x, y) ∈ Z2 such that ax + by − μ ≡ k
mod a + b + c. Let (m,n) ∈ [[0, a + b + c− 1]]2 such that m ≡ x mod a + b + c
and n ≡ y mod a+ b+ c. Then am+ bn−μ ≡ ax+ bx−μ ≡ x mod (a+ b+ c)
and Um,n = 1. Let k ∈ [[0, a + b + c − 1]]. Then Um−kb,n+ka = 1. Moreover,
for all (m,n) ∈ [[0, a + b + c − 1]]2, (m,n) ≡ (m − kb, n + ka) mod a + b + c if
and only if k = 0. Indeed, let us suppose that ka ≡ kb ≡ 0 mod a + b + c and
let (u, v) ∈ Z2 such that au + bv ≡ 1 mod a + b + c. Then k ≡ k(au + bv) ≡
kau + kav ≡ 0 mod a + b + c. Since k ∈ [[0, a + b + c − 1]], we deduce that
k = 0. Hence |U |a ≥ a(a + b + c). We similarly prove that |U |b ≥ b(a + b + c)
and |U |c ≥ c(a + b + c). Finally, since |U |a + |U |b + |U |c ≥ (a + b + c)2, one has
the desired result. If gcd(a, b, c) = d, then let us define a′ = a/d, b′ = b/d and
c′ = c/d. Then, let us denote |Ũ |a (resp. |Ũ |b, |Ũ |c) the number of a (resp. b,
c) in the square S =

[[
0, a+b+c

d − 1
]]2

. Since (0, a + b + c) and (a + b + c, 0) are
two periodic vectors of U , that is, for all (k, k′) ∈ Z2 and for all (m,n) ∈ Z2, we
have Um,n = Um+k(a+b+c),n+k′(a+b+c), then |U |a = d2|Ũ |a (resp. |U |b = d2|Ũ |b,
|U |c = d2|Ũ |c). By the same way as above, we obtain that |Ũ |a = aa+b+c

d2

(resp. |Ũ |b = ba+b+c
d2 , |Ũ |c = ca+b+c

d2) and the desired result follows.
It is sufficient to prove that ii) =⇒ iii). Let us suppose that L(U) = L(U ′).

Let k = lcm(a+b+c, a′+b′+c′)/(a+b+c) and k′ = lcm(a+b+c, a′+b′+c′)/(a′+
b′ + c′). Let (a1, b1, c1, μ1) = k(a, b, c, μ) and (a′

1, b
′
1, c

′
1, μ

′
1) = k′(a′, b′, c′, μ′).

Let V ∈ {1, 2, 3}Z2
(resp. V ′ ∈ {1, 2, 3}Z2

) be the two-dimensional sequence

On the Language of Standard Discrete Planes and Surfaces 243

coding the standard discrete plane P(a1, b1, c1, μ1) (resp. P(a′
1, b

′
1, c

′
1, μ

′
1)). Then,

V = U and V ′ = U ′. Since a1 + b1 + c1 = a′
1 + b′

1 + c′
1 and one has

|V |a = |V ′|a (resp. |V |b = |V ′|b, |V |c = |V ′|c)) (see Lemma 7), we have
a1(a1 + b1 + c1) = a′

1(a1 + b1 + c1) (resp. b1(a1 + b1 + c1) = b′
1(a1 + b1 + c1),

c1(a1 + b1 + c1) = c′
1(a1 + b1 + c1)), that is, ka = k′a′, kb = k′b′ and kc = k′c′.

5 An Analytic Description of the τ-Language of the
Standard Discrete Planes

In Theorem 4, we proved that the language of a standard discrete plane with
a positive normal vector does not depend on its translation parameter μ and is
completely defined by its normal vector (a, b, c).

In this section, we provide an analytic way to describe the τ -language Lτ (P)
of a standard discrete plane P. This kind of investigation can be compared to
[Col02, Gér99, VC99, Vui98].

Roughly speaking, to each τ -pattern ω of A, we associate the subset of the
triples (a, b, c) of R3, such that ω has an occurrence in the two-dimensional
coding of any standard discrete planes with normal vector (a, b, c).

Let us recall that we can defined the discrete surface structure of a stan-
dard discrete plane if and only if its normal vector (a, b, c) is positive, that is
min{a, b, c} ≥ 0. In the present section, if it is not mentioned, we will suppose
a, b, c to be positive and c �= 0.

Since it is easily checked that P(a, b, c, μ) = P(a/c, b/c, 1, μ/c), let us assume
that c = 1. Hence, to each τ -pattern ω of A, we will associate the subset of the
pairs (a, b) of R2, such that ω has an occurrence in the two-dimensional coding
of any standard discrete planes with normal vector (a, b, 1).

For instance, let us consider the following τ -patterns:

ω =
1 2
3

Then, following Corollary 1, one has:

ω ∈ Lτ (P) ⇐⇒ I3 ∩R−1
b (I1) ∩R−1

a ◦R−1
b (I2) �= ∅

⇐⇒ b < a + c.

Then, assuming that c = 1, we associate to ω the set {(a, b) ∈ R2 |
b < a + 1}, representing the pairs (a, b, 1) ∈ R3

+, such that ω occurs in
the two-dimensional coding of any standard discrete plane with normal vector
(a, b, 1).

Considering the τ -patterns of Figure 4, we obtain the following graphical
representation (see Figure 5):

244 D. Jamet

1

3

2

4

6

8

10

7

9

5

11

12

a

b

1

1

Fig. 5. Graphical representation of the τ -language of the standard discrete planes

zone
τ -patterns

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12

1 × × × × × ×
2 × × × × × ×
3 × × × × × ×
4 × × × × × ×
5 × × × × × ×
6 × × × × × ×
7 × × × × × ×
8 × × × × × ×
9 × × × × × ×
10 × × × × × ×
11 × × × × × ×
12 × × × × × ×

For every k ∈ [[1, 12]], let Lk be the set of A-patterns associated to
the k-th zone of Figure 5. Then, a direct consequence of Corollary 1 and
Figure 5 is:

On the Language of Standard Discrete Planes and Surfaces 245

Theorem 5. Let (a, b) ∈ N2, {n1, . . . , nk} ⊆ [[1, 12]] be the finite set of all the
zones of Figure 5 containing (a, b) and L(a, b) be the language of the standard
discrete plane with normal vector (a, b, 1). Then,

L(a, b) =
k⋂

i=1

Li.

Let us call τ -complexity of a standard discrete plane P the τ -complexity of
the two-dimensional coding of P. Then, a direct consequence of Figure 5 and
Theorem 5 is:

Corollary 3. Let U ∈ {1, 2, 3}Z2
be the two-dimensional coding of a standard

discrete plane with normal vector (a, b, c) ∈ N3 with c �= 0 and let {n1, . . . , nk} ⊆
[[1, 12]] be the finite set of all the zones of Figure 5 containing (a/c, b/c). Then,

pτ (U) = 6− k + 1.

Remark 1. Let U ∈ {1, 2, 3}Z2
be the two-dimensional coding of a standard

discrete plane P(a, b, c, μ). One can have pτ (U) = 6 with while {a, b, c} is non-
Q-free. For instance, let a = 1, b = 3 and c = 5 (see Figure 6).

1

2 3

2

3 3

3

1 2

3

2 2

3

3 1

3

3 3

Fig. 6. τ -patterns of the sequence associated to the standard discrete plane P(1, 3, 5, 0)

Acknowledgments

I would like to thank Pierre Arnoux for having pointed me out the recognition
problem of combinatorial codings of discrete surfaces and the referees for the
useful suggestions they made.

References

[ABS04] P. Arnoux, V. Berthé, and A. Siegel. Two-dimensional iterated mor-
phisms and discrete planes. Theoretical Computer Science, 319:145–176,
2004.

246 D. Jamet

[And93] É. Andrès. Le plan discret. Colloque de géométrie discrète en imagerie :
fondements et applications, Septembre 1993.

[BCK04] V. Brimkov, D. Coeurjolly, and R. Klette. Digital planarity - a review.
Technical Report RR2004-24, Laboratoire LIRIS - Université Lumière Lyon
2, may 2004.

[Buz02] L. Buzer. An incremental linear time algorithm for digital line and plane
recognition using a linear incremental feasibility problem. In Proceedings
of the 10th International Conference on Discrete Geometry for Computer
Imagery, pages 372–381. Springer-Verlag, 2002.

[BT04] V. Berthé and R. Tijdeman. Lattices and multi-dimensional words. Theo-
retical Computer Science, 319:177–202, 2004.

[BV00a] V. Berthé and L. Vuillon. Suites doubles de basse complexité. Journal de
Théorie des Nombres de Bordeaux, 12:179–208, 2000.

[BV00b] V. Berthé and L. Vuillon. Tilings and rotations on the torus: a two-
dimensional generalization of sturmian sequences. Discrete Mathematics,
223:27–53, 2000.

[Col02] M.A. Jacob-Da Col. About local configurations in arithmetic planes. Theor.
Comput. Sci., 283(1):183–201, 2002.

[DRR96] I. Debled-Rennesson and J.P. Réveillès. Incremental algorithm for recog-
nizing pieces of digital planes. In Robert A. Melter, Angela Y. Wu, and
Longin Latecki, editors, Vision Geometry V, volume 2826 of SPIE Proceed-
ings, pages 140–151, August 1996.

[Fra95] J. Françon. Discrete combinatorial surfaces. Graph. Models Image Process.,
57(1):20–26, 1995.

[Gér99] Y. Gérard. Local configurations of digital hyperplanes. In Proceedings of the
8th International Conference on Discrete Geometry for Computer Imagery,
pages 65–75. Springer-Verlag, 1999.

[KI00] Y. Kenmochi and A. Imiya. Naive planes as discrete combinatorial
surfaces. In Proceedings of the 9th International Conference on
Discrete Geometry for Computer Imagery, pages 249–261. Springer-Verlag,
2000.

[Lot02] Lothaire. Algebraic Combinatorics on Words. Cambridge University Press,
2002.

[Mal97] R. Malgouyres. A definition of surfaces of Z
3. a new 3d discrete jordan

theorem. Theor. Comput. Sci., 186(1-2):1–41, 1997.
[Meg84] N. Megiddo. Linear programming in linear time when the dimension is fixed.

J. ACM, 31(1):114–127, 1984.
[PS85] F.P. Preparata and M.I. Shamos. Computational geometry: an introduction.

Springer-Verlag New York, Inc., 1985.
[Rév91] J.P. Réveillès. Géométrie discète, calcul en nombres entiers et algorithmique.

PhD thesis, Université Louis Pasteur, Strasbourg, 1991.
[RKW91] A. Rosenfeld, T.Y. Kong, and A.Y. Wu. Digital surfaces. CVGIP: Graph.

Models Image Process., 53(4):305–312, 1991.
[VC99] J. Vittone and J.M. Chassery. (n, m)-cubes and farey nets for naive

planes understanding. In Proceedings of the 8th International Conference
on Discrete Geometry for Computer Imagery, pages 76–90. Springer-Verlag,
1999.

On the Language of Standard Discrete Planes and Surfaces 247

[VC00] J. Vittone and J.M. Chassery. Recognition of digital naive planes and poly-
hedrization. In DGCI: International Workshop on Discrete Geometry for
Computer Imagery, pages 297–307, 2000.

[Vui98] L. Vuillon. Combinatoire des motifs d’une suite sturmienne bidimension-
nelle. Theor. Comput. Sci., 209(1-2):261–285, 1998.

Characterization of Bijective Discretized
Rotations

Bertrand Nouvel1,� and Eric Rémila1,2

1 Laboratoire de l’Informatique du Parallélisme,
UMR 5668 (CNRS - ENS Lyon - UCB Lyon - INRIA),

Ecole Normale Supérieure de Lyon,
46, Allée d’Italie 69364 Lyon cedex 07 - France
2 IUT Roanne (Université de Saint-Etienne),

20, avenue de Paris 42334 Roanne Cedex - France
{bertrand.nouvel, eric.remila}@ens-lyon.fr

Abstract. A discretized rotation is the composition of an Euclidean
rotation with the rounding operation. For 0 < α < π/4, we prove that the
discretized rotation [rα] is bijective if and only if there exists a positive
integer k such as

{cos α, sin α} = { 2k + 1
2k2 + 2k + 1

,
2k2 + 2k

2k2 + 2k + 1
}

The proof uses a particular subgroup of the torus (R/Z)2.

1 Introduction

In computer graphics, or in physical modeling, most of the time when a rota-
tion has to be done, programmers simply use a discretized rotation, i. e. the
composition of a classical rotation with a rounding operation. Unfortunately,
this discrete rotation often has regrettable properties in terms of discrete geom-
etry. Actually, for most angles the discretized rotation (restricted to Z2) is not
bijective.

Nevertheless, in [5], Marie-Andrée Jacob and Eric Andrès have proved that
for a certain subset of angles (the integer pythagorean angles), the discretized
rotation is bijective. The proof relies on the classical formalism of discrete geom-
etry, and a particular notion of underlying tile. But the question of the reciprocal
was not mentioned and was left open – we did not know if there were some other
bijective angles for discretized rotation.

In this paper, we exhibit an alternative proof to the Andres-Jacob result and
we prove that the reciprocal is actually true : therefore we obtain a very simple
characterization of the bijective angles for the discretized rotation.

In this article, we are going to start out with the minimal definitions we re-
quire; particularly those of the angles that are concerned by the Andrès-Jacob

� PhD research supported by TF1 through an ANRT CIFRE convention.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 248–259, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Characterization of Bijective Discretized Rotations 249

theorem. We continue by giving a characterization of surjective rotations : a
discretized rotation is surjective if and only if no integer point has an image
by Euclidean rotation and canonical projection to the torus T2 = (R/Z)2 that
stands inside a certain frame of the torus T2. The equivalence in between sur-
jectivity and injectivity for the discretized rotation is then proved.

Afterward, to characterize angles that are bijective, we have examined a
particular subgroup of the torus T2. Naturally, it is then described with great
accuracy : more precisely we show that it is possible to identify the smallest
vector. This vector can generate the whole studied group.

At the end, all these elements put back together allow us to reprove the
Andrès-Jacob theorem and to prove its reciprocal.

2 Pythagorean Angles and Triples

An angle is a real number of the interval [0...2π[. For sake of simplicity, we will
only study (without loss of generality by symmetry arguments) angles which
belong to]0, π

2 [.

Definition 1. An angle α is pythagorean if cosα and sinα are both rational.

Notice that α is pythagorean if and only if α′ = π
2 − α is pythagorean.

Proposition 1. An angle α is pythagorean if and only if there exists a vector
v of Z2 \ {(0, 0)} such that rα(v) also belongs to Z2.

Proof. Let α be a pythagorean angle. There exists an integer C such that C cosα
and C sinα both are integers. This can be interpreted as saying that rα(C, 0)
is in Z2. Conversely, let v = (x, y) be an integer vector such that rα(v) is also
in Z2. We state (x′, y′) = rα(v). We have cosα = xx′+yy′

x2+y2 and sinα = xy′−yx′

x2+y2 .
This proves that cosα and sinα both are rational.

Any pair (p, q) of positive integers such that q < p can generate two pythago-
rean angles α and α′, such that α+α′ = π

2 : the first angle transforms (p, q) into
(q, p), and the second one transforms (q, p) into (−q, p).

All the pythagorean angles generated as above can be generated with pairs
(p, q) such that gcd(p, q) = 1 (since, for each positive integer h, the angles gen-
erated by the pair (hp, hq) are the same as those generated by (p, q)) and p− q
is odd (otherwise the angles generated by the pairs (p, q) are the same as those
generated (p+q

2 , p−q
2)). The proposition below claims that the above process gen-

erates all the pythagorean angles.

Proposition 2. An angle α of]0, π
2 [is pythagorean if and only if there exists

a vector (p, q) of Z2 such that p > q > 0, gcd(p, q) = 1, p − q is odd and either
rα(p, q) = (q, p) or rα(q, p) = (−q, p).

Proof. This is a consequence of classical results related to pythagorean triples
(See for example [4] or [10]). For any triple (a, b, c) of positive integers such that

250 B. Nouvel and E. Rémila

a2 + b2 = c2 and gcd(a, b, c) = 1, there exists a unique pair (p, q) of positive inte-
gers such that c = p2 + q2 and {a, b} = {p2− q2, 2pq}. Obviously, we necessarily
have : p > q, gcd(p, q) = 1, and p− q odd. The proposition is just an application
of this result for (a, b, c) such that cosα = a/c and sinα = b/c, and c minimal.

Definition 2. The subset of pythagorean angles consisting in angles generated
by pairs (k+1, k) of consecutive integers is called the set of integer pythagorean
angles.

Notice that the pair (k + 1, k) leads to the following triple : (a = 2k(k + 1),
b = 2k + 1, c = 2k(k + 1) + 1).

3 Rotation Multiplicities, Holes and Double Points

The rounding function is defined so : for each element x of R, [x] = #x + 1
2$

(the function floor which is written #x$, designates the unique integer such that
#x$ ≤ x < #x$ + 1). On vectors, the discretization is applied component by
component : for each vector v = (x, y) of R2, we have [v] = ([x], [y]). The set of
vectors of the real plane that are discretized to a same vector is called a cell.

Given an angle α, the discretized rotation [rα] is defined on the set Z2 as the
composition of the Euclidean rotation rα and of the rounding function [.].

Let iα and jα be the vectors defined as the rotated images of the vectors
of canonical base of the plane : iα = rα(i) = (cosα, sinα) and jα = rα(j) =
(− sinα, cosα).

The multiplicity Mα(w) maps each vector w of Z2 to the number of its
antecedents by discretized rotation (notice that Mα is a planar configuration
which can be obtained by projection (more exactly by morphism – i. e. cell by
cell) of the planar coloration introduced in [7]). Formally, the application Mα is
defined by the following equation :

Mα(w) = CARD({v ∈ Z2, [rα](v) = w})

Each set of three different points of the grid rα(Z2) contains at least two
points that are at a distance of at least

√
2, and the ends of a segment of length of

at least
√

2 cannot be in the same cell, therefore there cannot be three different
points inside the same cell, thus the multiplicity Mα of any vector will never
exceed 2.

A hole is a vector characterized by the fact that Mα(w) = 0 : there is a hole
in Mα if and only if [rα] is not surjective. A double point is characterized by the
fact that Mα(w) = 2 : there is a double point in Mα if and only if [rα] is not
injective. The discretized rotation [rα] is bijective if and only if for each vector
w of Z2, Mα(w) = 1.

Let Pk be the set of vectors of Z2 such as M(v) = k. Normally, P0 is empty
if and only if [rα] is surjective and P2 is empty if and only if [rα] is injective.

We identify the torus T2 = (R/Z)2 with the cell [− 1
2 ,+

1
2 [2. A canonical

projection from R2 to T2 is provided by the operator {x} = x − [x]. A frame

Characterization of Bijective Discretized Rotations 251

is the cartesian product of non-empty half-opened intervals [a...b[on the torus
T2 = (R/Z)2.

Theorem 1. Let F0↓ denote the frame :

F0↓ =
[
1
2
− sinα,−1

2
+ cosα

[
×
[
−1

2
,−3

2
+ cosα + sinα

[
We have : P0 �= ∅ if and only if there exists a vector v of Z2 such that

{rα}(v) ∈ F0↓.
More precisely, with the notations above, we have Mα([rα](v)− j) = 0.

Proof. First notice that necessarily, for any vector w′ of Z2, there exists a vector
v of Z2 such that the distance between rα(v) and w′ is at most

√
2/2. Let w be

a hole, H be the discretization cell associated and Dw be the closed disk centered
in w of radius

√
2/2. From the remark above, the set Dw ∩ rα(Z2) is not empty.

On the other hand, since H is a hole, rα(Z2) does not meet H, and, therefore,
rα(Z2) does not meetH+t, for any vector t of rα(Z2) (since rα(Z2)+t = rα(Z2)).
In particular, we have : rα(Z2) ∩ (∪t∈T (H + t)) = ∅, where T denotes the set
T = {t ∈ rα(Z2), t = xiα + yjα,−1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.

Thus rα(Z2) necessarily meets Dw \ ∪t∈T (H + t). This set is contained into
the union of four squares (see figure 1) : the square F0↓ +w+ j and its translated
copies by vectors −iα,−jα and −iα − jα.

Obviously, the fact that one of these squares encounters rα(Z2) implies that
each of them meets rα(Z2). This is especially true for F0↓ + w + j thus there
exists v of Z2 such that {rα}(v) ∈ F0↓.

Conversely, if there exists a vector v of Z2 such that {rα}(v) ∈ F0↓, then
there exists a vector w of Z2 such that F0↓+w+j contains rα(v). Thus F0↓+w+j
and its translated copies by vectors −iα,−jα and −iα − jα meet rα(Z2). This
yields that w is a hole since each vector of its discretization cell is at a distance
lower than 1 from an element of rα(Z2).

Theorem 2. Let F2 denote the frame :

F2 =
[
−1

2
,
1
2
− cosα

[
×
[
−1

2
,
1
2
− sinα

[
We have : P2 �= ∅ if and only if there exists a vector v of Z2 such that

{rα}(v) ∈ F2.
More precisely, with the notations above, we have Mα([rα](v)) = 2.

Proof. Since rα(Z2) is invariant by rotation of angle π/2, P2 �= ∅ if and only if
there exists v such that [rα](v) = [rα](v + i). This condition trivially gives the
result.

3.1 The Non Pythagorean Case

Now, we introduce two groups that have a main importance for the study of
discrete rotations :

252 B. Nouvel and E. Rémila

H

Fig. 1. The main argument for Theorem 1: The set rα(Z2) meets neither the (big)
dashed square nor H, but meets the closed disk. Thus rα(Z2) meets one of the four
remaining small squares

– the subgroup G′
α of T2 defined by : G′

α = {rα}(Z2) which one may also see
as : Z{iα} + Z{jα}

– the subgroup Gα of R2 defined by : Gα = Zi + Zj + Ziα + Zjα.

At first glance, we notice that a point v of R2 belongs to Gα if and only if
{v} belongs to G′

α and, moreover [−1/2, 1/2[2∩Gα = G′
α. We also notice that Gα

and G′
α are both invariant by rotation of angle π/2.

We now focus on non pythagorean angles in order to show that in this case,
the discretized rotation will be neither injective, nor surjective.

Proposition 3. Let α denote a non pythagorean angle; For all ε > 0, there
exists a vector eε of Gα such that 0 < ||eε|| ≤ ε. Moreover, Gα contains the group
Zeε + Ze′

ε, with e′
ε = rπ/2(eε).

Proof. Since α is not pythagorean, the elements of the sequence ({niα})n∈N

are pairwise disjoint. Since all of them are in the compact square [−1/2, 1/2]2,
there exists a subsequence ({nkiα})k∈N which converges. Thus the sequence
({nk+1iα}− {nkiα})k∈N is a non ultimately constant sequence which converges
to (0, 0). Thus, for all ε > 0, there exists an integer k such that 0 < ||{nk+1iα}−
{nkiα}|| ≤ ε. This element is in Gα, which gives the result (the second part of
the proposition is trivial).

Corollary 1. Let α denote a non pythagorean angle. The associated discretized
rotation [rα] is neither injective nor surjective.

Proof. Let F be a fixed frame. From the above proposition applied for ε suffi-
ciently small, the group G′

α has a non empty intersection with F . In particular,
this is true for the frame of surjectivity F0↓ and the frame of injectivity F2. This
gives the result, according to Theorem 1 and Theorem 2.

Characterization of Bijective Discretized Rotations 253

4 The Pythagorean Case

We fix a pair (p, q) of positive integers such that p > q, gcd(p, q) = 1 and p− q is
odd. Let α be the angle such that cosα = a/c and sinα = b/c, with a = p2− q2,
b = 2pq and c = p2 + q2. We also state : α′ = π

2 − α, the angle defined by the
other triple (a′ = 2pq, b′ = p2 − q2, c = p2 + q2).

For each pair (x, y) of Z2 we have [rα](x, y) = (x′, y′) if and only if [rα′](y, x) =
(y′, x′). Thus [rα] is bijective (resp. injective/ surjective) if and only if [rα′] is
(resp. injective/ surjective).

For the sake of simplicity, we now assume that a is odd (a is the first element
of the triple associated with the angle). There is no loss of generality.

4.1 Reduction to Surjectivity

We now prove that, for pythagorean angles, the bijectivity problem is equal to
the surjectivity problem.

Lemma 1 (Square Lemma). Let S be a half-opened square of the plane such
that the vectors induced by its edges have integer components. The number of
integer vectors contained in S is equal to the area of S.

Proof. (sketch) The idea (see Figure 2) is to divide the square into three parts,
two triangles and another one, and afterward translate the triangles to obtain a
polygon with integer sides, vertical or horizontal, which is the disjoint union of
two half opened squares. The main arguments used are the facts below :

– the lemma above obviously holds for any half-opened square whose (integer)
sides are vertical or horizontal.

– two domains of the plane which can be mutually obtained by integer trans-
lation contain the same number of integer vectors

A precise choice can be made for boundaries, in order to get half opened
squares at the end.

Theorem 3. Let α denote a pythagorean angle. The function [rα] is be one-
to-one if and only if it is onto. Thus bijectivity is equivalent to injectivity or
surjectivity.

Proof. We have rα((a,−b)) = (c, 0) and rα((b, a)) = (0, c). Thus, for each vector
v of Z2, we have [rα](v + (a,−b)) = [rα](v) + (c, 0) and [rα](v + (b, a)) =
[rα](v)+(0, c). This yields that for each vector w of Z2, we have M(w+(c, 0)) =
M(w + (0, c)) = M(w). In other words, the multiplicity is a periodic function.

Consider the real window [− 1
2 ,−

1
2 + c[2. From the periodicity seen above,

[rα] is injective if and only if there exists no integer vector w in [− 1
2 ,−

1
2 + c[2

such that M(w) ≥ 2. Similarly, [rα] is surjective if and only if there exists no
integer vector w in [− 1

2 ,−
1
2 + c[2, such that M(w) = 0.

On the other hand, for each vector v of Z2, [rα](v) is element of [− 1
2 ,−

1
2 +c[2

if and only if v is element of r−α([− 1
2 ,−

1
2 + c[2). From the square lemma, the

254 B. Nouvel and E. Rémila

square r−α([− 1
2 ,−

1
2 +c[2) contains c2 integer vectors, as the square [− 1

2 ,−
1
2 +c[2.

Thus there exists an integer vector w in [− 1
2 ,−

1
2 + c[2 such that M(w) = 0 if

and only if there exists an integer vector w in [− 1
2 ,−

1
2 +c[2 such that M(w) ≥ 2.

This achieves the proof.
Notice, that instead of the square lemma, a corollary of the famous Pick’s

Theorem may also be used1. (Even if the proof of the previous lemma can be a
little bit wiser in terms it could require less constraints.)

Fig. 2. The scheme of the proof of the square lemma. The triangles T1 and T2 are
translated, and two squares are obtained. The dark lines point out the boundaries
which are inside the domains

4.2 Structural Study of G′
α

The Theorem 1 will be used to characterize surjective (i.e. bijective) rotations.
But, it requires to know the precise structure of G′

α which is {rα}(Z2).

Lemma 2 (Membership Criterion). Let v = (x
c ,

y
c), with (x, y) in Z2. There

exists an integer n such that {niα} = {v} if and only if xb− ya = det

(
x a
y b

)
≡

0 [c].

Proof. There exists an integer n such that {niα} = {v} if and only if there
exists a triple (n, n′, n′′) of integers such that : (x

c +n′, y
c +n′′) = n(a

c ,
b
c) (notice

that iα = (a
c ,

b
c)).

This is equivalent to the existence of an integer n such that x ≡ na [c] and
y ≡ nb [c]. And which is possible if and only if xa−1 ≡ yb−1[c] (the inverses are
taken in Z/cZ, the numbers a and b both are invertible since a

c and b
c both are

irreducible fractions). The latter equality can be rewritten : xb− ya ≡ 0 [c].

Proposition 4. Let m and m′ be the vectors defined by m = (p
c ,

q
c) and m′ =

(−q
c , p

c). The group G′
α is cyclic, of order c, generated by the vector {m}. The

group Gα is the subgroup of R2 generated by Zm + Zm′.

1 See for example [10] or [3].

Characterization of Bijective Discretized Rotations 255

G′
α(8,15,17) G′

α(7,24,25)

Fig. 3. On the left, G′
α and F0↓ for a non integer pythagorean non integer angle. On

the right G′
α and F0↓ for a non integer an integer pythagorean angle

Proof. We first notice that the set {{iα},{jα}} generates G′
α and jα = (− b

c ,
a
c).

Remark that −b2 − a2 = −c2, thus, applying the membership criterion, there
exists an integer n such that {niα} = {jα}. Thus {iα} generates G′

α, which,
therefore, is cyclic. Moreover, since gcd(a, c) = gcd(b, c) = 1, it stands that :
{niα} = (0, 0) if and only if n ≡ 0[c]. It proves that the order of G′

α is c.
We have : pb − qa = p(2pq) − q(p2 − q2) = p2q + q3 = q(p2 + q2) = qc.

Thus, applying the membership criterion, we obtain that {m} is an element of
G′

α. Moreover, since gcd(p, c) = gcd(q, c) = 1, {m} is of order c and, therefore,
generates G′

α.
For the third part of the proposition, remark that Gα and Zm + Zm′ both

are invariant by integer translation, thus each of these groups is defined by
its intersection with the cell [− 1

2 ,
1
2 [2. Moreover, Gα contains Zm + Zm′ and

Gα ∩ [− 1
2 ,

1
2 [2 (which is G′

α) contains exactly c elements. Thus, we only have to
prove that (Zm+Zm′)∩ [− 1

2 ,
1
2 [2 also contains c elements. In that aim, consider

the real plane, seen using the basis (m,m′) : vectors of Zm+Zm′ are seen as the
integer vectors. We have i = pm− qm′, thus the discretization cell of the origin
can be seen as a square on which the square lemma can be applied. Thus, the
discretization cell of the origin contains c elements of Zm + Zm′. This achieves
the proof.

5 Results

5.1 Proof of the Reciprocal of the Andrès Jacob Theorem

We now prove the reciprocal of Andrès-Jacob Theorem. The outline of the proof
is structured as follows : the main idea of the proof is to show that when we
are in the non - integer- pythagorean case it is necessity to have a “hole”. This
necessity is due to the density of G′

α in [− 1
2 ,

1
2 [2 (or the density of Gα in Z2).

256 B. Nouvel and E. Rémila

Lemma 3 (Size Lemma). Let [x, x+d[×[y, y+d[be a square of the real plane,
with d ≥ p+q

c . This square has a non-empty intersection with Gα.

Proof. We state : (x, y) = zm+ tm′. Up to a translation of #z$m+ #t$m′, it can
be assumed without loss of generality that 0 ≤ z < 1 and 0 ≤ t < 1, which gives
−q/c ≤ x < p/c and 0 ≤ y < (p+q)/c. With this hypothesis we have the case by
case analysis below (obtained by cutting the square {v ∈ Z2,v = zm+ tm′, 0 ≤
z < 1, 0 ≤ t < 1} by vertical and horizontal lines) :

– for (x, y) = (0, 0), the vector (0, 0) is in [x, x + d[×[y, y + d[,
– for −q/c ≤ x < (p − q)/c and 0 < y < (p + q)/c, the vector m + m′ is in

[x, x + d[×[y, y + d[,
– for (p − q)/c ≤ x < (p + q)/c and 0 ≤ y ≤ q/c, the vector m is in [x, x +

d[×[y, y + d[,
– for (p− q)/c ≤ x < (p + q)/c and q/c < y < (p + q)/c, the vector 2m + m′

is in [x, x + d[×[y, y + d[.

Theorem 4 (Reciprocal of Andrès Jacob Theorem). If the angle α is not
an integer pythagorean angle then the discretized rotation [rα] is not bijective.

Proof. We recall that if the angle α does not belongs to the set of pythagorean
angles, then, from Corollary 1 of Proposition 3, [rα] is not bijective.

For a second time, assume that the angle α is a pythagorean one. With
the conventions and notations used above for pythagorean angles, the length
sidef0 of the side of the square F0↓ is cos(α) + sin(α) − 1 = a+b−c

c = 2q(p−q)
c .

In order P0 to be empty, it is mandatory that sidef0 < (p + q)/c which gives
2q(p− q) < (p + q).

Fig. 4. sidef0 and p+q
c

= sidefg in two samples of Pythagorean angles

We write p = q + e, and thus it is obtained 2qe < 2q + e, which may be
rewritten as : (2q−1)e < 2q, or (2q−1)(e−1) < 1. This is only possible if e = 1;

Characterization of Bijective Discretized Rotations 257

which is equivalent of saying that (p, q) leads to an integer pythagorean triple.
Therefore the discretized rotation cannot bijective for pythagorean non integer
angles.

5.2 Alternate Proof of the Andrès Jacob Theorem

Theorem 5 (Andrès-Jacob). If the angle of rotation is integer pythagorean,
then the discretized euclidean rotation is bijective.

The original proof directly proves the injectivity, with arithmetical argu-
ments. We provide here an alternate one that relies on our framework.

Proof. The main idea of the proof aims to show that there is no point of the
group G′

α that stands in the “hole frame” F0↓. In order to ensure that the frame
is avoided, the position of the points that surround the “hole frame” F0↓ has to
be stated precisely.

The frame F0↓ admits the following coordinates :

F0↓ = [(F0↓)L, (F0↓)R[× [(F0↓)D, (F0↓)U [

=
[
1
2
− sin(α),−1

2
+ cos(α)

[
×
[
−1

2
,−3

2
+ cos(α) + sin(α)

[
=
[
c− 2b

2c
,
2a− c

2c

[
×
[
−c
2c

,
2a + 2b− 3c

2c

[
=
[
p2 − 3q2

2c
,
p2 − 3q2

2c

[
×
[
−c
2c

,
2a + 2b− 3c

2c

[
=
[
−2k2 − 2k + 1

2c
,
−2k2 + 2k + 1

2c

[
×
[
−2k2 − 2k − 1

2c
,
−2k2 + 2k − 1

2c

[

We have assumed that α is the k-th integer pythagorean angle (i. e. p = k+1
and q = k); this yields to a = p2 − q2 = 2k + 1, b = 2pq = 2k(k + 1) and
c = p2 + q2 = 2k2 + 2k + 1.

With this hypothesis, we also have : m = (k+1
c , k

c) and m′ = (−k
c , k+1

c).
Consider the four following vectors:

– a = (−2k2−2k
2c , −2k2

2c) = (−k2−k
c , −k2

c),
– b = a + m = (−2k2+2

2c , −2k2+2k
2c) = (−k2+1

c , −k2+k
c),

– c = a + m−m′ = (−2k2+2k+2
2c , −2k2−2

2c) = (−k2+k+1
c , −k2−1

c),
– d = a−m′ = (−2k2

2c , −2k2−2k−2
2c) = (−k2

c , −k2−k−1
c)

According to these definitions, we see that these points surround F0↓ : ax <
(F ′

0↓)L, by > (F ′
0↓)U , cx > (F ′

0↓)R and dy < (F ′
0↓)D. Therefore we conclude that

F0↓ is contained in the square]ax, cx[×]dy,by[.
On the other hand, a belongs to Gα, from the membership criterion:

258 B. Nouvel and E. Rémila

Fig. 5. The position of the points a, b, c and d relatively to the hole frame

det
(
−k2 − k a
−k2 b

)
= det

(
−k2 − k 2 k + 1
−k2 2 k (k + 1)

)
= −2k4 − 2k3 − k2

= −k2(2k2 + 2k + 1)
= −k2c

≡ 0[c]

Since a belongs to the Gα, this implies that b, c and d also do. Thus
]ax, cx[×]dy,by[does not meet Gα, since each element of this square is at dis-
tance lower than ||m|| =

√
c

c to one of the vectors a, b, c, or d. Therefore, the set
F0↓∩Gα is empty, thus F0↓∩G′

α is empty, which gives the result from theorem 12.

6 Conclusion

The choice of the rounding operator as the discretization function matters for the
result : For instance, if we would have taken the floor function as discretization
operator, there is no hope to have a bijective rotation : since as long as α > 0,
#rα(0, 0)$ = #rα(i)$.

While there exists a span of possible discretization functions in between the
floor and the rounding, it is the rounding discretization that brings the best
point-by-point discretization. The arguments used to prove non-bijectivity hold
for any discretization : the only possible bijective rotations are those associated
to integer pythagorean angles.

The characterization of angles such that the discretized rotations is bijective,
which are somehow the angles for which the discretized rotations has good prop-
erties : everything is finite; therefore they are suitable for computations. It has

2 At the followingURL,http://perso.ens-lyon.fr/bertrand.nouvel/work/proofbij.mupad,
a mupad session that contains all the proof of our work has been saved, and the inter-
ested reader may consult it.

Characterization of Bijective Discretized Rotations 259

lead to scientific knowledge on the way rotations work : we have got a complete
description of G′

α for pythagorean angles. However, there are others classes of
angles, such as the hinge angles [8] that should be studied, and these angles seem
to be a source of wonderfully challenging problems.

References

1. Eric Andrès. Discrete Circles, and Discrete Rotations. PhD thesis, Université Louis
Pasteur, 1992.

2. Eric Andres. Habilitation à diriger des recherches : Modélisation analytique discrète
d’objets géometriques, 2000.

3. Jean-Marc Chassery and Annick Montanvert Géométrie discrète en analyse
d’images Hermes mai, 1991.

4. G.H. Hardy and E.M. Wright An Introduction to the Theory of Numbers Oxford
University Press, London, 1979.

5. Marie-André Jacob and Eric Andrès. On Discrete Rotations. In Discrete Geometry
for Computer Imagery, 1995. LLAIC editions (Univ. Clermont-Ferrand 1).

6. Bertrand Nouvel. Action des rotations sur le voisinage dans le plan discret. Mas-
ter’s thesis, ENS-Lyon, 2002.

7. Bertrand Nouvel and Eric Rémila. On Colorations Induced by Discrete Rotations.
In Discrete Geometry for Computer Imagery, 2003. Lecture Notes in Computer
Science, no 2886.

8. Bertrand Nouvel. An Incremental Transitive Algorithm for the Discretized Rota-
tions. Submitted to Discrete Geometry for Computer Imagery, 2005.

9. Jean Pierre Réveillès. Géométrie disrète, Calcul en nombre entiers, et Algorith-
mique. PhD thesis, Université Louis Pasteur, 1991.

10. Klaus Voss. Discrete Images, Objects and Functions in Z
n Springer, Berlin, 1993

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 260–275, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Magnification in Digital Topology

Akira Nakamura

Hiroshima University
akira668@urban.ne.jp

Dedicated to Professor A. Rosenfeld (1931–2004)

Abstract. When the author was working with Prof. Azriel Rosenfeld on joint
research, we proposed a very strong deformation technique in digital topology
called “magnification”. In this paper, the methods are explained in detail and
some applications are given.

1 Introduction

Between 1970 and 1975, Professor Azriel Rosenfeld published a number of
mathematically oriented articles [12, 13, 14, 15, 16] and established the filed we now
call digital topology. It is well-known that [12] is the first journal paper on digital
topology. Hence, people call him the “grandfather of digital topology”.

Over a long period of time, the author has collaborated with Azriel on various
problems in digital pictures. This joint work began from author’s first stay at his
laboratory called “Computer Vision Laboratory” at University of Maryland. The time
was November of 1977. In early years of our collaboration, the author worked on
“picture languages” with Azriel. In those days, the author interested in 2D (or 3D)
languages and automata. In 1979 Azriel published a pioneering book “Picture
Languages” [17] in this field. For the details of his contribution to theory of picture
languages, the author reported it in “Foundations of Image Understanding” [10] that is
a memorial book for Azriel’s career.

At these days, the author worked also on “digital geometry” related to picture
languages. Some of the author’s papers on this topic are contained in the book
“Digital Geometry” [2], a recent publication by Klette and Rosenfeld.

In the 1990’s, the author’s interest moved into digital topology. In the last decade,
we have worked in digital topology [8, 9, 11, 19, 20, 21, 22]. In almost all of these
papers, a method called “magnification” plays a key role.

In digital topology, the fundamental concept is a connectivity relation, and various
adjacency relations between two lattice points are used. Latecki, Eckhard and
Rosenfeld [5] defined a special class of subsets of binary digital images called
“well-composed”. In this special class in 2D, we have only one connectedness
relation, since 4- and 8-connectedness are equivalent, so that sets of this class have
very nice topological properties; for example, the Jordan Curve Theorem holds for
them, the Euler characteristic is locally computable, and further many topological
properties of these pictures can be treated in a continuous analog.

Magnification in Digital Topology 261

In this paper, we propose a method called “magnification” by which
non-well-composed pictures are converted to well-composed ones. Also, a partial
magnification is proposed. These deformations are based on the change of simple
pixels (of 2D case) or simple voxels (of 3D case) so that it is topology-preserving. We
extend the method to fuzzy pictures and also to n-dimensional (nD) pictures. After
that, some interesting applications of this method are shown. In the last work with
Azriel, the author tried to solve a problem (described in the final section of this paper)
by making use of magnification method. The 2D case of this problem is easily shown
by Proposition 2.5.4 in [17]. But, this plan has been not yet realized since Azriel
passed away Feb.22, 2004 while we were working.

The main parts of this paper have been already published, so that the explanation
is roughly given. But, magnification of fuzzy pictures on rectangular array is new, so
it is described a little minutely.

2 Magnifications in Binary Pictures

In general, a digital binary picture P of n-dimensional space is a mapping from Zn into
{0,1} such that either only finitely many lattice points are mapped into 1’s or only
finitely many points are mapped into 0’s. (The foreground of a segmented image
means the objects consisting of finite 1’s and the background means all other objects
consisting of 0’s. Most treatments of the subject allow only the first of these
conditions, but we shall find it convenient to allow either.) These 0 and 1 are called
n-xels, in particular, a 2-xel is called a pixel and a 3-xel is a voxel. We can treat digital
pictures of nD space, For two n-xels p and q, there are many adjacency relations of
lattice points, e.g., the 4-adjacency relation (its north, south, east, and west neighbors)
and 8-adjacency one (adding its northwest, northeast, southwest, and southeast
neighbors to 4-adjacency) in 2D. Similarly, there are the 6-adjacency and
26-adjacency in 3D.

For discussion in continuous analog of digital pictures, it is natural that we put a
closed unit hypercube at a lattice point such that a black hypercube is put at 1 and a
white hypercube at 0. For example, for 2D we put a unit square and for 3D to a unit
cube. We denote a unit hypercube at a lattice point p by [p]. In this case, there are the
following two possibilities (1) and (2) on the common boundary (if any) between a
black unit hypercube and a white one.

(1) The common boundary is black.
(2) The common boundary is white.

Usually, a digital picture P is denoted by P = (V, a, b, B). In this notation, V = Zn

and B is the objects of 1’s; for Z2 (a, b) = (8, 4) or (4, 8) and for Z3 (a, b) = (26, 6) or
(6, 26); for Zn (a, b) = (3n - 1, 2n) or (2n, 3n - 1). The (8, 4), (26, 6), (3n - 1, 2n)
correspond the above (1) and the (4, 8), (6, 26), (2n, 3n - 1) correspond to the above
(2). In this paper, we use the case (1).

Here, let us define a simple n-xel (n=2, 3, 4) of B. Let p be a n-xel of B and we
consider [p] and the polyhedron [B]. In [3], Kong gave the following definition: p is
simple iff there is a “deformation retraction” of [p] onto [p]∩ ([B - p]). This p is a

262 A. Nakamura

black simple n-xel. A white simple n-xel q is dually defined. Let q be an n-xel of the
complement of B.

Then, we regard q as 1. If q is a black simple in [B∪ q], q is called a white simple
4-xel. Let N8(p) be the set of 8-neighbors of a pixel p, and N4(p) be the set of
4-neighbors of a pixel p. N(p) is defined as N8(p)∪ {p}.

It is well-known that there are the following facts:

• A black pixel p (having value 1) is simple iff (i) p is 8-adjacent to exactly one
black component in N8(p), and (ii) p is 4-adjacent to exactly one white
component in N8(p),

• A white pixel p (having value 0) is simple iff (i) p is 8-adjacent to exactly one
black component in N8(p), and (ii) p is 4-adjacent to exactly one white
component in N8(p).

From the definition, we can show that changing values of simple n-xel preserves
topology (in the sense of homotopy). A deformation by a finite (possibly null) series
of applications of the change of value of simple 4-xel is called simple deformation
(abbreviated to SD). If a picture is obtained from another picture by SD, we can
define a relation these two pictures by making use of SD. This relation is called
SD-equivalent relation. It is obvious that “SD-equivalent” is an equivalent relation.

2.1 Magnification in 2D and 3D Cases

In this subsection, we explain the magnification in 2D. Let us consider a digital
picture P = (Z2, 8, 4, B). The magnification means to magnify B to each direction
(i.e., x-direction and y-direction) by a factor k (>1). We assume that 1’s of P are
between y-coordinates h and 1. In other words, the highest level of 1’s is h and the
lowest level of 1’s is 1. This assumption is always satisfied if we re-coordinate the
y-coordinate. First, we consider an upward magnification of P (i.e., to the y-direction)
by a factor k. After that, we repeat the similar magnification to x-direction.

The upward magnification of P is recursively done, y-level by y-level, from the
top y-level to bottom y-level.

(I) Procedure for the Top Level:

Let us consider an arbitrary 1 (say, p) on the top level, and q be a white pixel above p.
We change the value of q to 1, and we repeat this dilation until h X k. We apply

the same procedure to an arbitrary black pixel on the top level, and repeat the same
thing to every black pixel on the top level.

Then, we repeat the same procedure to each white pixel on the top level. In this
case, we do nothing since the pixel above a white pixel on the top level is also white.

(II) Recursive Step:

Assume that the dilation of all pixel at level i+1 has been finished. We dilate every
pixel at level i. For this case, we dilate a black pixel at level i before every white pixel
at level i. Here, from the assumption of recursive step we have the following
situations (a) and (b):

Magnification in Digital Topology 263

(a) If a pixel q(x, i+1) is black, then for every j such that i+1<j<k(i+1)+1 a pixel
p(x, j) is black.

(b) If a pixel q(x, i+1) is white, then for every j such that i+1<j<k(i+1)+1 a pixel
p(x, j) is white.

Let us consider an arbitrary black pixel r on level i. We dilate r until k X i. After
that, we dilate another arbitrary black pixel on the level i until k X i. We repeat this
procedure. After finishing dilations of all black pixels on level i, we repeat the similar
dilation to white pixels on level i.

Then, we dilate every pixel on level 1 after repeating the above procedure, we get
a magnified set of B to y-direction Then, we magnify the obtained set to x-direction
by the same method.

For 3D pictures, the procedure is almost the same as the 2D case.

Theorem 1: The above magnification of 2D and 3D binary picture is done by SD.

(Proof). It is enough to show that the above-mentioned procedure is done by SD.
For the first dilation of (I), this is immediate since all pixels above the top level

are white. For the second dilation of (I), this is also immediate since the conditions (a)
and (b) are also satisfied for i = h.

For the dilation of (II), the procedure is done by SD since the conditions (a) and
(b) have been satisfies.

The magnification procedure in 3D is almost the same as in 2D case. It is enough
to SD-dilation first upward (z-direction). After that, repeat it to x-direction then to
y-direction. //

We consider a “partial magnification” such that the magnification is performed a
limited area of a picture. For the 2D case, this is given in the following proposition:

Proposition 2: We partition a picture into the following regions A, B, C, and D. Let
C be an isothetic rectangle whose leftmost and rightmost columns are both constant.
Let A and B be isothetic rectangular regions just to the left and right of C that contain
all the 1’s that lie to the left and right of C, and D be the isothetic rectangular region
above A, B, and C that contains all 1’s that lie above A, B, and C. Then, A, B, and
D can be magnified upward any desired amount using SD.
(Note that C is not magnified.)

(Proof). D can be magnified because SD-magnification works for the rows above any
given row that is the top row of A, B and C. Further, A and B can be magnified
because the columns of C adjacent to A and B have constant values, and D has been
already magnified. //

By considering rectangular parallelepipeds instead of rectangles of Proposition 2,
we have the partial magnification of 3D.

Corollary 3: A partial magnification of 3D is done by SD.

(Proof). This is immediate by the same proof method as Proposition 2. //

264 A. Nakamura

2.2 Magnification in 4D and nD Cases

In argument of 4D case, it is convenient to regard an n-xel as a closed unit 4D
hypercube. As pointed out in [3], a simple 4-xel is characterized in the following
form:

A 4-xel q(x, y, z, t) of B is simple in B iff the following conditions all hold:

(a) ∪ Attach(q, B) is nonempty and connected.
(b) ∪ Boundary(q) - ∪ Attach(q, B) is nonempty and connected.
(c) ∪ Attach(q, B) is simply connected.

Here, Attach(q, B) is defined as the (possibly empty) xel complex Boundary(q)
∩

∪ {Boundary(x) | x is in (B - {q}) }. In other words, interpreting a 4-xel as a 4D

unit hypercube, q is simple in B iff there is a deformation retraction of [q] onto [q]
∩

([B - q]).
Then, we have the following Theorem 4:

Theorem 4: The magnification of 4D binary picture is done by SD.

(Proof). The proof is the same as Theorem 1.
First, we select one (say, t-coordinate) of the coordinations. Then, we apply the

same procedure to the t-direction. Then, it is enough to repeat successively the
dilation to x-direction, y-direction, and z-direction. //

Kong told the author in his private communication that our magnification
procedure will work for nD (n>4) case. In this case, a simple xel is defined as follows
[4]:

For any xel-image I and I ∋ x, x is said to be deformationally simple in I the
polyhedron ∪ (I -{x}} is strongly deformation retract of the polyhedron ∪ I.

This concept is obtained as an extension of 4D case. However, it is needed to
define exactly “xel” , so that this is an interesting further topic.

3 Magnification in Fuzzy Pictures

3.1 Magnification of Fuzzy Pictures on Hexagonal Grid

A digital binary picture was defined on Zn, and adjacency relations for 0’s and 1’s
were dual. But, for a fuzzy picture (i.e., gray-scale picture) it is a little difficult to
treat types of adjacency since the values are not two sorts. To avoid this trouble, in [1]
we use a hexagonal array S. (In the later, we treat also fuzzy pictures on a rectangular
array). A fuzzy picture is a mapping s: S → [0, 1] such that only finitely many
positive values appear in S. (The foreground of a fuzzy picture means the objects
consisting of finite positive values and the background means objects of 0’s.) In this
subsection, we give a magnification method for such pictures. The method was
already described in our paper [9]. In fuzzy pictures, each lattice point is denoted by a
capital letter.

Magnification in Digital Topology 265

The neighborhood of a lattice point P in a hexagonal array is illustrated below:

The set {A, B, C, D, E, F} is the neighborhood of P and is denoted by Nh(P).

This corresponds to the usual notation N8(P) in a rectangular array. In such a fuzzy
picture, we want to define a simple point. Before giving the definition, let us review
the concept of a simple (pixel) in nonfuzzy (two-valued) case for a hexagonal array.
A black point (having the value 1) is said to be a black simple point iff

 (b1) P is adjacent to exactly one black(having value 1) component in Nh(P),
 (b2) P is adjacent to exactly one white (having value 0) component in Nh(P).

Let S be a subset of S, and P be a simple point of S. Let S- be a subset of S
obtained from S by deleting P from S (changing the value of P from 1 to 0). Then, it
is well-known that the numbers of components and holes in S- are the same as those
in S, respectively.

The above definition of simple point was for a black point, but dual to the black
case we can also define a white simple point. A white point P (having value 0) is said
to be a white simple point iff

(w1) P is adjacent to exactly one black component in Nh(P),
(w2) P is adjacent to exactly one white component in Nh(P).

Let S be a subset of S and P be not in S. When we consider the subset S∪ {P}, the
value of P changes 1. If P is a white simple point, we have (b1) and (b2). We denote a
subset of S obtained from S by adding a white simple P to S (changing the value of P
from 0 to 1) by S+. Then, it is easily shown that the numbers of components and holes
of S are the same those of S+, respectively.

Based on the above observation, we now define simple points for a fuzzy picture
s. Let P be a point of S, and let the “extended” neighborhood Nh(P)∪ {P} of P be

and membership values of these points are denoted by s(Nh(P)∪ {P}) (hereafter we
denote the membership value of a point X by the small letter x). P is said to be a
negative-simple iff P is a black simple point of the set of thresholded s(Nh(P)∪ {P})
by p and P is to be positive-simple iff P is a white simple point of thresholded
s(Nh(P)∪ {P}) by p +e.

Let P be a negative-simple point and V be the set {x x is a value of Nh(P) and
x<p}.

Then, maxV is called the negative value of P. Similarly, let U be the set {x x is a
value of Nh(P) and x>p}. Then, minU is called the positive value of P. If P is a
negative-simple point, the replacement of p by the negative value of P is called the
negative-simple point operation. Similarly, of P is a positive-simple point, the

266 A. Nakamura

replacement of p by the positive value of P is called the positive-simple point
operation.

Let s be a fuzzy picture of S. Let s- be a fuzzy picture which is obtained from s by
applying the negative-simple point operation to a point of S, and s+ be a fuzzy picture
which is obtained from s by applying the positive-simple point operation to a point of S.

Example of s, s , and s+:

We have the following proposition that has been proved in [9].

Proposition 5: Let us consider the Nh(P) of a point P in a fuzzy picture. If P is a
negative-simple point then the degree of local connectedness of pairs of points in
Hh(P) does not decrease after applying the negative-simple point operation to P.
Also, if P is a positive-simple point then the degree of local connectedness of pairs of
points in Nh(P) does not increase after applying the positive-simple point operation to P.

(Proof). This has been proved in [9]. //

The simple deformation in fuzzy pictures is similarly defined as the crisp
(two-valued) case. In other words, a deformation by a finite (possibly null) series of
applications of the change of value of positive- (or negative-) simple point operation
is called simple deformation (abbreviated to SD).

Theorem 6: The magnification of fuzzy picture is done by SD.

(Proof). Let the extended neighborhood Nh(P)∪ {P} of P be

We will describe how to magnify the picture “upward” in the direction PB;
magnification in other direction is analogous. With respect to this direction, the
picture can be divided into “row”. Five of these rows intersect Nh(P)∪ {P}; the
intersections are {E}, {C, F}, {P}, {A, D}, and {D}. Let the nonzero points of the
picture be contained in n rows, numbered “upward”. Note that if P is in row i, B is in
row i+2 and E in row i-2.

As in Section 2.1, our method of magnification is based on “upward” dilation of
the constant-value runs of points (i.e., the maximal sequence of points in the PB
direction that have the same value) in the PB direction. Let ri be a run whose
uppermost point is in row i. We will dilate each ri by amount [id/2]; we will do this
first for all runs rn, then for runs rn-1, and so on. Let the run below ri have its uppermost
point in row h so that the length of ri is (i-h)/2 (note that i-h must be even). When we
dilate ri by [id/2], its length becomes (i-h)/2 + [id/2]. When we later dilate rh by [hd/2],

Magnification in Digital Topology 267

this erodes the dilated ri so that its length becomes (i-h)/2 + [id/2] - [hd/2] = (i-h)/2 +
(i-h)d/2 = (i-h)(d+1)/2, so that ri is magnified by factor d+1.

We now show that the dilations can be accomplished by repeated simple point
operations. If P is the uppermost point a run ri, then when we dilate ri, the runs that
contains A, B, and D have already been dilated by greater amount, or infinite runs of
0’s. Thus, A, B, and D belong to long runs of a’s ,b’s, and d’s in the PB direction. It is
easily verified that , no matter what the values a, b, d , and p are (note that p is not b,
since P is the uppermost point of a run), B is either positive-simple or negative-simple
(or both).

Suppose p<b. If a≤ p and d≤ p, p is the negative value of B, so performing the
negative simple point operation on B dilates ri upward by one step. If p<a<b or p<d<b
(or both), performing the negative simple point operation on B gives it the value a or
d; but B is still simple, and performing the operation again (twice, if we have p<a<d
or p<d<a<b) gives B the value p, as desired. Similarly, if p>b, performing the
positive simple point operation on B (one, twice , or three times) gives B the value p.
Thus in any case, ri can be dilated upward by repeatedly performing simple point
operations. //

3.2 Magnification of Fuzzy Pictures on Rectangular Array

In 2D rectangular array two-valued pictures, there were two kinds of neighboring
relations called 4-adjacency and 8-adjacent. It is standard practice to use different
types of connectedness for the 1’s and 0’s. For fuzzy digital pictures, however, it is
impossible to consider such adjacency relations between two pixel, because the fuzzy
values are in [0, 1]. To avoid this trouble, in the previous subsection, we have
considered the hexagonal array.

Here, let us consider magnifications of fuzzy pictures based on 2D rectangular
array and 3D cubical array.

In [18], Rosenfeld discussed topology of fuzzy pictures in the rectangular array.
Its central concept is “connectedness” between two fuzzy pixels. In [18], he didn’t
explicitly mention its adjacency relations. We define a simple pixel of the
rectangular array fuzzy pictures. This definition is based on fuzzy topology in [18],
especially the notion “thresholdable connected objects” described at page 87 of that
paper. Then, we explain a magnification method for such pictures. We will also
remark that this magnification method will be extended to 3D fuzzy picture in cubic
array.

A fuzzy digital picture on the rectangular array is a mapping of lattice points of Z2
into [0, 1], such that finitely many lattice points are mapped into positive numbers.
Using the same notation as in the hexagonal case, we denote fuzzy pictures by Greek
small letters s, t,

As the same before, we use small letters p, q, ... to represent fuzzy values of pixels
P, Q,..., respectively. For a real number 1 in [0, 1], we consider the following
threshold operation L1:

Ll(x) = 1 if x is not smaller than 1, and Ll(x) = 0 if x<1.
Then, we obtain a two-valued picture Ll(s) by operating Ll to s. Let P be a fuzzy

pixel. We consider N(P) of P. Further, we consider pixels in L1(N(P)) that are

268 A. Nakamura

obtained by threshold operation Lp . In other words, if a fuzzy value t in N(P) is not
smaller than p, then we give the value 1 to this pixel T, and if a fuzzy value t in N(P)
is smaller than p, we give the value 0 to this pixel T. Thus, we get two-valued picture
Lp ((N(P)) from N(P). In this case, P itself changes to Lp(p) (=1). If Lp(p) (=1) is a
simple pixel in Lp ((N(P)), then we say that P is a negative simple fuzzy pixel.

Also, we consider pixels in Lp+e (N(P)) that are obtained by threshold operation
Lp+e . In other words, if a fuzzy value t in N(P) is larger than p+e then we give the
value 1 to this pixel T, and if a fuzzy value t in N(P) is not larger than p+e, we give
the value 0 to this pixel T. Thus, we get a two-valued picture Lp+e(N(P)) from N(P). In
this case, P itself changes to Lp+e(p) (=0). If the Lp+e(p) (=0) is a white simple pixel in
Lp+e(N(P)), then we say that P is a positive simple fuzzy pixel.

Let P be a negative simple fuzzy pixel. In Lp ((N(P)), we consider a white (=0)
4-component that is 4-adjacent to P. The original fuzzy set of this component is
denoted by W(P). Then, the largest fuzzy value in W(P) is called the negative value
of P.

Let P be a positive simple fuzzy pixel. In Lp+e(N(P)), we consider a black (=1)
8-component that is 8-adjacent to P. The original fuzzy set of this component is
denoted by B(P). Then, the smallest fuzzy value in B(P) is called the positive value of
P. If P is a negative simple fuzzy pixel, the replacement of p by a negative value of P
is called the negative simple fuzzy value operation. Similarly, if P is a positive simple
fuzzy pixel, the replacement of p by a positive value of P is called the positive simple
fuzzy pixel operation.

Let s be a fuzzy picture. Let s- be a fuzzy picture that is obtained from s by
applying the negative fuzzy simple pixel of operation to a pixel in s. Note that s-

means an “eroded” fuzzy picture of s. Let s+ be a fuzzy picture that is obtained from s
by applying the positive simple fuzzy pixel to a pixel in s. Note again that s+ means a
“dilated” fuzzy picture of s.

Let s and t be two fuzzy picture. We say that t differs from s by simple
deformation (in short, SD) if t is obtained from s after a finite (possibly null)
applications of the negative simple pixel operation and/or the positive simple pixel
operation.

Example:

The center 0.4 in N(P) is p:

Magnification in Digital Topology 269

Proposition 7: Let s and t be two fuzzy pictures such that t is differs from s by SD.
Then, for an arbitrary value 1 in [0,1], Ll(s) and Ll(t) are SD-equivalent.

(Proof). To prove this Proposition, it is enough to show that Ll(s) and Ll(s
-) are

SD-equivalent and also that Ll(s) and Ll(s
+) are SD-equivalent. Here, we prove that

Ll(s) and Ll(s
-) are SD-equivalent. The proof of another case is similar.

Let P be negative simple fuzzy pixel and q be the negative value of P. Since Ll(s-
N(P)) and Ll(s - N(P)) are the same, we consider the region of N(P). We consider the
following cases:

(1) 1>p: For this case, Ll(s) and Ll(s) are the same, so that Proposition is
immediate.

(2) 1=p: For this case, only the value of P changes. From the definition of
negative simple fuzzy pixel operation, Lp(N(P)) and Lp(N(P)-) are
SD-equivalent. Hence, Proposition is true.

(3) p>1>q: This case is the same as (2).
(4) 1=q: In this case, Lp(N(P)) and Lp(N(P)-) are the same, so that Proposition is

true.
(5) q>1: In this case, Ll(s) and Ll(s) are the same.

Therefore, we have this Proposition. //

SD is not an equivalence relation, since we cannot get N(P) from N(P)- by SD.
See the above example. However, we say that SD of fuzzy pictures is
“topology-preserving”. Because we have Theorem 7.

Now, let us explain, in detail, a magnification method of 2D rectangular fuzzy
pictures. The magnification means the enlarging every pixel to k × k. For example,
we can get the following (2) from a given (1) by magnification.

In this case, letters a, b, c, ... are fuzzy values in (0, 1]. The picture (2) is a
magnification of (1) by a factor 3

Theorem 8: The above magnification method is done by SD.

270 A. Nakamura

(Proof). Let s be a given fuzzy picture. Let the portion of picture s that contains
non-zeros have n rows, which we number 1, ..., n starting from the bottom row; the
row of 0’s below the bottom row is numbered 0. Each column of s consists of runs of
a fuzzy value. We call a pixel of value p p-pixel. A p-pixel is upward dilated by a
factor of k (where k is a positive integer) as follows:

Assume that a p-pixel is a row h. We dilate this p-pixel until it reaches at a row
h×k. In this case, we assume that k is not 1. Because “k=1” means that we do nothing.
This dilation is done, row by row, from the top row to bottom row. In other words,
only after finishing the dilation of each fuzzy pixel on a row i+1, the next dilation is
applied to the row i.

For the top row, there is no problem since the row above the top consists entirely
of 0’s.

See Fig.1 of a case where k=3.

Fig. 1

Assume that we can upward SD-dilation until the row h+1. Then, it is enough to
show that the above dilation for the row h is done by SD. See Fig.2 of an example
for h=2.

Fig. 2

To prove that this dilation is done by SD, we need a detailed explanation.

Magnification in Digital Topology 271

From the assumption, we can have the following neighbors N(q) for every pixel
q’s on the row h+1

First, let us consider neighbors N(q)’s satisfying the condition q<v, where v is a
pixel below q. This neighbor N(q) is called a top 0 and bottom 1 neighborhood
(denoted by (0-1)-N(q)). In general, there are many (0-1)-N(q)’s on the row h. As
mentioned below, we upward dilate v until h X k. In this case, the application order
among (0-1)-N(q)’s is arbitrary.

For a (0-1)-N(q), we can have the following configuration by SD:

Because, Lq+e(N(q)) for N(q) satisfying the condition is one of the following
configurations by threshold.

In this case, ? is 0 or 1, and also ! is 0 or 1.
Furthermore, by repeating the same argument until the row h X k we have

By repeating this procedure for all (0-1)-N(q)’s on the row h, all neighbors N(q)’s
on the row h must eventually satisfy that q>v or q=v. But we need not to treat that
case q=v.

Because, for this case q=v it is not needed to dilate upward. Hence all N(q)’s that
we want apply SD must satisfy q>v. Such a N(q) is called a top 1 and bottom 0
neighborhood (denoted by (1-0)-N(q)). Note that there can be many (1-0)-N(q)’s on
the row h.

As mentioned below, we can upward dilate v. In this case, the application order
among (1-0)-N(q)’s is arbitrary.

Then we have the following configuration by SD:

272 A. Nakamura

The reason is as follows:
We apply a threshold operation Lq to an initial N(q) satisfying the assumption.

Then, we have one of the following configurations:

where $, %, ! are 0 or 1, but $≥ ? and %≥ !.
This fact follows from a configuration at the present stage of our dilation. Then,

the center 1 is a black simple pixel.
Then, we have:

Then, we repeat the same dilation until the row h X k. Since the above replacement
is done by SD, topology of s doesn’t change.

By repeating this procedure for all (1-0)-N(q)’s on the row h, all pixels p’s on h are
dilated until the row h X k .

Fig. 3

Therefore, by induction we can upward (to y-direction) magnify s by a factor k.
See Fig. 3. Note that (h+1) k - hk = k

After finishing all upward dilation, we apply the same magnification to
x-direction.

Therefore we have this theorem. //

4 Applications of Magnification

We used the magnification method in our paper [8, 20]. Adding to those, there are
some applications described in the following subsections.

Magnification in Digital Topology 273

4.1 Well-Composedness in 2D and 3D Pictures

As mentioned in Introduction, Latecki et al. introduced a special class of subsets of
binary digital pictures called “well-composed”. In the special sets in 2D, we have only
one connectedness relation, since 4- and 8-connected are equivalent, so that sets of
this class have nice topological properties. Since there is only one connecteness, we
can treat digital pictures in a continuous analog.

This is the same for 3D binary pictures.

Proposition 9: Let B be an arbitrary set of 1’s in 2D or 3D binary pictures. Then,
we can get a well-composed set B* by SD.

(Proof). First, we deform a given B to the magnified set (denoted by m(B)) by SD.
Then, it is enough to change a bad pixel (or voxel) that violates well-composedness in
m(B). This is possible by SD since m(B) is magnified by a sufficient large amount. //

4.2 Well-Composedness of 4D and nD (n>4)

We can define well-composed sets of 4D rectangular array pictures and construct a
well-composed set from a non-well-composed one. For the details, see my draft [11].
Further, Kong told me that this technique works for nD. Also he suggested the
following definition of well-composedness in nD pictures.

Let S of n-xels in Euclidean n-space Rn. Here, we stipulate that a real point on the
common boundary (if any) between a black n-xel and a white n-xel belongs to both.
S is “well-composed” iff the following conditions holds every (real) point p in Rn :
The set of n-xels containing p that lie in S, and the set of n-xels containing p that do
not lie in S, are both 2n-connected sets.

Based on this definition, we are able to SD-change a non-well-composed picture P
in 4D to a well-composed one. After magnifying P, it is enough to SD-deform each
bad 4-xel.

4.3 Multicolor Well-Composed Pictures

In [6], Latecki proposed an interesting concept of multicolor well-composed pictures,
and prove some important properties. This is nothing but our fuzzy pictures on
rectangular array. Therefore, it is immediate to SD-deform a well-composed fuzzy
picture from a non-well composed one. After magnifying, it is enough to SD-deform
a bad fuzzy pixel.

5 Further Problems and Concluding Words

There will be various interesting applications of the magnification. It has been known
that the converse of Jordan curve theorem (for surfaces in the meaning of
Morgenthaler and Rosenfeld) is not true for general 3D pictures. However, for
well-composed pictures we are able to have Jordan surface. Also, Latecki [7] shows
some interesting theorems on 3D well-composed pictures

274 A. Nakamura

Regarding deformation to a well-composed picture of an non-well-composed one
in nD pictures, it will be possible but needs further rigorous discussion.

As mentioned in Introduction, this is a memorial talk dedicated to Professor Azriel
Rosenfeld. In this talk, the author has reported recent joint works around the
magnification that we did. He said often “Magnification is a very strong technique
in digital topology”. In fact, this magnification method will be applied for the
following problem by making use of the proof technique of the Schoenflies theorem
(in the conventional topology). Because a magnified set consists of very small unit
cubes.

Problem: Let us consider a 3D picture P = (Z3, 26, 6, B), where B is well-composed
and doesn’t contain any cavity or any tunnel. Is B SD-equivalent to s single voxel ?

There is another hard problem (called the Animal Problem) similar to this one.
Here, animal means the union of lattice cubes homeomorphic to the 3-ball. However,
its proof is extremely hard, since animality-preserving is stronger than SD (see the
following example). The problem needs another magnification method than that of
this paper.

Hence, it will be still a further challenging problem.

Example: An animal {(0, 0, 0), (0, 0, 1), (1, 0 0), (1, 1, 0), (2, 1, 0), (2, 1, 1)} is
upward dilated by SD, but it is not done in animality-preserving.

Acknowledgment

The author expresses his appreciation to Prof. T.Y. Kong and Prof. L Latecki for
many helpful and stimulating suggestions in preparing this paper. Of course, sincere
thanks go to the late Prof. Rosenfeld who was very kind to the author. He was a
truly exceptional scientist. It was a great honor to know and to work with him. The
author will always be very grateful that he had the good fortune to do so.

The author closes this paper with the last email from Azriel.

To: akira668@urban.ne.jp
Subject: Problem
Cc: ar@vinland.cfar.umd.edu

Dear Akira,
Regrettably, I spent yesterday in the hospital and still have to take
a lot of tests. It may be several weeks before I know how serious the situation is.
When I find out, I’ll let you know. Sorry for the interruption to our work.
Azriel

References

1. Aizawa, K. and Nakamura, A.: Grammars on the hexagonal array, Inter. J. of Pattern
Recognition and Artificial Intteligence, 3 (1989), 469-477.

2. Klette, R. and Rosenfeld, A.: Digital Geometry, Morgan Kaufmann, San Francisco, 2004.

Magnification in Digital Topology 275

3. Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3-, 4-dimensional binary
images, LNCS, 1347(1997), 3-18.

4. Kong, T.Y. and Roscoe, A.W.: Simple points in 4-dimensional (and higher-dimensional)
binary images, (manuscript) April 2, 2004.

5. Latecki, L. and Eckhard, U., and Rosenfeld, A.: Well-compsed sets, Comput. Vision
Image Understanding, 61(1995), 70-83.

6. Latecki, L.: Multicolor well-composed pictures, Pattern Recgnition Letters, 16(1995),
425-431.

7. Latecki, L.: 3D well-composed pictures, Graphical Models and Image Processing,
59(1997), 164-172.

8. Nakamura, A. and Rosenfeld, A.: Digital konts, Pattern Recognition, 33(2000),
1541-1553.

9. Nakamura, A. and Rosenfeld, A.: Topology-preserving deformations of fuzzy digital
pictures, in Fuzzy Techniques in Image Processing edited by E.E. Kerre and M.
Nachtegael, Physica-Verlag, Heidelberg, 2000, 394-404.

10. Nakamura, A.: Picture languages, in Foundations of Image Understanding, edited by
L.S. Davis, Kluwer Academic Publishers, Boston, 2001, 127-155.

11. Nakamura, A.: Magnification method of 4D digital pictures (draft paper).
12. Rosenfeld, A.: Connectivity in digital pictures, J. of ACM, 17(1970), 146-160.
13. Rosenfeld, A.: Arcs and curves in digital pictures, J ofACM, 20(1973), 81-87.
14. Rosenfeld:, A.: Adjacency in digital pictures, Information and Control, 26(1974), 24-33.
15. Rosenfeld, A.: A characterization of parallel thinning algorithms, Information and

Control, 29(1975), 286-291.
16. Rosenfeld, A.: A converse to the Jordan curve theorem for digital curves, Information and

Control, 29(1975), 292-293.
17. Rosenfeld, A.: Picture Languages, Academic Press, New York, 1979.
18. Rosenfeld, A.: Fuzzy digital topology, Information and Control, 40(1979), 76-87.
19. Rosenfeld, A. and Nakamura, A. Local deformation of digital curves, Pattern Recognition

Letters, 18(1997), 613-620.
20. Rosenfeld, A., Kong, T.Y., and Nakamura, A.: Topology-preserving deformations of

two-valued digital pictures, Graphical Models and Image Processing, 60(1998), 24-34.
21. Rosenfeld, A., Saha, P.K., and Nakamura, A.: Interchangeable pairs of pixels in

two-valued digital images, Pattern Recognition, 34(2001), 1853-1865.
22. Rosenfeld, A. and Nakamura, A.: Two simply connected sets that have the same area are

IP-equivalent, Pattern Recognition, 35(2002), 537-541.

Curves, Hypersurfaces, and Good Pairs
of Adjacency Relations

Valentin E. Brimkov1 and Reinhard Klette2

1 Fairmont State University, 1201 Locust Avenue, Fairmont,
West Virginia 26554-2470, USA
vbrimkov@fairmontstate.edu

2 CITR Tamaki, University of Auckland, Building 731, Auckland, New Zealand
r.klette@auckland.ac.nz

Abstract. In this paper we propose several equivalent definitions of
digital curves and hypersurfaces in arbitrary dimension. The definitions
involve properties such as one-dimensionality of curves and (n − 1)-
dimensionality of hypersurfaces that make them discrete analogs of corre-
sponding notions in topology. Thus this work appears to be the first one
on digital manifolds where the definitions involve the notion of dimen-
sion. In particular, a digital hypersurface in nD is an (n−1)-dimensional
object, as it is in the case of continuous hypersurfaces. Relying on the ob-
tained properties of digital hypersurfaces, we propose a uniform approach
for studying good pairs defined by separations and obtain a classification
of good pairs in arbitrary dimension.

Keywords: digital geometry, digital topology, digital curve, digital hy-
persurface, good pair.

1 Introduction

A regular orthogonal grid subdivides Rn into n-dimensional hypercubes (e.g.,
unit squares for n = 2) defining a class C

(n)
n . Let C

(k)
n be the class of all k-

dimensional facets of n-dimensional hypercubes, for 0 ≤ k < n. The grid-cell
space Cn is the union of all these classes C

(k)
n , for 0 ≤ k ≤ n.

In this paper we study digital curves, hypersurfaces, and good pairs of ad-
jacency relations in grid-cell spaces Cn (n ≥ 2), equipped with adjacencies Aα

(e.g., α = 0, 1 for n = 2, and α = 0, 1, 2 for n = 3)1. A good pair2 combines
two adjacency relations on Cn. The reason for introducing the first good pairs
(α, β) in [8], with (α, β) equal to (1,0) or (0,1), were observations in [28]. (Aα is

1 In 2D, 0- and 1-adjacency correspond to 8- and 4-adjacency, respectively, while in
3D, 0-, 1-, and 2-adjacency correspond to 26-, 18- and 6-adjacency, respectively. The
latter are traditionally used within the grid-point model on Zn.

2 The name was created for the oral presentation of [15]. Note that the same term has
been used already with different meaning in topology.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 276–290, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Curves, Hypersurfaces, and Good Pairs of Adjacency Relations 277

the adjacency relation for 1s, which are the pixels with value 1, and Aβ is the
adjacency relation for 0s.) The benefit of two alternative adjacencies was then
formally shown in [25]: (1,0) or (0,1) define region adjacency graphs for binary
pictures which form a rooted tree. This simplifies topological studies of binary
pictures.

Good pairs may induce a digital topology3 on C
(n)
n (and not vice-versa in

general). For example, using the good pair (1,0) (or (0,1)) is equivalent to re-
garding 1-components of 1s as open regions and 0-components of 0s as closed
regions in C

(n)
n (or vice versa). [9] shows that there are two digital topologies

on C2 (where one corresponds to (1,0) or (0,1)), five on C3, and [16] shows that
there are 24 on C4 (all up to homeomorphisms). This paper provides a complete
characterization of good pairs, showing that there are 2n− 1 good pairs on Cn.

The study of good pairs is directed on the understanding of separability
properties: which sets defined by one type of adjacency allow to separate sets
defined by another type of adjacency. These separating sets can be defined in
the form of digital curves in 2D, or as digital surfaces in 3D. In this way, studies
of good pairs and of (separating) surfaces are directly related to one-another.
Topology of incidence grids is one possible approach: frontiers of closed sets of
n-cells define hypersurfaces, consisting of (n− 1)-cells.

Digital surfaces have been studied under different points of view. The ap-
proximation of n-dimensional manifolds by graphs is studied in [29, 30], with a
special focus on topological properties of such graphs defined by homotopy and
on homology or cohomology groups. [13] defined digital surfaces in Z3 based on
adjacencies of 3-cells. The approximation of boundaries of finite sets of grid
points (in n dimensions) based on “continuous analogs” was proposed and stud-
ied in [20]. [12] discusses local topologic configurations (stars) for surfaces in in-
cidence grids. Digital surfaces in the context of arithmetic geometry were studied
in [4].

A Jordan surface theorem for the Khalimsky topology is proved in [18]. For
discrete combinatorial surfaces, see [10]. For obtaining α-surfaces by digitization
of surfaces in R3, see [6]. It is proved in [21] that there is no local characterization
of 26-connected subsets S of Z3 such that its complement S consists of two 6-
components and every voxel of S is adjacent to both of these components. [21]
defines a class of 18-connected surfaces in Z3, proves a Jordan surface theorem
for these surfaces, and studies their relationship to the surfaces defined in [22].
[3] introduces a class of strong surfaces and proves that both the 26-connected
surfaces of [22] and the 18-connected surfaces of [21] are strong. For 6-surfaces,
see [5].

Frontiers in cell complexes (and related topological concepts such as compo-
nents and fundamental group) were studied in [1]. For characterizations of and al-
gorithms for curves and surfaces in frontier grids, see [11, 19, 27, 31]. G.T. Herman
and J.K. Udupa used frontiers in the grid cell model, and V. Kovalevsky general-

3 A digital topology on C(n)
n is defined by a family of open subsets that satisfy a

number of axioms (see, e.g., Section 6.2 in [14]).

278 V.E. Brimkov and R. Klette

ized these studies using the model of topologic abstract complexes,
that can also be modelled by incidence grids. [7] define curves in incidence
grids.

In this paper we present alternative definitions of digital hypersurfaces, par-
tially following ideas already published in the cited references above, and prove
their equivalence. In short, a digital α-hypersurface is composed by (closed)
α-curves; two of such curves are either disjoint and non-adjacent, or disjoint
but adjacent, or they have overlapping portions. The main contributions of this
paper are as follows (n ≥ 2):

– We define digital manifolds in arbitrary dimensions, as the definitions in-
volve the notion of dimension of a digital object [23]. Thus a digital curve is
a one-dimensional digital manifold, while a digital hypersurface in nD is an
(n− 1)-dimensional manifold, in conformity to topology (see, e.g., the topo-
logical definitions of curves by Urysohn and Menger, as discussed in [14]).
To our knowledge of the available literature, this is the first work involving
dimensionality in defining these notions in digital geometry.

– We show that there are two and only two basic types of α-hypersurfaces,
one for α = n− 1 and one for α = n− 2.
• For α = n − 2, the hypersurface S has (n − 2)-gaps which appear on

(n−2)-curves that build S and, possibly, between adjacent pairs of such
(n− 2)-curves.
• For α = n− 1, the hypersurface S is (n− 2)-gapfree,4 but may still have

0, 1, . . . , (n−4) or (n−3)-gaps, which may appear between adjacent pairs
of (n−1)-curves rather than on the curves themselves. The last possibility
is when an (n− 1)-hypersurface is i-gapfree for any 0 ≤ i ≤ n− 2.

– We investigate combinatorial properties of digital hypersurfaces, showing
that any digital hypersurface defines a matroid.

– Relying on the obtained properties of digital hypersurfaces, we define and
study good pairs of adjacency relations in arbitrary dimension. We define
nD good pairs through separation by digital hypersurfaces and show that
there are exactly 2n − 1 good pairs of adjacency relations. We also provide
a short review and comments on some other approaches for defining good
pairs which have been communicated elsewhere.

Some of the proofs of results reported in this paper follow directly from the
definitions, while others are technical and rather lengthy, and cannot be reported
in this brief conference submission. Complete proofs will be included in a full-
length journal version of this paper.

4 This was also called “tunnel-free” in earlier publications (e.g., in [2, 24]). The Betti
number β1 defines the number of tunnels in topology. Informally speaking, the loca-
tion of a tunnel cannot be uniquely identified in general; there is only a unique way
to count the number of tunnels. Locations of gaps are identified by defining sets.
However, our hypothesis is that tunnel-freeness (i.e., β1 = 0) and gap-freeness (in
the sense of [2, 24]) are equivalent concepts.

Curves, Hypersurfaces, and Good Pairs of Adjacency Relations 279

2 Preliminaries

We start with recalling basic definitions; notations follow [14]. In particular, the
grid point space Zn allows a refined representation by an incidence grid defined
on the cellular space Cn (as defined above).

2.1 Some Definitions

Elements in Ck
n are k-cells, for 0 ≤ k ≤ n. An m-dimensional facet of a k-cell

is an m-cell, for 0 ≤ m ≤ k − 1. Two k-cells are called m-adjacent if they share
an m-cell. Two k-cells are properly m-adjacent if they are m-adjacent but not
(m + 1)-adjacent.

A digital object S is a finite set of n-cells. An m-path in S is a sequence of
n-cells from S such that every two consecutive n-cells are m-adjacent. The length
of a path is the number of n-cells it contains. A proper m-path is an m-path in
which at least two consecutive n-cells are not (m + 1)-adjacent. Two n-cells of
a digital object S are m-connected (in S) iff there is an m-path in S between
them. A digital object S is m-connected iff there is an m-path connecting any
two n-cells of S. S is properly m-connected iff it contains two n-cells such that
all m-paths between them are proper. An m-component of S is a maximal (i.e.,
non-extendable) m-connected subset of S.

Let M be a subset of a digital object S. If S \M is not m-connected then the
set M is said to be m-separating in S. (In particular, the empty set m-separates
any set S which is not m-connected.) Let a digital object M be m-separating
but not (m− 1)-separating in a digital object S. Then M is said to have k-gaps
for any k < m. A digital object without any m-gaps is called m-gapfree.

Although the above definition has been used in a number of papers by dif-
ferent authors, one can reasonably argue that it requires further refinement.
Consider, for instance, the following example.

Let M1 and M2 be two digital objects that are subsets of a superset S, and
assume that M1 ∩ M2 = ∅ (we may think that M1 and M2 are “far away”
from each other). In addition, assume that M1 has a k-gap with respect to an
adjacency relation Aα, while M2 is a closed digital hypersurface that k-separates
S. Then it turns out that the digital set M1 ∪M2, that consists of (at least) two
connected components, has no k-gap with respect to Aα.

Despite such kind of phenomena, the above definition is adequate for the
studies that follow. Further work by authors will be aimed at contributing to a
more restrictive definition which will exclude “counterintuitive” examples as the
one above. For this, one can take advantage of some of the results presented in
the subsequent sections.

Let M be an m-separating digital object in S such that S \M has exactly
two m-components. An m-simple cell in M (with respect to S) is an n-cell c
such that M \ {c} is still m-separating in S. An m-separating digital object in
S is m-minimal (or m-irreducible) if it does not contain any m-simple cell (with
respect to S).

280 V.E. Brimkov and R. Klette

For a set of n-cells S, by S we denote the complement of S to the whole
digital space C

(n)
n of all n-cells.

J+(A) is the outer Jordan digitization (also called supercover) of a set A ⊆
Rn, which consists of all n-cells intersected by A.

By Bα(c) we denote the unit α-ball with center c consisting of all α-neighbors
of c. Furthermore, let B∗

α(c) = Bα(c) \ {c}.
For a given set M = {c1, c2, . . . , cm} ⊆ C

(n)
n of n-cells, we define its α-

adjacency graph Gα
M (V,E) with a set of vertices V = {v1, v2, . . . , vm} and a set

of edges E = {(vi, vj) : ci and cj are α − adjacent}. (In the above definition a
graph vertex vi corresponds to the element ci ∈M .)

2.2 Dimension

Mylopoulos and Pavlidis [23] proposed definition of dimension of a (finite or
infinite) set of n-cells S with respect to an adjacency relation Aα (for its use
see also [14]). Let B�

α(c) be the union of Bα(c) with all n-cells c′ for which
there exist c1, c2 ∈ Bα(c) such that a shortest α-path from c1 to c2 not passing
through c passes through c′. For example, B�

1(c) = B�
0(c) = B0(c) for n = 2, and

B�
2(c) = B�

1(c) = B1(c) and B�
0(c) = B0(c) for n = 3.

In what follows we will use the definition of dimension from [23]. Let S be
a digital object in C

(n)
n and Aα an adjacency relation on C

(n)
n . The dimension

dimα(S) is defined as follows:

(1) dimα(S) = −1 if S = ∅,
(2) dimα(S) = 0 if S is a totally α-disconnected nonempty set (i.e., there is

no pair of cells c, c′ ∈ S such that c �= c′ and {c, c′} is α-connected),
(3) dimα(S) = 1 if card(B(c)∩S) ≤ 2 for all c ∈ S, and there is at least one

c ∈ S with card(B(c) ∩ S) > 0,
(4) dimα(S) = max

c∈S
dimα(B�(c) ∩ S) + 1 otherwise.

If in the last item of the definition the maximum is reached for an n-cell c,
we will also say that S is dimα(S)-dimensional at c.

An elementary grid triangle in C
(2)
2 is a set T = {(i, j), (i+1, j), (i, j+1)}, or

a 90, 180, or 270 degree rotation of such a T . A 0-connected set M ⊆ C
(2)
2 is two-

dimensional with respect to adjacency relation A0 iff it contains an elementary
grid triangle as a proper subset. Similarly, a 1-connected set M ⊆ C

(2)
2 is two-

dimensional with respect to adjacency relation A1 iff it contains as a proper
subset a 2× 2 square of grid points. See [14]. These properties generalize to an
arbitrary dimension n, as follows.

Lemma 1. (a) An α-connected set M ⊆ C
(n)
n , 0 ≤ α ≤ n−2, is two-dimensional

iff it contains as a proper subset an elementary grid triangle consisting of three
cells c1, c2, c3, such that any two of them are α-adjacent.

(b) An (n−1)-connected set M ⊆ C
(n)
n is two-dimensional iff it contains as a

proper subset an elementary grid square consisting of four cells c1, c2, c3, c4 with
coordinates c1 = (i, i, . . . , i, i), c2 = (i + 1, i, . . . , i, i), c3 = (i + 1, i + 1, . . . , i, i),
c4 = (i, i + 1, . . . , i, i), for some i ∈ Z.

Curves, Hypersurfaces, and Good Pairs of Adjacency Relations 281

3 Digital Curves and Hypersurfaces

In what follows we consider digital analogs of simple closed curves and of hyper-
surfaces that separate the superspace C

(n)
n . We will consider analogs of either

bounded closed Jordan hypersurfaces or unbounded hypersurfaces (such as hy-
perplanes) that separate Rn. (The latter can also be considered as “closed” in
the infinite point.) We will not specify whether we consider closed or unbounded
hypersurfaces whenever the definitions and results apply to both cases and no
confusions arise. We also omit the word “digital” where possible.

The considerations take place in the n-dimensional space C
(n)
n of n-cells. We

allow adjacency relations Aα as defined above. We are interested to establish
basic definitions for this space that:

– reflect properties which are analogous to the topological connectivity of
curves or hypersurfaces in Euclidean topology,

– reflect the one- or (n− 1)-dimensionality of a curve or hypersurface, respec-
tively, and

– characterize hypersurfaces with respect to gaps.

A digital curve (hypersurface), considered in the context of an adjacency
relation Aα, will be called an α-curve (α-hypersurface).

3.1 Digital Curves

A set τ ⊂ C
(n)
n is an α-curve iff it is α-connected and one-dimensional with

respect to Aα. (Note that Urysohn-Menger curves in Rn are defined to be one-
dimensional continua.) Figure 1 presents examples and counterexamples for C

(2)
2 .

Fig. 1. Examples of a 1-curve (left), 0-curve (middle), and two 0-connected sets in the
digital plane that are neither 0- nor 1-curves (right)

In the rest of this section we define and study digital analogs of simple closed
curves (i.e., those that have branching index 2 at any point). The following lemma
provides necessary and sufficient conditions for a set of n-cells to be connected
and a loop with respect to adjacency relation Aα.

282 V.E. Brimkov and R. Klette

Lemma 2. Let ρ = {c1, c2, . . . , cl} be a set of n-cells. The following properties
are equivalent:

(A1) ci is α-adjacent to cj iff i = j ± 1(modulo l).
(A2) ρ is α-connected and ∀ c ∈ ρ, card(B∗

α(c) ∩ ρ) = 2.
(A3) The α-adjacency graph Gα

ρ (V,E) is a simple loop.

The following lemma provides conditions which are equivalent to the one-
dimensionality of a set of n-cells.

Lemma 3. Let ρ = {c1, c2, . . . , cl} be a set of n-cells. The following properties
are equivalent:

(B1) ρ is one-dimensional with respect to Aα.
(B2) If 0 ≤ α < n− 1, then ρ does not contain as a proper subset an elemen-

tary grid triangle such that any two of its n-cells are α-adjacent; if α = n − 1,
then ρ does not contain as a proper subset an elementary grid square.

(B3) ∀c ∈ ρ, the set B∗
α(c) ∩ ρ is totally disconnected.

We list one more condition.
(B4) If 0 ≤ α < n− 1, then l ≥ 4; if α = n− 1, then l ≥ 8.

Lemma 4. Let ρ = {c1, c2, . . . , cl} be a set of n-cells. Then all property pairs
((Ai), (Bj)), for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4, are equivalent.

Thus we are prepared to give the following general definition, summarizing
twelve equivalent ways for defining a simple α-curve.

Definition 1. A simple α-curve (0 ≤ α ≤ n − 1) of length l is a set ρ =
{c1, c2, . . . , cl} ⊆ C

(n)
n , satisfying properties (Ai) and (Bj), for some pair of in-

dexes i, j, with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4.

Note that for any n ≤ 2, four n-cells whose centers form a 1 × 1 square do
not form a digital curve, since such a set of cells would be two-dimensional.

A simple α-curve will also be called a one-dimensional α-manifold. In C
(2)
2

we have the following:

Proposition 1. A finite set ρ of pixels is a simple α-curve in C
(2)
2 (α = 0, 1)

iff it is α-minimal in C
(2)
2 .

Note that this last result does not generalize to higher dimensions since a
one-dimensional digital object cannot separate C

(n)
n if n > 2.

A simple α-curve ρ (0 ≤ α < n − 1) is a proper α-curve (or a proper one-
dimensional α-manifold), if it is not an (α + 1)-curve.

Example 1. A proper 0-curve in C
(2)
2 is a 0-curve which is not a 1-curve (see

Figure 2, left) It follows that any closed 0-curve is a proper 0-curve.
A proper 0-curve in C

(3)
3 is a 0-curve which is not a 1- or 2-curve, and a proper

1-curve is a 1-curve which is not a 2-curve.

Curves, Hypersurfaces, and Good Pairs of Adjacency Relations 283

Fig. 2. A proper 0-curve in 2D (left) and an improper 0-curve in 3D (right)

Any 1-curve is a proper 1-curve. This follows from the facts that the curve
is closed and one-dimensional with respect to 1-adjacency. If we assume the
opposite, we will obtain that the curve is either an infinite sequence of voxels
(e.g., of the form (0, 0, 1), (0, 0, 2), (0, 0, 3), . . .) or that it is two-dimensional.

However, a closed 0-curve does not need to be proper (see Figure 2, right).

A simple α-arc σ is an α-connected proper subset of a simple α-curve. It
contains exactly two n-cells c, c′ such that card(B∗

α(c)∩ρ) = cardB∗
α(c′)∩ρ) = 1.

3.2 Digital Hypersurfaces

We consider digital analogs of hole-free hypersurfaces. Accordingly, we are inter-
ested in hypersurfaces without (n−1)-gaps, although the theory can be extended
to cover this case, as well. However, in the framework of our approach, a hyper-
surface with (n− 1)-gaps can be an (n− 2)-dimensional set of n-cells, while we
want a digital hypersurface to be (n − 1)-dimensional, in conformity with the
continuous case.

We give the following recursive definition.

Definition 2. (i) M is a 1-dimensional (n − 1)-manifold in C
(n)
n if it is an

(n− 1)-curve in C
(n)
n .

M is a k-dimensional (2 ≤ k ≤ n− 1) (n− 1)-manifold in C
(n)
n if

(1) M is (n− 1)-connected (or, equivalently, M consists of a single (n− 1)-
component), and
(2) for any x ∈M the set B∗

0(x)∩M is a (k−1)-dimensional (n−1)-manifold
in C

(n)
n .

(ii) M is a k-dimensional α-manifold (0 ≤ α ≤ n− 2) in C
(n)
n if

(1) M is α-connected (or, equivalently, M consists of a single α-component),
and
(2) for any x ∈ M the set B∗

0(x) ∩M is a (k − 1)-dimensional α-manifold
in C

(n)
n but is not a (k − 1)-dimensional (α + 1)-manifold in C

(n)
n .

(Such an α-manifold will also be called proper.)

In the particular case when S is an (n − 1)-dimensional α-manifold in C
(n)
n

for α = n − 2 or n − 1, we say that S is a digital α-hypersurface. S is a proper
α-hypersurface for α = n− 2 if it is not an (n− 1)-hypersurface for α = n− 1.

284 V.E. Brimkov and R. Klette

It is also clear that any proper one-dimensional α-manifold is an α-curve.
We remark that if Condition (1) is missing, then S may have more than one

connected component. In such a case Condition (2) implies that any connected
component of S is an α-hypersurface.

Note that in the definition of an α-hypersurface we use the ball B∗
0(x) rather

than B∗
α(x), since the latter could cause certain incompatibilities. This can be

easily seen in the 3D case: if we use B∗
2 to define a 2-surface, B∗

2(x) ∩ S may
be a 1-curve rather than a 2-curve. Similarly, if we use B∗

1 to define a 1-surface,
B∗

1(x) ∩ S may be a 0-curve rather than a 1-curve. This is avoided by using B∗
0

in all cases.
The so defined digital hypersurfaces have the following properties, among

others.

Proposition 2. An α-hypersurface S is (n− 1)-dimensional at any n-cell in S
with respect to adjacency relation Aα.

Proposition 3. (a) An (n− 2)-hypersurface S has (n− 2)-gaps and is (n− 1)-
gapfree. Moreover, it is (n− 1)-minimal.

(b) An (n − 1)-hypersurface S is (n − 2)-gapfree. Note that S may have or
may not have k-gaps for 0 ≤ k ≤ n− 3. If S has k-gaps but no (k + 1)-gaps for
0 ≤ k ≤ n − 3, then S is (k + 1)-minimal. If S is k-gapfree for 0 ≤ k ≤ n − 3,
then S is 0-minimal.

Part (b) of this last proposition suggests to distinguish n− 1 types of hyper-
surfaces: those that are 0-gapfree, those with 0-gaps but with no 1-gaps, etc., up
to those with (n− 2)-gaps but with no (n− 1)-gaps.

We label them as (n− 1)(0), (n− 1)(1),. . .,(n− 1)(n−2)-hypersurfaces.
In fact, the concept of minimality itself can provide a complete characteriza-

tion of a digital hypersurface, as follows.

Definition 3. A set S ⊂ C
(n)
n is a k∗-hypersurface, for k = 0, 1, 2, . . . , n− 1, if

S is k-minimal in Cn.

Theorem 1. (a) S is an (n − 1)(i)-hypersurface (0 ≤ i ≤ n − 2) iff it is an
i∗-hypersurface.

(b) S is an (n− 2)-hypersurface iff it is an (n− 1)∗-hypersurface.

We remark that a k∗-hypersurface cannot have “singularities,” which may
appear, e.g., in case of a 3D “pinched sphere” or a “strangled torus.” In fact,
surfaces of that kind would either be non-simple or three-dimensional or both,
so they would not satisfy our definition of surface.

In summary, we have two types of hypersurfaces: (n − 1) and (n − 2) hy-
persurfaces, as the (n− 1) hypersurfaces can be classified (with respect to their
gaps) as (n− 1)-hypersurfaces of types 0, 1, 2, . . . , n− 2, respectively.

Indeed, one can consider more general digital hypersurfaces which are not
covered by the above definitions. If, for instance, we do not require in Definition

Curves, Hypersurfaces, and Good Pairs of Adjacency Relations 285

2 the manifold B∗
0(x) ∩ S to be proper, we may have a hypersurface where

subsets can be of varying hypersurface type. We are interested (see next section)
in combinatorial properties of the considered hypersurfaces. More general digital
hypersurfaces would be just “mixtures” of patches of hypersurfaces of some of
the considered types, and their combinatorial study would lose its focus.

Now let Γ be a closed surface in Rn and J+(Γ) its outer Jordan digitization.

Definition 4. Let Dk(Γ) be the family of all subsets of J+(Γ) that are k-
minimal, for some 0 ≤ k ≤ n − 1. We call a set of n-cells Dk(Γ) ∈ Dk(Γ)
a k-digitization of Γ if the Hausdorff distance Hd(Γ, V (Dk(Γ))) is minimal,
over all the elements of Dk(Γ).

Proposition 4. Any k∗-hypersurface is a k-digitization of certain hyper-
surface Γ .

Examples of k-digitization (and thus of k∗-hypersurfaces) were actually al-
ready provided by the following theorem from [4]:

Theorem 2. A digital hyperplane P k defined by P k = P k(b, a1, a2, . . . , an, ω) =
{x ∈ Zn| − ω

2 ≤ b +
∑n

i=1 aixi <
ω
2 }, where ω =

∑n
i=k+1 ai, 0 ≤ k ≤ n− 1, is a

k-digitization of the hyperplane γ : b + a1x1 + a2x2 + . . . + anxn = 0.

The above result is related to a theorem from [2] that characterizes the gaps
of analytically defined digital hyperplanes. Specifically, let P k be a digital hy-
perplane as in Theorem 2. If ω < an, then P k has (n − 1)-gaps; for 0 < k < n,
if
∑n

i=k+1 ai ≤ ω <
∑n

i=k ai, then P k has (k − 1)-gaps and is k-separating; and
if ω ≥

∑n
i=1 ai, P k is gapfree.

3.3 Hypersurface Digitization Matroid

In this section we briefly investigate the structure of digital hypersurfaces from
a combinatorial point of view.

Let E be a finite set and F a family of subsets of E. Recall that (E,F) is a
matroid5 if the following axioms are satisfied:

(1) ∅ ∈ F ,
(2) if F2 ∈ F and F1 ⊆ F2, then F1 ∈ F ,
(3) if F1, F2 ∈ F and card(F1) < card(F2), then there is an element x ∈ F2

such that F1 ∪ {x} ∈ F .

The last condition can be substituted by the following:

(3′) all maximal elements of F have the same cardinality.

Theorem 3. For a given k, 0 ≤ k ≤ n − 1, all k-digitizations of a closed
hypersurface Γ and their subsets form a matroid.

5 For getting acquainted with matroid theory the reader is referred to the monograph
by Welsh [32].

286 V.E. Brimkov and R. Klette

We call it the hypersurface digitization matroid. This theorem demonstrates
in particular the possibility to generate closed digital hypersurfaces by greedy-
type algorithms.

4 Good Pairs

As already mentioned, studies on digital surfaces naturally interfere with studies
on good pairs of adjacency relations. An important motivation for studying good
pairs is seen in the possibility that some results of digital topology may hold
uniformly for several pairs of adjacency relations. Thus one could obtain a proof
which is valid for all of them by proving a statement just for a single good pair
of adjacencies.

4.1 Variations of the Notion “Good Pair”

Different approaches in the literature lead to diverse proposals of good pairs
(note: they may be called differently, but address the same basic concept). It
seems to be unrealistic to define good pairs in such a way that this will cover all
previous studies. Therefore, instead of looking for a universal definition, it might
be more reasonable and useful to propose and study a number of definitions
related to the fundamental concepts of digital topology. The rest of this section
reviews several possible approaches.

Good pairs in terms of strictly normal digital picture spaces have been con-
sidered in [17]. In that framework, it is shown that adjacencies (1,0) and (0,1) in
2D, and (2,0), (0,2), (2,1) and (1,2) in 3D define strictly normal digital picture
spaces, while (1,1) and (0,0) in 2D and (2,2), (1,1), (0,0), (1,0) and (0,1) in 3D
do not.

In [14] good pairs have been defined for 2D as follows: (β1, β2) is called a
good pair in the 2D grid iff (for (i, k) ∈ {(1, 2), (2, 1)}) any simple βi-curve
βk-separates its (at least one) βk-holes from the background and any totally βi-
disconnected set cannot βk-separate any βk-hole from the background. It follows
that (1,0) and (0,1) are good pairs, but (1,1) and (0,0) are not. [14] does not
generalize this definition to higher dimensions, but suggests the use of (α, β)-
separators for the case n = 3. (M ⊆ Z3 is called an (α, β)-separator iff M is
α-connected, M divides Z3\M into (exactly) two β-components, and there exists
a p ∈M such that Z3 \ (M \ {p}) = (Z3 \M) ∪ {p} is β-connected.) (α, β)-and
(β, α)-separators exist for (α, β) = (0,2),(2,0), (1,2), (2,1), and (1,1). However,
there are some difficulties with the case (α, β) = (1, 1), as an example from [14]
illustrates. Further “strange” examples of separators in Z3 suggest to refine this
notion.

Another approach is based on the following digital variant of the Jordan curve
theorem due to A. Rosenfeld [26].

Theorem 4. If C is the set of points of a simple closed 1-curve (0-curve)
and card(C) > 4 (card(C) > 3), then C has exactly two 0-components (1-
components).

Curves, Hypersurfaces, and Good Pairs of Adjacency Relations 287

This theorem defines good pairs of adjacency relations in 2D, as follows.
(α, β) is a 2D good pair if for a simple closed α-curve C, C has exactly two
β-components. It follows that (1, 0) and (0, 1) are good pairs. It is also easy to
see that (1, 1) and (0, 0) are not good pairs.

This above definition can be extended to 3D, as follows: (α, β) is a 3D good
pair if for a simple closed α-surface S, S has exactly two β-components. We
remark that in view of the definition of an α-surface from Section 3.2, a 0-digital
surface would not be a true surface and should not be called “surface” since it
would have 2-gaps. In fact, 3D digital surfaces need to be at least 1-connected.
Thus (0,2) would not be a good pair in the framework of the Jordan surface
theorem approach.

Another approach is based on separation through surfaces (see, e.g., [11, 14]).

Theorem 5. A simple closed 1-curve (0-curve) γ 0-separates (1-separates) all
pixels inside γ from all pixels outside γ. More precisely, we have that a simple
closed 1-curve has exactly one 0-hole and a simple closed 0-curve has exactly one
1-hole. A simple closed 1-curve 0-separates its 0-hole from the background and
a simple closed 0-curve 1-separates its 1-hole from the background.

Based on this last theorem, we can give the following definition: (α, β) is
called a 2D good pair if any simple closed α-curve β-separates its β-holes from
the background.

Clearly, (1, 0) and (0, 1) are good pairs, while (0,0) is not a good pair. Note
that here also (1,1) is a good pair, as distinct from the case of good pairs defined
trough Jordan curve theorem.

Let us mention that in a definition from [14] both (α, β) and (β, α) are re-
quired to satisfy the conditions of a good pair. To avoid confusion, we suggest to
treat this case as a special event: (α, β) is called a perfect pair in 2D if any sim-
ple closed α-curve β-separates its β-holes from the background and any simple
closed β-curve α-separates its α-holes from the background.

In what follows we consider good pairs defined by this last approach that
seems the most reasonable to the authors.

4.2 Good Pairs for the Space of n-Cells

Definition 5. (α, β) is called a good pair of adjacency relations in C
(n)
n if any

closed α-hypersurface β-separates its β-holes from the background.

Here α is a (possibly composite) label of the hypersurface type in accordance
with our hypersurface classification above, while β is an integer representing an
adjacency. More precisely, α = (n − 1)(i), 0 ≤ i ≤ n − 2 or α = n − 2, and
0 ≤ β ≤ n− 1.

Theorem 6. There are 2n − 1 good pairs in the n-dimensional digital space:
((n − 1)(i), i) for 0 ≤ i ≤ n − 2, ((n − 1)(i), n − 1) for 0 ≤ i ≤ n − 2, and

288 V.E. Brimkov and R. Klette

(n − 2, n − 1), where the first component of such a pair labels the type of the
hypersurface and the second is an adjacency relation.

Alternatively, the good pairs are (i∗, i) for 0 ≤ i ≤ n− 1, and (i∗, n− 1) for
0 ≤ i ≤ n− 2.

Note that in a pair of the form ((n−1)(i), i), 0 ≤ i ≤ n−1 the first component
also specifies an adjacency relation corresponding to the type of the hyperplane.

We illustrate the last theorem for n = 2 and n = 3. For n = 2, the good pairs
are (1(0), 0), (1(0), 1), and (0∗, 1), which correspond to (1,0), (1,1), and (0,1),
respectively. See Figure 3.

Fig. 3. Illustration to good pairs in 2D: (0, 1) (left), (1, 1) (middle), and (1, 0) (right)

For n = 3 the good pairs are (2(0), 0), (2(1), 1), (2(0), 2), (2(1), 2), and (1∗, 2),
which correspond to (2,0), (2,1), (2,2), (2,2), and (1,2), respectively. Note that
pair (2,2) is counted twice since there are two different structures corresponding
to it.

5 Concluding Remarks

In this paper we proposed several equivalent definitions of digital curves and
hypersurfaces in arbitrary dimension. The definitions involve properties (such as
one-dimensionality of curves and (n − 1)-dimensionality of hypersurfaces) that
characterize them to be digital analogs of definitions for Euclidean spaces. Fur-
ther research may pursue designing efficient algorithms for recognizing whether
a given set of n-cells is a digital curve or hypersurface.

We also proposed a uniform approach to studying good pairs defined by
separation and, in that framework, obtained a classification of good pairs in
arbitrary dimension. A future task is seen in extending the obtained results
under other reasonable definitions of good pairs.

Acknowledgements

The authors thank the three anonymous referees for their useful remarks and
suggestions.

Curves, Hypersurfaces, and Good Pairs of Adjacency Relations 289

References

1. J.C. Alexander and A.I. Thaler. The boundary count of digital pictures. J. ACM,
18:105–112, 1971.

2. E. Andres, R. Acharya, and C. Sibata. Discrete analytical hyperplanes. Graphical
Models Image Processing, 59:302–309, 1997.

3. G. Bertrand and R. Malgouyres. Some topological properties of surfaces in Z3. J.
Mathematical Imaging Vision, 11:207–221, 1999.

4. V.E. Brimkov, E. Andres, and R.P. Barneva. Object discretizations in higher di-
mensions. Pattern Recognition Letters, 23:623–636, 2002.

5. L. Chen, D.H. Cooley, and J. Zhang. The equivalence between two definitions of
digital surfaces. Information Sciences, 115:201–220, 1999.

6. D. Cohen-Or, A. Kaufman, and T.Y. Kong. On the soundness of surface voxeliza-
tions. In: T.Y. Kong and A. Rosenfeld, editors. Topological Algorithms for Digital
Image Processing, 181–204. Elsevier, Amsterdam, The Netherlands, 1996.

7. M. Couprie and G. Bertrand. Tessellations by connection. Pattern Recognition
Letters, 23:637–647, 2002.

8. R.O. Duda, P.E. Hart, and J.H. Munson. Graphical-data-processing research study
and experimental investigation. TR ECOM-01901-26, Stanford Research Institute,
Menlo Park, California, March 1967.

9. U. Eckhardt and L. Latecki. Topologies for the digital spaces Z2 and Z3. Computer
Vision Image Understanding, 90:295–312, 2003.

10. J. Françon. Discrete combinatorial surfaces. Graphical Models Image Processing,
57:20–26, 1995.

11. G.T. Herman. Boundaries in digital spaces: Basic theory. In: T.Y. Kong and A.
Rosenfeld, editors. Topological Algorithms for Digital Image Processing, 233–261.
Elsevier, Amsterdam, The Netherlands, 1996.

12. Y. Kenmochi, A. Imiya, and A. Ichikawa. Discrete combinatorial geometry. Pattern
Recognition, 30:1719–1728, 1997.

13. C.E. Kim. Three-dimensional digital line segments. IEEE Trans. Pattern Analysis
Machine Intelligence, 5:231–234, 1983.

14. R. Klette and A. Rosenfeld. Digital Geometry - Geometric Methods for Digital
Picture Analysis. Morgan Kaufmann, San Francisco, 2004.

15. T.Y. Kong. Digital topology. In: L.S. Davis, editor. Foundations of Image Under-
standing, 33–71. Kluwer, Boston, Massachusetts, 2001.

16. T.Y. Kong. Topological adjacency relations on Zn. Theoretical Computer Science,
283:3–28, 2002.

17. T.Y. Kong, A.W. Roscoe, and A. Rosenfeld. Concepts of digital topology. Topology
and its Applications, 46:219–262, 1992.

18. R. Kopperman, P.R. Meyer, and R. Wilson. A Jordan surface theorem for three-
dimensional digital spaces. Discrete Computational Geometry, 6:155–161, 1991.

19. V. Kovalevsky. Multidimensional cell lists for investigating 3-manifolds. Discrete
Applied Mathematics, 125:25–44, 2003.

20. J.-O. Lachaud and A. Montanvert. Continuous analogs of digital boundaries: A
topological approach to isosurfaces. Graphical Models, 62:129–164, 2000.

21. R. Malgouyres. A definition of surfaces of Z3: A new 3D discrete Jordan theorem.
Theoretical Computer Science, 186:1–41, 1997.

22. D.G. Morgenthaler and A. Rosenfeld. Surfaces in three-dimensional digital images.
Information Control, 51:227–247, 1981.

290 V.E. Brimkov and R. Klette

23. J.P. Mylopoulos and T. Pavlidis. On the topological properties of quantized spaces.
I. The notion of dimension. J. ACM, 18:239–246, 1971.

24. J.-P. Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique.
Thèse d’état, Université Louis Pasteur, Strasbourg, France, 1991.

25. A. Rosenfeld. Adjacency in digital pictures, Information and Control 26, 24–33,
1974

26. A. Rosenfeld. Compact figures in digital pictures. IEEE Trans. Systems, Man,
Cybernetics, 4:221–223, 1974.

27. A. Rosenfeld, T.Y. Kong, and A.Y. Wu. Digital surfaces. CVGIP: Graphical Models
Image Processing, 53:305–312, 1991.

28. A. Rosenfeld and J.L. Pfaltz. Sequential operations in digital picture processing.
J. ACM, 13:471–494, 1966.

29. G. Tourlakis. Homological methods for the classification of discrete Euclidean
structures. SIAM J. Applied Mathematics, 33:51–54, 1977.

30. G. Tourlakis and J. Mylopoulos. Some results in computational topology. J. ACM,
20:430–455, 1973.

31. J.K. Udupa. Connected, oriented, closed boundaries in digital spaces: Theory and
algorithms. In: T.Y. Kong and A. Rosenfeld, editors. Topological Algorithms for
Digital Image Processing, 205–231. Elsevier, Amsterdam, The Netherlands, 1996.

32. D.J.A. Welsh. Matroid Theory. Academic Press, London, 1976.

A Maximum Set of (26, 6)-Connected Digital
Surfaces�

J.C. Ciria1, A. De Miguel1, E. Domı́nguez1, A.R. Francés1, and A. Quintero2

1 Dpt. de Informática e Ingenieŕıa de Sistemas, Facultad de Ciencias,
Universidad de Zaragoza, E-50009 – Zaragoza, Spain
{jcciria, admiguel, afrances}@posta.unizar.es

2 Dpt. de Geometŕıa y Topoloǵıa, Facultad de Matemáticas, Universidad de Sevilla,
Apto. 1160, E-41080 – Sevilla, Spain

quintero@us.es

Abstract. In the class H of (26, 6)−connected homogeneous digital
spaces on R3 we find a digital space EU with the largest set of digi-
tal surfaces in that class. That is, if a digital objet S is a digital surface
in any space E ∈ H then S is a digital surface in EU too.

1 Introduction

In the graph-theoretical approach to Digital Topology there is a common agree-
ment about the notion of digital curve: a subset S is a simple closed curve if each
p ∈ S is adjacent to exactly two other pixels in S. However, it is not yet well
established a general notion of digital surface that naturally extends to higher
dimensions and such that these digital objects have properties similar to those
held by topological surfaces. Although, in our opinion, this ambitious goal is far
to be reached, several relevant contributions can be found in the literature, some
of them are quoted next.

In [10], Morgenthaler and Rosenfeld gave for the first time a definition of
digital surface in the discrete space Z3 provided with the usual adjacency pairs
(6, 26) and (26, 6), and showed a discrete version of the Jordan-Brouwer Theo-
rem for these objects. Later on, Kong and Roscoe [7] generalized this result to
any adjacency pair (n,m) �= (6, 6), where {n,m} ⊆ {6, 18, 26}. More recently,
Bertrand and Malgouyres [4] and Couprie and Bertrand [6] have defined new
families of digital surfaces called strong n-surfaces, n ∈ {18, 26}, and simplic-
ity n-surfaces, n ∈ {6, 26}, respectively. A digital Jordan-Brouwer Theorem for
simplycity 26-surfaces can be found in [5].

Despite of these contributions, the most general definition of digital surface
is not yet clear, even if we restrict the problem to the (26, 6)-adjacency. Actually,
in [4] and [6] it is shown that the set of Morgenthaler’s (26, 6)-surfaces is a subset

� This work has been partially supported by the projects BFM2001-3195-C03-01 and
BFM2001-3195-C03-02 (MCYT Spain).

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 291–306, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

292 J.C. Ciria et al.

of the strong 26-surfaces and these are, in turn, strictly contained in the set of
simplicity 26-surfaces, and furthermore, in [8], a 26-connected digital object (see
Fig. 5(a)) which is not a simplicity 26-surface is still suggested as a new kind
of digital surface. On the other hand, these notions do not seem to generalize
easily to higher dimensions.

In [3] we propose a different framework for Digital Topology in which a notion
of digital surface and, more generally, of digital manifold naturally arises. In
this approach a digital space is defined as a pair (K, f), where K is a device
model used to represent digital images in a discrete setting and f is a lighting
function that associates to each digital image an Euclidean polyhedron, called
its continuous analogue. Continuous analogues intend to formalize the idea of
“continuous perception” that an observer may take on a digital image. In this
way, a digital object S is naturally said to be a digital surface if its “looks like”
as a surface; that is if the continuous analogue of S is a (combinatorial) surface.
Moreover, for digital spaces satisfying suitable conditions, digital surfaces exhibit
properties similar to those of topological surfaces. For example, in [3] and [2]
digital versions of the Jordan-Brouwer and Index Theorems are shown for digital
manifolds of arbitrary dimension.

This notion of digital surface is closely related to the other definitions quoted
previously. Actually, for each one of the families of surfaces mentioned above
it is found [1, 2, 5] a particular digital space (R3, f) resembling the (26, 6)-
connectedness and whose set of digital surfaces coincides or contains the cor-
responding family, where the device model R3 is the standard decomposition of
the Euclidean space R3 by unit cubes, which is canonically identified to Z3.

The construction of continuous analogues from a lighting function makes use
of elements which are not pixels. This way, and despite of its good properties,
our notion of digital surface might not be considered completely digital. The
relationship quoted above with other definitions of surfaces shows that it is
possible to find a purely digital characterization, in terms of adjacency, for our
surfaces in some digital spaces. However, to obtain such a characterization for all
possible (26, 6)-connected digital surfaces would require to analyse, case by case,
all digital spaces resembling the (26, 6)-connectedness. In this paper we show
that such an enormous effort is not necessary. Instead it will suffice to study
the surfaces of just one “universal” digital space. More precisely, we show that
there exists a homogeneous (26, 6)-connected digital space EU = (R3, fU) whose
family of digital surfaces is the largest in that class of digital spaces. Moreover,
as far as we know, that family strictly contains any set of surfaces defined on
Z3 using the graph-based approach in the literature. We also announce that we
have obtained the required characterization in terms of the (26, 6)-adjacency for
this set of surfaces, which will be the subject of a future paper.

This paper is organized as follows. Section 1 reviews the basic notions of our
framework for Digital Topology. In Section 2, some values of the lighting function
f on arbitrary digital objects in an homogeneous (26, 6)-connected digital space
(R3, f) are computed and, moreover, the values of f for any digital surface
S in (R3, f) are characterized in Section 3. Finally, in Section 4 we use this

A Maximum Set of (26, 6)-Connected Digital Surfaces 293

characterization to give the universal space EU = (R3, fU) that contains the
surfaces of any homogeneous (26, 6)-connected digital space (R3, f).

2 Preliminaries

In our approach to Digital Topology [3] we propose a multilevel architecture
which, using different levels, allows us to represent digital images in various
settings. However, for simplicity, we introduce in this section only the levels which
are explicitly used in this paper: the device model for representing the spatial
layout of pixels and the continuous level where a continuous interpretation for
each digital image is found.

In this paper we only use the device model Rn, termed the standard cubical
decomposition of the Euclidean n-space Rn, which is the polyhedral complex
determined by the collection of unit n-cubes in Rn whose edges are parallel to
the coordinate axes and whose centers are in the set Zn. Each n-cell in Rn is
representing a pixel, and so the digital object displayed in a digital image is a
subset of the set celln(Rn) of n-cells in Rn; while the other lower dimensional
cells in Rn (actually, k-cubes, 0 ≤ k < n) are used to describe how the pixels
could be linked to each other.

Remark 1. Each k-cell σ ∈ Rn can be associated to its center c(σ) which is a
point in the set Zn, where Z = 1

2Z = {x ∈ R | x = z/2, z ∈ Z}. If dimσ = n
then c(σ) ∈ Zn, so that every digital object O in Rn can be naturally identified
with a subset of points in Zn. Henceforth we shall use this identification without
further comment.

As it is usual in Polyhedral Topology, given two cells γ, σ ∈ Rn we write
γ ≤ σ if γ is a face of σ, and γ < σ if in addition γ �= σ. The interior of a cell σ
is the set ◦

σ= σ − ∂σ, where ∂σ = ∪{γ | γ < σ} stands for the boundary of σ.
We refer to [9, 11] for further notions on polyhedral topology.

In order to associate a continuous representation to each digital object we
use what is called a lighting function. To introduce this kind of functions we
need the following definitions.

Given a cell α ∈ Rn and a digital object O ⊆ celln(Rn) the star of α in O is
the set stn(α;O) = {σ ∈ O | α ≤ σ} of n-cells (pixels) in O having α as a face.
Similarly, the extended star of α in O is the set st∗

n(α;O) = {σ ∈ O | α∩σ �= ∅}
of n-cells (pixels) in O intersecting α. Finally, the support of O is the set supp(O)
of cells of Rn (not necessarily pixels) that are the intersection of n-cells (pixels) in
O; that is, α ∈ supp(O) if and only if α = ∩{σ | σ ∈ stn(α;O)}. In particular,
if α is a pixel in O then α ∈ supp(O). To ease the writing, we shall use the
following notation: supp(Rn) = supp(celln(Rn)), stn(α;Rn) = stn(α; celln(Rn))
and st∗

n(α;Rn) = st∗
n(α; celln(Rn)). Finally, we shall write P(A) for the family

of all subsets of a given set A.
A lighting function on the device model Rn is a map f : P(celln(Rn))×Rn →

{0, 1} satisfying the following five axioms for all O ∈ P(celln(Rn)) and α ∈ Rn:

294 J.C. Ciria et al.

(1) object axiom: if α ∈ O then f(O,α) = 1;
(2) support axiom: if α /∈ supp(O) then f(O,α) = 0;
(3) weak monotone axiom: f(O,α) ≤ f(celln(Rn), α);
(4) weak local axiom: f(O,α) = f(st∗

n(α;O), α); and,
(5) complement connectivity axiom: if O′ ⊆ O ⊆ celln(Rn) and α ∈ K are such

that stn(α;O) = stn(α;O′), f(O′, α) = 0 and f(O,α) = 1, then the set
α(O′, O) = ∪{ ◦

ω | ω < α, f(O′, ω) = 0, f(O,ω) = 1} ⊆ ∂α is non-empty and
connected.

If f(O,α) = 1 we say that f lights the cell α for the object O, otherwise f
vanishes on α for O.

Remark 2. a) For any digital object O ⊆ celln(Rn) and any n-cell α ∈ Rn,
Axioms 1 and 2 imply that α ∈ O if and only if f(O,α) = 1.

b) Notice that Axiom 5 is equivalent to requiring that if stn(α;O)= stn(α;O′),
f(O,α) = 1 and α(O′, O) is empty or non-connected then necessarily f(O′, α) =
1. As a consequence, if O1 ⊆ O2 ⊆ · · · ⊆ Ok is a sequence of objects with
stn(α;O1) = stn(α;Ok), f(Ok, α) = 1 and all the sets α(Oi, Oi+1), 1 ≤ i ≤ k−1,
are empty or non-connected then f(Oi, α) = 1 for all i.

Given a lighting function f on Rn, at the continuous level of our architecture
we define the continuous analogue of a digital object O ⊆ celln(Rn) as the
underlying polyhedron |Af

O | of the simplicial complex Af
O, whose k-simplexes

are 〈c(α0), c(α1), . . . , c(αk)〉 where α0 < α1 < · · · < αk are cells in Rn such
that f(O,αi) = 1, 0 ≤ i ≤ k. The complex Af

O is called the simplicial analogue
of O. Notice that the simplicial analogue Af

O is always a full subcomplex of
the barycentric subdivision of the standard cubical decomposition complex Rn.
Moreover, according to Remark 2(a), the center c(σ) of an n-cell σ ∈ celln(Rn)
is a 0-simplex of Af

O if and only if σ belongs to the digital object O.
For the sake of simplicity, we will usually drop “f” from the notation of the

levels of an object. Moreover, for the whole object celln(Rn) we will simply write
ARn for its simplicial analogue.

A digital space is a pair (Rn, f) where f is a lighting function on the device
model Rn; that is, a model for representing digital images, Rn, together with
a continuous interpretation of each digital image provided by f . See [3] for a
definition of digital spaces on more general device models.

As continuous analogues intend to be the “continuous interpretation” of digi-
tal images, it is natural to introduce digital notions in terms of the corresponding
continuous ones. For example, we will say that an object O is connected if its
continuous analogue |AO | is a connected polyhedron. Similarly, an object O is
called a m-dimensional digital manifold if |AO | is a combinatorial m-manifold
without boundary; that is, we call O a digital surface (2-manifold) if it looks like
as a surface. More precisely, O is a digital surface if for each vertex v ∈ AO its
link lk(v;AO) = {A ∈ AO | v,A < B ∈ AO and v /∈ A} is a 1-sphere. See [11]
for the general definition of combinatorial manifold.

A Maximum Set of (26, 6)-Connected Digital Surfaces 295

(a) O (b) |Afmax
O | (c) |Ag

O |

Fig. 1. (a) A digital object O ⊆ cell2(R2) whose continuous analogues in the digital
spaces (b) (R2, fmax) and (c) (R2, g) are a curve and a disconnected set

Example 1. The following are lighting functions on the device model R2:

(a) fmax(O,α) = 1 if and only if α ∈ supp(O)
(b) g(O,α) = 1 if and only if α ∈ supp(O) and st2(α;R2) ⊆ O
(c) h(O,α) = fmax(O,α) if c(α) = (x, y) ∈ Z2 and x ≥ 0, and h(O,α) =

g(O,α) otherwise.

Figures 1(b) and (c) show the continuous analogues that the lighting func-
tions fmax and g, respectively, associate to the object O ⊆ cell2(R2) depicted
in Fig. 1(a). According to the previous definitions, O should be considered as
a connected curve (1-manifold) in the digital space (R2, fmax) while it is a non
connected object in (R2, g).

It can be readily checked that the functions fmax and g, and hence the cor-
responding continuous analogues, are invariant under plane motions while the
function h does not. This difference suggests the following definition. A digital
space (Rn, f) is said to be homogeneous if for any spatial motion ϕ : Rn → Rn

preserving Zn the equality f(ϕ(O), ϕ(α)) = f(O,α) holds for all cells α ∈ Rn

and digital objects O ⊆ celln(Rn). According to Axiom 4, if (Rn, f) is ho-
mogeneous, a minimal family of objects, called canonical patterns, suffices to
determine f . Actually, f(O,α) = f(patt(O,α), αk) for any object O and any
k-cell α ∈ Rn, 0 ≤ k < n, where αk is a fixed but arbitrary k-cell and the object
patt(O,α) ⊆ st∗

n(αk;Rn), called the pattern of O in α, is the unique canonical
pattern P for which there exists a spatial motion R3 → R3 preserving Z3 that
carries st∗

n(α;O) to P .

Remark 3. Fig. 2 shows the canonical patterns around a vertex α0 for the device
model R3. Black dots in this figure are actually representing the 3-cells of each
canonical pattern P ⊆ st3(α0;R3), according to the identification in Remark 1,
and the vertex α0 itself corresponds to the center of the cubes. Through this
paper we will consider de following subfamilies of canonical patterns:

A = {A0, A1, A
a
2 , A

b
2, A

a
3 , A

a
4}

B = {Bc
2, B

c
5, B

b
6, B8}

C = {Cc
3, C

b
4, C

e
4 , C

f
4 , C

b
5, C

c
6}

D = {Db
3, D

c
4, D

d
4 , D

a
5 , D

a
6 , D7}

296 J.C. Ciria et al.

A0 A1 Aa
2 Ab

2 Bc
2 Aa

3

Db
3 Cc

3 Aa
4 Cb

4 Dc
4 Dd

4

Ce
4 Cf

4 Da
5 Cb

5 Bc
5 Da

6

Bb
6 Cc

6 D7 B8

Fig. 2. Canonical patterns of R3 around a vertex

3 (26, 6)-Connected Digital Spaces

The aim of this section is to find some necessary conditions on the lighting
function f of a digital space (R3, f) providing us with the (26, 6)-connectivity
usually defined on Z3 by means of adjacencies. For this, we first recall that
a digital object O in (R3, f) is naturally said to be connected if its continuous
analogue |AO | is connected. And, in the same way, the complement cell3(R3)−O
of O is declared to be connected if |AR3 | − |AO | is connected. These notions of
connectedness are characterized by the following notions of adjacency.

Definition 1. Two cells σ, τ ∈ O are ∅-adjacent if f(O,α) = 1 for some
common face α ≤ σ ∩ τ . Moreover, σ, τ ∈ cell3(R3) − O are O-adjacent if
f(cell3(R3), α) = 1 and f(O,α) = 0 for some α ≤ σ ∩ τ .

More precisely, for X ∈ {∅, O}, the notion of X-adjacency directly leads
to the notions of X-path, X-component and X-connectedness. Then, it can be
proved that |AO | is connected if and only if the object O is ∅-connected and
|AR3 | − |AO | is connected if and only if cell3(R3) − O is O-connected. See
Section 4 in [3] for a detailed proof of this fact in a much more general context.

By using this characterization, one may get intuitively convinced that the
lighting functions fmax and g in Example 1 describe the (8, 4)- and (4, 8)-
adjacencies usually defined on Z2. Actually the digital spaces (R2, fmax) and
(R2, g) are (8, 4)- and (4, 8)-connected, respectively, in the sense of the following.

A Maximum Set of (26, 6)-Connected Digital Surfaces 297

Definition 2. Given an adjacency pair (k, k) in Zn we say that the digital space
(Rn, f) is (k, k)-connected if the two following properties hold for any digital
object O ⊆ celln(Rn):

1. C is a ∅-component of O if and only if it is a k-component of O; and,
2. C is an O-component of the complement celln(Rn)−O if and only if it is a

k-component.

Several examples of (homogeneous) (26, 6)-connected digital spaces (R3, f)
can be found in [1, 3, 5] as well as examples of (k, k)-connected spaces for k, k ∈
{6, 18, 26}.

From now on, we assume that (R3, f) is a given (26, 6)-connected digital
space for which we collect some necessary conditions on the lighting function f
that will be useful in the next section.

Proposition 1. For all cells α ∈ R3, f(cell3(R3), α) = 1. Thus, |AR3 | = R3.

Proof. By Axiom 2, f(Oα, α) = 1 for any 26-connected object Oα = {σ, τ}, with
α = σ ∩ τ . Hence the result follows by Axiom 3.

Proposition 2. Let O ⊆ cell3(R3) be a digital object. Given a 2-cell γ ∈
supp(O), let α < γ be a vertex and β1, β2 < γ the edges with α = β1∩β2. Assume
that f(O,α) = 1 and f(O, γ) = f(O, β1) = f(O, β2) = 0. Then f(O, δ) = 0 for
each face δ < γ such that δ �= α.

Proof. As γ ∈ supp(O), st3(γ;O) = st3(γ;R3). Moreover, by Proposition 1 we
know that f(cell3(R3), γ) = 1. Then, since f(O, γ) = 0, Axiom 5 yields that
γ(O, cell3(R3)) = ∪{ ◦

ω | ω < γ, f(O,ω) = 0, f(cell3(R3), ω) = 1} is a connected
set. Therefore the result follows since this set contains

◦
β1 ∪

◦
β2 and f(O,α) = 1.

Proposition 3. Let P = patt(O,α) be the pattern of an object O in a vertex
α ∈ R3. Then: (a) f(O,α) = 0 if P ∈ A and (b) f(O,α) = 1 if P ∈ B ∪ C.

Proof. Part (a) is an immediate consequence of Axiom 2 since P ∈ A implies
α /∈ supp(O).

For P = B8, st3(α;O) = st3(α;R3), and (b) follows by Axiom 4 and
Proposition 1. Moreover, if P = Bc

2, st3(α;O) is the object Oα in the proof
of Proposition 1 and, by that proof, f(st3(α;O), α) = 1. Hence f(O,α) = 1 by
Axiom 4.

For the rest of patterns in B∪C we consider the digital object O = (cell3(R3)
−st3(α;R3))∪st3(α;O). It is easily checked that its complement O′ = st3(α;R3)−
st3(α;O) is not 6-connected and hence non O-connected. This shows that f(O,α)
= 1; otherwise f(O,α) = 0 and f(cell3(R3), α) = 1 (Proposition 1) give us the
O-connectivity of O′. Now, Axiom 4 and the equality st3(α;O) = st3(α;O) lead
to f(O,α) = 1.

Remark 4. The behaviour of the lighting function f on the patterns in D is not
determined by the (26, 6)-connectivity. To check this it suffices to consider the
homogeneous (26, 6)-connected spaces (R3, f1) and (R3, f2) given by

298 J.C. Ciria et al.

(a) (b)

Fig. 3. Auxiliary figures for Propositions 5 and 6

a) If dimα �= 0 then f1(O,α) = 1 = f2(O,α) if and only if α ∈ supp(O).
b) If dimα = 0 then f1(O,α) = 1 if and only if patt(O,α) ∈ B ∪ C while

f2(O,α) = 1 if and only if patt(O,α) ∈ B ∪ C ∪D.

Proposition 4. Let O ⊆ cell3(R3) be a digital object and β = 〈α1, α2〉 ∈ R3 an
edge such that f(O,α1) = f(O,α2). Then f(O, β) = 1 if either (a) st3(β;O) =
st3(β;R3) or (b) st3(β;O) = {σ, τ} and β = σ ∩ τ .

Proof. For case (b) we consider the digital object O1 = (cell3(R3)−st3(β;R3))∪
{σ, τ}. Then f(O1, αi) = 1 by Proposition 3 since patt(O1, αi) = Bb

6, i = 1, 2.
Moreover, the complement st3(β;R3)−{σ, τ} of O1 consists of two non 6-adjacent
(equivalently, non O1-adjacent) 3-cells. Therefore f(O1, α) = 1, and Remark 2(b)
yields f(O,α) = 1.

In case (a) we have f(cell3(R3), β) = f(cell3(R3), αi) = 1 by Proposition 1,
and we argue as in case (b) with O1 = cell3(R3).

Next we will obtain some properties of f related to the pattern Da
6 . For

this we use Fig. 3(a) which, according to the identification in Remark 1, depicts
st∗

3(γ;R3) for the 2-cell γ = σ0∩τ0. Moreover, let αi = σ0∩τ2i and βi = σ0∩τ2i−1
(1 ≤ i ≤ 4) denote the vertices and edges of γ respectively. Observe that if the
black dots in Fig. 3(a) represent 3-cells contained in a given object O, we have
patt(O,α1) = Da

6 .

Lemma 1. With the above notation assume that α1 is the only face of γ for
which f(O,α1) = 1. Then {σi, τi} �⊆ O for i = 5, 6, 7.

Proof. It is an immediate consequence of the hypothesis and Proposition 4 that
{σi, τi} �⊆ O for i = 5, 7. Therefore {σ6, τ6} ⊆ O yields a contradiction since
then patt(O,α3) ∈ B ∪ C and f(O,α3) = 1 by Proposition 3.

Proposition 5. With the notation and hypothesis of Lemma 1 assume in ad-
dition that (R3, f) is homogeneous. Then f(O, γ) = 1 if the following extra
condition holds:

p7) f(O,α) = 0 for all digital objects O ⊆ cell3(R3) and vertices α ∈ R3 with
patt(O,α) = D7.

A Maximum Set of (26, 6)-Connected Digital Surfaces 299

Proof. By Remark 2(b) it will suffice to show that for the object O1 = O ∪
{σ2, σ6, τ6}, see Fig. 3(a), the sets

γ(O,O1) = ∪{ ◦
ω | ω < γ, f(O,ω) = 0, f(O1, ω) = 1}

γ(O1, cell3(R3)) = ∪{ ◦
ω | ω < γ, f(O1, ω) = 0, f(cell3(R3), ω) = 1}

are non-connected since f(cell3(R3), γ) = 1 by Proposition 1.
Notice that O1 �= O by Lemma 1. Next we sate all the values f(O1, αi) on

the vertices αi, 1 ≤ i ≤ 4, of γ. As st3(αi;O) = st3(αi;O1) for i = 2, 4, Axiom 4
yields f(O1, αi) = 0. Moreover, patt(O1, α1) = D7 and thus f(O1, α1) = 0 by the
extra condition (p7). In addition, one readily checks that patt(O1, α3) ∈ B ∪ C
and, so, f(O1, α3) = 1 by Proposition 3.

From the above values and Proposition 4 it follows that f(O1, βi) = 1, i =
1, 2. Therefore, a direct checking shows that α1 and α2 lie in different components
of γ(O1, cell3(R3)) and

◦
β1 and

◦
β2 lie in different components of γ(O,O1).

Proposition 6. Assume that (R3, f) is homogeneous and satisfies condition
(p7) in Proposition 5. Let γ0, γ1 ∈ R3 be two 2-cells which do not lie in the
same 3-cell and such that γ0 ∩ γ1 = 〈α, α′〉 is an edge. Then f(O, γ0) = 1 for
any object O ⊆ cell3(R3) such that patt(O,α) = B8 and, moreover, f(O, δ) = 0
for any face δ < γ0 or δ < γ1 with δ �= α.

Proof. We proceed as in the proof of Proposition 5. For this we label the 3-cells
in st∗

3(γ0;R3)∪st∗
3(γ1;R3) as it is shown in Fig. 3(b), where γj = σj∩τj , j = 0, 1,

and αi = σ0 ∩ τ2i and βi = σ0 ∩ τ2i−1, 1 ≤ i ≤ 4, are the vertices and edges,
respectively, of γ0. Notice that α = α1 and α′ = α4.

Similarly to Lemma 1 we can show that {σk, τk} �⊆ O for k ∈ {5, 7, 8, 10},
and then by Proposition 3 we easily derive that {σs, τs} �⊆ O for s = 6, 9.

Then we consider the new object O1 = O∪{σ4, τ4, σ5, τ5, σ7, τ7, x6, x8} where
xi = σi if σi ∈ O and xi = τi otherwise. Notice that O �= O1 by the previous
paragraph, moreover we have: f(O1, α1) = f(O1, α2) = 1 by Proposition 3 since
patt(O1, αi) = B8, i = 1, 2; f(O1, α3) = f(O1, α4) = 0 since patt(O1, αi) = D7,
i = 3, 4; and, f(O1, β2) = f(O1, β4) = 1 by Proposition 4. From these values it is
not difficult to show that

◦
β2 and

◦
β4 belong to different components of γ0(O,O1)

while α3 and α4 define different components in γ0(O1, cell3(R3)). Hence these
sets are not connected and, by Remark 2(b), we get f(O, γ0) = 1.

4 Surfaces on (26, 6)-Connected Digital Spaces

Given a homogeneous (26, 6)-connected digital space (R3, f), we have already
worked out in Section 3 a set of values of f for arbitrary digital objects. Through
this section S will stand for a surface in (R3, f) and we will compute the value
f(S, δ) for each cell δ ∈ R3. Indeed, if δ is a 3-cell, we know by Remark 2(a) that
f(S, δ) = 1 if and only if δ ∈ S. So, we proceed with the lower dimensional cells
of R3. For vertices we will prove the following

300 J.C. Ciria et al.

Fig. 4. A labelling for the 3-cells in D7

Theorem 1. Let S be a digital surface in a homogeneous (26, 6)-connected dig-
ital space (R3, f). If α ∈ R3 is a vertex then patt(S, α) ∈ A ∪ C ∪D. Moreover,
f(S, α) = 0 if patt(S, α) ∈ A ∪D and f(S, α) = 1 if patt(S, α) ∈ C.

For the proof of Theorem 1 we need the results in Section 3 as well as a series
of partial results which follow.

Proposition 7. Let β ∈ R3 be an edge. Then f(S, β) = 0 if either st3(β;S)
consists of three 3-cells or if st3(β;S) = st3(β;R3) and f(S, αi) = 1 for some of
the two vertices α1, α2 of β.

Proof. Assume on the contrary that f(S, β) = 1; that is, its center c(β) belongs
to AS and thus the link L = lk(c(β);AS) is a 1-sphere.

In case st3(β;S) = {σ1, σ2, σ3}, then c(σi) ∈ AS for 1 ≤ i ≤ 3. Moreover,
f(S, α) = 0 if α < β since, otherwise, L would contain the one point union of
the three edges 〈c(α), c(σi)〉, 1 ≤ i ≤ 3. Then, if we assume that β = σ1 ∩ σ3,
only the centers of the 2-cells σ1 ∩σ2 and σ2 ∩σ3 can appear in L since they are
the only ones in supp(S). Hence L is not a 1-sphere. This contradiction shows
that f(S, β) = 0.

If st3(β;S) = {σ1, σ2, σ3, σ4} and f(S, β) = f(S, α1) = 1 then L contains the
one point union of the four edges 〈c(α1), c(σj)〉, 1 ≤ j ≤ 4, and hence it is not a
1-sphere.

Proposition 8. Assume that (R3, f) is (26, 6)-connected. Then P = patt(S, α)
/∈ {Bc

2, B
c
5, B

b
6} for every vertex α ∈ R3.

Proof. Assume on the contrary that P is one of the patterns in the statement.
By Proposition 3, f(S, α) = 1 and so c(α) ∈ AS . However we claim that L =
lk(c(α);AS) is not a 1-sphere. Indeed, if P = Bc

2, L consists of two points by
Axiom 2. Otherwise, if P �= Bc

2, we know by Proposition 7 that f(S, β) = 0
for each edge β > α such that st3(β;S) contains at least three elements. This
condition and the fact that each center c(σ), σ ∈ st3(α;S), should belong to
exactly two edges in the 1-sphere L yields that f(S, δ) = 1 for each other cell
δ > α with δ ∈ supp(S). Then, it is not hard to find a 3-cell σ ∈ st3(α;S) with
c(σ) lying in three edges of L.

Proposition 9. If α ∈ R3 is a vertex with P = patt(S, α) ∈ {Db
3, D

c
4, D

d
4 ,

Da
5 , D7} then f(S, α) = 0.

A Maximum Set of (26, 6)-Connected Digital Surfaces 301

Proof. If f(S, α) = 1, Proposition 7 says that f(S, β) = 0 for all edges β > α
with st3(β;S) having at least three elements. Therefore:

a) If P �= D7 we use Axiom 2 to check that there is at least one 3-cell
σ0 ∈ st3(α;S) such that f(S, δ) = 0 for all faces α < δ < σ0 except possibly one.
Hence its center c(σ0) is vertex of at most one edge in the link L = lk(c(α);AS)
and so L is not a 1-sphere.

b) If P = D7 let us label the 3-cells in st3(α;S) as it is shown in Fig. 4. The
fact that the centers c(σ0), c(σ2) and c(σ4) are in two edges of L implies that
f(S, γi) = 1 for γi = σi ∩ σi+1mod 6 (0 ≤ i ≤ 5). But then the centers c(γi) and
c(σi) generate a cycle in L leaving c(σ6) out. Therefore L is not a 1-sphere.

Proposition 10. Assume that (R3, f) is homogeneous and (26, 6)-connected.
Then f(S, α) = 0 for all vertices α ∈ R3 with patt(S, α) = Da

6 .

Proof. Let us assume that f(S, α) = 1, and hence L = lk(c(α),AS) is a 1-sphere.
Moreover, by Proposition 7 and Axiom 2 we know that f(S, β) = 0 for all the
six edges β > α. From these facts we infer that f(S, σ ∩ τ) = 1 for all the 2-cells
σ ∩ τ , where σ, τ ∈ st3(α;S), except for γ = σ0 ∩ τ0 where σ0, τ0 are the only
two 3-cells which are 6-adjacent to exactly three other elements in st3(α;S).
Furthermore, Proposition 2 yields that f(S, δ) = 0 for any cell α �= δ < γ. This
leads to a contradiction with Proposition 5 where condition (p7) is guaranteed
by Proposition 9.

The proof of the next result use Proposition 3 to show that f(S, α) = 1 and
then follows the same steps as the proof of Proposition 10 by using Proposition 6
instead of Proposition 5 in the argument.

Proposition 11. Assume that (R3, f) is homogeneous and (26, 6)-connected.
Then patt(S, α) �= B8 for any vertex α ∈ R3.

We are now ready to prove Theorem 1.

Proof (of Theorem 1). The patterns in B are ruled out by Propositions 8 and 11.
Moreover, the vanishing of f on vertices with patterns in A is given by Proposi-
tion 3, while for vertices with patterns in D it follows from Propositions 9 and
10. Finally, the lighting of vertices with patterns in C is given by Proposition 3.

Remark 5. Theorem 1 can be used to determine the value of the lighting func-
tion f on the cells β ∈ supp(st3(α;S)) where α ∈ R3 is a vertex such that
P = patt(S, α) ∈ C. More precisely, by Theorem 1 f(S, α) = 1, and so L =
lk(c(α);AS) is a 1-sphere containing the center of each 3-cell in st3(α;S). If
P �= Cf

4 this implies that f(S, β) = 1 for each cell β ∈ supp(st3(α;S)) except
for those on which f vanishes by Proposition 7. For P = Cf

4 , the fact that L is a
cycle yields that exactly four of the six edges β ∈ supp(st3(α;S)) are lighted by
f and, moreover, the two remaining edges are contained in a straight-line in R3.

The values of f on edges are characterized as follows.

302 J.C. Ciria et al.

Theorem 2. Assume that (R3, f) is homogeneous and (26, 6)-connected. Then
for any edge β = 〈α1, α2〉 ∈ supp(S): (a) if st3(β;S) = st3(β;R3) then f(S, β) =
1; (b) if st3(β;S) contains three cells then f(S, β) = 0; and, (c) if st3(β;S)
contains two elements then f(S, β) = 1 if and only if both vertices of β are
lighted by f .

Proof. In case (a) patt(S, αi) ∈ A ∪ D and, moreover, f(S, αi) = 0, i = 1, 2, by
Theorem 1. Therefore f(S, β) = 1 by Proposition 4. Case (b) follows directly
from Proposition 7. Finally, in case (c), as st3(β;S) contains only two elements
and β ∈ supp(S) it follows that γ /∈ supp(S) for all 2-cells γ > α. Moreover,
since L = lk(c(β);AS) is a 1-sphere then necessarily c(α1), c(α2) ∈ L and so
f(S, α1) = f(S, α2) = 1.

Conversely, if f(S, αi) = 1, i = 1, 2, we get f(S, β) = 1 by Proposition 4.

Corollary 1. Let β = 〈α1, α2〉 ∈ R3 be an edge with st3(β;S) = st3(β;R3).
Then f(S, γ) = 1 for each 2-cell γ > β.

Proof. By Theorem 2 f(S, β) = 1 and, thus, f(S, αi) = 0, i = 1, 2, by Proposi-
tion 7. Then, the requirement that lk(c(β);AS) is a 1-sphere implies the result.

We finish this section with the characterization of f on 2-cells. Namely

Theorem 3. Assume that (R3, f) is homogeneous and (26, 6)-connected. Then,
for any 2-cell γ ∈ R3, f(S, γ) = 1 if and only if γ ∈ supp(S).

Proof. The “only if” part is just Axiom 2. For the converse let us assume γ ∈
supp(S); that is, γ = σ ∩ τ with σ, τ ∈ S.

If f(S, α) = 1 for some vertex α < γ, Theorem 1 yields patt(S, α) ∈ C,
and the fact that σ is 6-adjacent to τ implies that necessarily patt(S, α) �= Cf

4 .
Hence the result follows by Remark 5. Also, if f(S, β) = 1 for some edge β < γ,
then st3(β;S) = st3(β;R3) by Theorem 2, and the result follows by Corollary 1.
Finally we study the case f(S, δ) = 0 for each proper face δ < γ. In particular,
if δ is a vertex Theorem 1 yields that patt(S, δ) ∈ A ∪D. Moreover, Theorem 2
and σ, τ ∈ st3(δ;S) implies that patt(S, δ) ∈ X = {Aa

2 , A
a
3 , D

b
3, D

c
4, D

d
4 , D

a
5}. In

addition, notice that st∗
3(γ;S) is a 26-connected digital object and, thus, there

must exist a ∅-path in this set from σ to τ . However we will show by induction
that any ∅-path Σk = (σi)k

i=0 starting at σ0 = σ satisfies the condition

σi ∩ σ ≮ τ for i ≤ k . (1)

and so Σk cannot finish at τ . This contradiction completes the proof.
Firstly we notice that σi∩σ �= ∅ for i ≤ k. Then, the inductive process works

as follows. For k = 1, if σ∩σ1 < τ then f(S, ε) = 0 for each ε ≤ σ∩σ1 = σ0∩σ1,
which is not possible since σ0 and σ1 are ∅-adjacent in st3(α;S). Now assume
that Condition 1 holds for k − 1 and let ε ≤ σk−1 ∩ σk a face with f(S, ε) = 1
joining σk−1 to σk in the ∅-path Σk. Notice that ε ≮ τ , otherwise Lemma 2 below
shows that ε < σ and hence f(S, ε) = 0. Moreover, if ε < σ then Condition 1
holds for k by arguing as in the case k = 1. Finally, if ε ≮ τ and ε ≮ σ, the set X
above is reduced to the patterns Dc

4, D
d
4 and Da

5 , which are studied individually
to derive the result.

A Maximum Set of (26, 6)-Connected Digital Surfaces 303

Lemma 2. Let σ, τ ∈ cell3(R3) two 6-adjacent 3-cells and γ = σ ∩ τ . If ρ ∈
st∗

3(γ;R3) and ρ ∩ σ ≮ τ then ρ ∩ τ < σ.

Proof. From the hypothesis the three cells ρ, σ and τ share a vertex α. Moreover,
if we consider the digital object O = {σ, τ, ρ} the pattern patt(O,α) is either
Aa

3 or Db
3. Then a simple analysis of these cases yields the result.

5 A Universal Space for the (26, 6)-Connected Surfaces

In this section we define a new lighting function on the device model R3 which
gives us a homogeneous (26, 6)-connected digital space whose family of surfaces is
the largest among the class of such digital spaces. Namely, we prove the following

Theorem 4. There exists a homogeneous (26, 6)-connected digital space EU =
(R3, fU) which is universal in the following sense: any digital surface S in an
arbitrary homogeneous (26, 6)-connected digital space (R3, f) is also a digital
surface in EU .

The lighting function fU : P(cell3(R3)) × R3 → {0, 1} is defined as follows.
Given a digital object O ⊆ cell3(R3) and a cell δ ∈ R3, fU (O, δ) = 1 if and only
if one of the following conditions holds:

1. dim δ = 0 and patt(O, δ) ∈ B ∪ C.
2. dim δ > 1 and δ ∈ supp(O).
3. dim δ = 1 and either st3(δ;R3) ⊆ O or st3(δ;O) = {σ, τ}, with δ = σ ∩ τ ,

and fU (O,α1) = fU (O,α2) for the vertices α1, α2 of δ.

It is not difficult, but a tedious task, to check that fU is a lighting function
and to prove that (R3, fU) is actually a homogeneous (26, 6)-connected digital
space. Any way, the following property, which will be used later, is immediate
from the definition of fU .

Proposition 12. If O ⊆ cell3(R3) is a digital object and α ∈ R3 a cell for which
st3(α;R3) ⊆ O then fU (O,α) = 1; that is, (R3, fU) is a solid digital space as
defined in [2]. In particular, fU (cell3(R3), α) = 1 for any cell α ∈ R3, and hence
|AR3 | = R3.

Proof (Theorem4: Universality of EU). The result is an immediate consequence
of Proposition 13 below which provides us with the equality fU (S, δ) = f(S, δ)
for all cells δ ∈ R3, or equivalently |Af

S | = |AfU

S |. Thus, the continuous ana-
logues of S in both digital spaces (R3, f) and EU are combinatorial surfaces.

Proposition 13. Let S be a digital surface in a homogeneous (26, 6)-connected
digital space (R3, f). Then f(S, δ) = fU (S, δ) for each cell δ ∈ R3.

Proof. If dim δ = 3 the equality f(S, δ) = fU (S, δ) is an immediate consequence
of Remark 2(a). If dim δ = 2 (or dim δ = 0) we derive the result from the def-
inition of fU and Theorem 3 (or Theorem 1, respectively). In case δ = 〈α1, α2〉 is

304 J.C. Ciria et al.

(a)

(b)

(d)

(c)

(e)

Fig. 5. Some surfaces in (R3, fU) which are not simplicity 26-surfaces

an edge and δ /∈ supp(S), then f(S, δ) = fU (S, δ) = 0 by Axiom 2. Otherwise, if
δ ∈ supp(S), the triple [S, f, δ] satisfies one of the conditions (1)-(3) in Theorem 2
and the definition of fU yields the equality fU (S, δ) = f(S, δ).

Remark 6. Notice that, while Proposition 13 is deduced from Theorems 1-3,
these theorems can be conversely derived from Proposition 13, since one readily
checks that digital surfaces in (R3, fU) satisfy Theorems 1-3.

By using the identification in Remark 1 between 3-cells in R3 and points in
Z3, we can compare the family of digital surfaces in the universal space (R3, fU)
with other families of surfaces defined on Z3 by means of the (26, 6)-adjacency. As
far as we know, the space (R3, fU) provides a set of surfaces larger than any other
definition in the literature. For example, we next show that the set of simplicity
26-surfaces [6] and, hence, both strong 26-surfaces [4] and Morgenthaler’s (26, 6)-
surfaces [10], are strictly contained in this family.

Indeed, Theorem 1 in [5] shows that each simplicity 26-surface is a digital
surface in the (26, 6)-connected homogeneous digital space (R3, fss), and hence
a surface in (R3, fU) by Theorem 4. We recall that the lighting function fss is
defined in [5] as follows. Given a digital object O ⊆ cell3(R3) and a cell δ ∈ R3,
fss(O, δ) = 1 if and only if: (a) dim δ ≥ 2 and δ ∈ supp(O); (b) dim δ = 0,
δ ∈ supp(O) and patt(O, δ) �= Da

6 ; and, dim δ = 1 and either st3(δ;R3) ⊆ O
or st3(δ;O) = {σ, τ}, with δ = σ ∩ τ , and fss(O,α1) = fss(O,α2) for the two
vertices α1, α2 < δ.

On the other hand, it is not difficult to check that each of the objects in
Fig. 5(a)-(d) is (a piece of) a digital surface in (R3, fU). However, none of them

A Maximum Set of (26, 6)-Connected Digital Surfaces 305

is a simplicity 26-surface since they contain the patterns Dc
4, D

b
3, D

d
4 and Da

5 (dots
in grey colour), respectively, which are not allowed in this kind of surfaces (see
Theorem 17 in [6]). Alternatively, it can also be checked that these objects are
not surfaces in the space (R3, fss). It is worth to point out that, in [8], Malandain
et al. propose to consider the object depicted in Fig. 5(a) as a surface.

Finally, as mentioned in the Introduction, digital manifolds in suitable digital
spaces (Rn, f) satisfy a digital version of the Jordan-Brouwer Theorem. More
precisely, Theorem 5.3 in [3] shows that if the continuous analogue |ARn | is the
Euclidean space Rn, then the complement celln(Rn) −M of any finite digital
(n − 1)-manifold M has two M -components, one of them finite. Moreover, if
(Rn, f) is a solid space (see Proposition 12) a digital counterpart of the Index
Theorem (see Theorem 3.16 in [2]) characterizes the finite M -component. There-
fore, since (R3, fU) is a (26, 6)-connected digital space, Proposition 12 yields the
following

Theorem 5. Each 26-connected digital surface S in (R3, fU) separates its com-
plement cell3(R3)− S into two 6-components.

Despite of this result, several surfaces of the space (R3, fU) should be consid-
ered pathological examples since the deletion of one of their points might yield
an object that still divides its complement into two 6-components, as it is the
case of the 3-cell σ in Fig. 5(e). It can be checked that any non-pathological
surface S is a strongly separating object (i.e., any 3-cell of S is 6-adjacent to
both 6-components of cell3(R3)−S), and so we call S a strongly separating sur-
face. Finally, we notice that the family of simplicity 26-surfaces is still strictly
contained in the set of strongly separating surfaces, since the surfaces pictured
in Fig. 5(a)-(d) belong to this class.

References

1. R. Ayala, E. Domı́nguez, A.R. Francés, A. Quintero. Digital Lighting Functions.
Lecture Notes in Computer Science. 1347 (1997) 139–150.

2. R. Ayala, E. Domı́nguez, A.R. Francés, A. Quintero. A Digital Index Theorem.
Int. J. Patter Recog. Art. Intell. 15(7) (2001) 1–22.

3. R. Ayala, E. Domı́nguez, A.R. Francés, A. Quintero. Weak Lighting Functions and
Strong 26-surfaces. Theoretical Computer Science. 283 (2002) 29–66.

4. G. Bertrand, R. Malgouyres. Some Topological Properties of Surfaces in Z
3. Jour.

of Mathematical Imaging and Vision. 11 (1999) 207–221.
5. J.C. Ciria, E. Domı́nguez, A.R. Francés. Separation Theorems for Simplicity 26-

surfaces. Lecture Notes in Computer Science. 2301 (2002) 45–56.
6. M. Couprie, G. Bertrand. Simplicity Surfaces: a new definition of surfaces in Z

3.
SPIE Vision Geometry V. 3454 (1998) 40–51.

7. T.Y. Kong, A.W. Roscoe. Continuous Analogs of Axiomatized Digital Surfaces.
Comput. Vision Graph. Image Process. 29 (1985) 60–86.

306 J.C. Ciria et al.

8. G. Malandain, G. Bertrand, N. Ayache. Topological Segmentation of Discrete Sur-
faces. Int. Jour. of Computer Vision. 10:2 (1993) 183–197.

9. Maunder, C. R. F., Algebraic Topology. Cambridge University Press 1980.
10. D.G. Morgenthaler, A. Rosenfeld. Surfaces in three–dimensional Digital Images.

Inform. Control. 51 (1981) 227-247.
11. C.P. Rourke, and B.J. Sanderson. Introduction to Piecewise-Linear Topology.

Ergebnisse der Math. 69, Springer 1972.

Simple Points and Generic Axiomatized Digital
Surface-Structures

Sébastien Fourey

GREYC Image – ENSICAEN, 6 bd maréchal Juin,
14050 Caen cedex – France

Sebastien.Fourey@greyc.ensicaen.fr

Abstract. We present a characterization of topology preservation within
digital axiomatized digital surface structures (gads), a generic theoret-
ical framework for digital topology introduced in [2]. This characteriza-
tion is based on the digital fundamental group that has been classically
used for that purpose. More briefly, we define here simple points within
gads and give the meaning of the words: preserving the topology within
gads.

1 Introduction

In [2], a generic framework for digital topology has been introduced. This frame-
work is in fact a whole axiomatic theory that allows us to prove results that
become valid for any two dimensional digital space that satisfies the axioms of
the theory. Some results such as a generic Jordan theorem has already been
proved within this framework.

In this paper, we address a classical problem of digital topology: the charac-
terization of topology preservation [15, 12, 18]. The main question being: When
can we say that the deletion of one or several pixels (or voxels) from an image
preserves the topology? In all cases, the answer to this question comes with the
definition of simple pixels/voxels.

On the other hand, the digital fundamental group ([11]) has proved to be
a convenient tool in order to characterize topology preservation in digital sur-
faces (see [16, 5]) as well as in the classical three dimensional digital space Z3

(see [6]). Here, we state in a very straightforward way a definition of the digital
fundamental group of a gads (Generic Axiomatized Digital Surface-Structure).
Then, we present a characterization of topology preservation within a gads, by
removal of a simple point, based on the fundamental group.

2 Definition of GADS and pGADS

We recall here the basic notions and definitions from [2]. We should first summa-
rize the motivation for the definition of a gads. This starts with an observation:
many results in digital topology come with a proof that depends on the digital

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 307–317, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

308 S. Fourey

space that is considered. For example, a proof of a Jordan curve theorem exists
for the space Z2 with the classical (4, 8) or (8, 4) pairs of adjacency relations.
A similar result holds for the hexagonal grid, as well as Z2 with the Khalimsky
adjacency relation. What is unsatisfactory here is that the proof of such a result
has to be written for each of the considered spaces. The axiomatic definition of
what actually is an admissible digital space is a response to this observation.
The purpose of gads as introduced in [2] is to define a generic framework that
allows to state and prove results of digital topology which becomes valid for any
admissible digital space. Thus, a single result would no longer need (sometimes
similar) multiple proofs.

2.1 Basic Concepts and Notations

For any set P we denote by P {2} the set of all unordered pairs of distinct ele-
ments of P (equivalently, the set of all subsets of P with exactly two elements).
Let P be any set and let ρ ⊆ P {2}.1 Two elements a and b of P [respectively,
two subsets A and B of P] are said to be ρ-adjacent if {a, b} ∈ ρ [respec-
tively, if there exist a ∈ A and b ∈ B with {a, b} ∈ ρ]. If x ∈ P we denote by
Nρ(x) the set of elements of P which are ρ-adjacent to x; these elements are
also called the ρ-neighbors of x. We call Nρ(x) the punctured ρ-neighborhood
of x.

A ρ-path from a ∈ P to b ∈ P is a finite sequence (x0, . . . , xl) of one or
more elements of P such that x0 = a, xl = b and, for all i ∈ {0, . . . , l − 1},
{xi, xi+1} ∈ ρ. The nonnegative integer l is the length of the path. A ρ-path of
length 0 is called a one-point path. For all integers m,n, 0 ≤ m ≤ n ≤ l, the
subsequence (xm, . . . , xn) of (x0, . . . , xl) is called an interval or segment of the
path. For all i ∈ {1, . . . , l} we say that the elements xi−1 and xi are consecutive
on the path, and also that xi−1 precedes xi and xi follows xi−1 on the path.
Note that consecutive elements of a ρ-path can never be equal.

A ρ-path (x0, . . . , xl) is said to be simple if xi �= xj for all distinct i and
j in {0, . . . , l}. It is said to be closed if x0 = xl, so that x0 follows xl−1. It is
called a ρ-cycle if it is closed and xi �= xj for all distinct i and j in {1, . . . , l}.
One-point paths are the simplest ρ-cycles. Two ρ-cycles c1 = (x0, . . . , xl) and
c2 = (y0, . . . , yl) are said to be equivalent if there exists an integer k, 0 ≤ k ≤ l−1,
such that xi = y(i+k) mod l for all i ∈ {0, . . . , l}.

If S ⊆ P , two elements a and b of S are said to be ρ-connected in S if there
exists a ρ-path from a to b that consists only of points in S. ρ-connectedness in S
is an equivalence relation on S; its equivalence classes are called the ρ-components
of S. The set S is said to be ρ-connected if there is just one ρ-component of S.

Given two sequences c1 = (x0, . . . , xm) and c2 = (y0, . . . , yn) such that
xm = y0, we denote by c1.c2 the sequence (x0, . . . , xm, y1, . . . , yn), which we
call the concatenation of c1 and c2. Whenever we use the notation c1.c2, we are
also implicitly saying that the last element of c1 is the same as the first element

1 ρ can be viewed as a binary, symmetric and irreflexive relation on P , and (P, ρ) as
an undirected simple graph.

Simple Points and Generic Axiomatized Digital Surface-Structures 309

of c2. It is clear that if c1 and c2 are ρ-paths of lengths l1 and l2, then c1.c2 is a
ρ-path of length l1 + l2.

For any sequence c = (x0, . . . , xm), the reverse of c, denoted by c−1, is the
sequence (y0, . . . , ym) such that yk = xm−k for all k ∈ {0, . . . ,m}. It is clear that
if c is a ρ-path of length l then so is c−1.

A simple closed ρ-curve is a nonempty finite ρ-connected set C such that
each element of C has exactly two ρ-neighbors in C. (Note that a simple closed
ρ-curve must have at least three elements.) A ρ-cycle c of length |C| that contains
every element of a simple closed ρ-curve C is called a ρ-parameterization of C.
Note that if c and c′ are ρ-parameterizations of a simple closed ρ-curve C, then
c′ is equivalent to c or to c−1.

If x and y are ρ-adjacent elements of a simple closed ρ-curve C, then we may
say that x and y are ρ-consecutive on C. If x and y are distinct elements of a
simple closed ρ-curve C that are not ρ-consecutive on C, then each of the two
ρ-components of C \ {x, y} is called a ρ-cut-interval (of C) associated with x
and y.

2.2 Definition of a GADS

Definition 1 (2D Digital Complex). A 2D digital complex is an ordered
triple (V, π,L), where

– V is a set whose elements are called vertices or spels,
– π ⊆ V {2}, and the pairs of vertices in π are called proto-edges,
– L is a set of simple closed π-curves whose members are called loops,

and the following four conditions hold:

(i) V is π-connected and contains more than one vertex.
(ii) For any two distinct loops L1 and L2, L1 ∩ L2 is either empty, or consists

of a single vertex, or is a proto-edge.
(iii) No proto-edge is included in more than two loops.
(iv) Each vertex belongs to only a finite number of proto-edges.

When specifying a 2D digital complex whose vertex set is the set of points of
a grid in Rn, a positive integer k (such as 4, 8 or 6) may be used to denote the
set of all unordered pairs of k-adjacent vertices. We write L2×2 to denote the
set of all unit lattice squares in Z2. The triple (Z2, 4,L2×2) is a simple example
of a 2D digital complex.

Definition 2 (GADS). A generic axiomatized digital surface-structure, or
gads, is a pair G = ((V, π,L), (κ, λ)) where (V, π,L) is a 2D digital complex
(whose vertices, proto-edges and loops are also referred to as vertices, proto-edges
and loops of G) and where κ and λ are subsets of V {2} that satisfy Axioms 1, 2
and 3 below. The pairs of vertices in κ and λ are called κ-edges and λ-edges,
respectively. (V, π,L) is called the underlying complex of G.

310 S. Fourey

Axiom 1. Every proto-edge is both a κ-edge and a λ-edge: π ⊆ κ ∩ λ.

Axiom 2. For all e ∈ (κ ∪ λ) \ π, some loop contains both vertices of e.

Axiom 3. If x, y ∈ L ∈ L, but x and y are not π-consecutive on L, then

(a) {x, y} is a λ-edge if and only if L \ {x, y} is not κ-connected.
(b) {x, y} is a κ-edge if and only if L \ {x, y} is not λ-connected.

Regarding Axiom 2, note that if e ∈ (κ ∪ λ) \ π (i.e., e is a κ- or λ-edge that
is not a proto-edge) then there can only be one loop that contains both vertices
of e, by condition (ii) in the definition of a 2D digital complex.

As illustrations of Axiom 3, observe that both ((Z2, 4,L2×2),
(4, 8)) and ((Z2, 4,L2×2), (8, 4)) satisfy Axiom 3, but ((Z2, 4,L2×2), (4, 4)) vi-
olates the “if” parts of the axiom, while ((Z2, 4,L2×2), (8, 8)) violates the “only
if” parts of the axiom.

A gads is said to be finite if it has finitely many vertices; otherwise it is said
to be infinite. The set of all gads can be ordered as follows:

Definition 3 (⊆ order, subGADS). Let G = ((V, π,L), (κ, λ)) and G′ = ((V ′,
π′,L′), (κ′, λ′)) be gads such that

– V ⊆ V ′, π ⊆ π′ and L ⊆ L′.
– For all L ∈ L, κ ∩ L{2} = κ′ ∩ L{2} and λ ∩ L{2} = λ′ ∩ L{2}.

Then we write G ⊆ G′ and say that G is a subGADS of G′. We write G � G′

to mean G ⊆ G′ and G �= G′. We write G < G′ to mean G � G′ and L �= L′.

The following simple but important property of gads is an immediate con-
sequence of the symmetry of Axioms 1, 2 and 3 with respect to κ and λ:

Property 1. If ((V, π,L), (κ, λ)) is a gads then ((V, π,L), (λ, κ)) is also a
gads. So any statement which is true of every gads ((V, π,L), (κ, λ)) remains
true when κ is replaced by λ and λ by κ.

2.3 Interior Vertices and pGADS

We are particularly interested in those gads that model a surface without bound-
ary. The next definition gives a name for any such gads.

Definition 4 (pGADS). A pgads is a gads in which every proto-edge is
included in two loops. (The p in pgads stands for pseudomanifold.)

A finite pgads models a closed surface. A pgads that models the Euclidean
plane must be infinite.

A vertex v of a gads G is called an interior vertex of G if every proto-edge
of G that contains v is included in two loops of G. If follows that a gads G is a
pgads if and only if every vertex of G is an interior vertex.

Simple Points and Generic Axiomatized Digital Surface-Structures 311

Below are pictures of some pgads.

Example 1. Z2 with the 4- and 8-adjacency relations

G = ((Z2, 4,L2×2), (4, 8))

Example 2. Z2 with Khalimsky’s adjacency relation

G = ((Z2, 4,L2×2), (κ2, κ2)), where κ2 consists of all un-
ordered pairs of 4-adjacent points and all unordered pairs
of 8-adjacent pure points.

Example 3. A torus-like pgads

gf

h i

cb

d

e

a

a a

e

d

a

b c

c

a

e

i

g

d

f

h

b

G = ((V, κ,L), (κ, λ))
V = {a, b, c, d, e, f, g, h, i}
κ = {{a, b}, {b, c}, {c, a}, {d, f}, {f, g}, {g, d},

{e, h}, {h, i}, {i, e}, {b, f}, {c, g}, {a, d},
{f, h}, {g, i}, {d, e}, {h, b}, {i, c}, {e, a}}

λ = {{x, y} | ∃L ∈ L, x, y ∈ L} (not shown)
L = {{a, b, f, d}, {d, f, h, e}, {e, h, b, a},

{b, c, g, f}, {f, g, i, h}, {h, i, c, b},
{c, a, d, g}, {g, d, e, i}, {i, e, a, c}}

In the sequel of this paper, G = ((V, π,L), (κ, λ)) is a gads.

3 Simple Points in a GADS

In this section, we will define simple points in a gads. In the classical meaning,
simple points are points that can be deleted while preserving the topology of
an image. By “preserving the topology” we mean preserving connectivity and
holes. Proving that our definition is suitable in this sense will be the purpose of
Section 5.

312 S. Fourey

Several definitions and characterizations have been given for simple points in
classical (2D or 3D) digital spaces. See for example [17, 1, 15, 19] for an overview.
Our purpose here is to state a definition and a characterization within the generic
framework of GADS, thus generalizing this classical notion for any admissible
“surface like” digital space.

We can give in intuitive words a first definition of a simple point. Indeed, a
point x ∈ X ⊂ V is said to be κ-simple for X if and only if:

– X and X \ {x} have the same number of κ-connected components;
– X and X ∪ {x} have the same number of λ-connected components;
– X and X \ {x} have the same holes.

We will now define a few notations that will allow us to state a formal defi-
nition of a simple point.

For any vertex v of G, the punctured loop neighborhood of v in G, denoted by
NL(v), is defined to be the union of all the loops of G which contain v, minus
the vertex v itself.

Let x ∈ V . The axioms given in Section 2 somehow guarantee that loops
are topological disks. However, NL(x) needs not to be a topological disk (see
the punctured loop neighborhood of any of the points in Example 3). Thus, we
need to define a topology on NL(x) under which it is a topological disk. Let
y and y′ be two points of NL(x) ∪ {x}. We say that y and y′ are κx-adjacent
(respectively λx-adjacent) if {y, y′} ∈ κ (respectively {y, y′} ∈ λ) and y and y′

are both contained in a loop containing x. If X ⊂ V , we denote by Gκ(x,X)
(resp. Gλ(x,X)) the graph whose vertices are the points of NL(x)∩X and whose
edges are pairs of κx-adjacent points (resp. λx-adjacent points) of NL(x) ∩ X.
Let ρ = κ or ρ = λ. We denote by Cx

ρ (Gρ(x,X)) the set of connected components
of Gρ(x,X) that are ρ-adjacent to x. Note that Cx

ρ (Gρ(x,X)) is a set of subsets
of points of V and not a set of points.

Definition 5. We call x a ρ-isolated point of X if Nρ(x) ∩ X = ∅ and a ρ-
interior point if Nρ(x) ∩X = ∅.

We can now state our definition of a simple point, which is also a local
characterization.

Definition 6 (Simple Point). A point x is said to be κ-simple in X if and
only if the number Card(Cx

κ(Gκ(x,X))) of connected components of Gκ(x,X)
which are κ-adjacent to x is equal to 1 and x is not interior to X.

The following Lemma is a first step towards the justification of Definition 6.

Lemma 1. Let X ⊂ V and x ∈ X be a κ-simple point of X. Then:

– X and X \ {x} have the same number of κ-connected components;
– X and X ∪ {x} have the same number of λ-connected components.

Simple Points and Generic Axiomatized Digital Surface-Structures 313

We just give here the main argument for the proof of this Lemma. In order to
prove that no κ-connected component is created, just consider two κ-connected
points in X that are no longer connected in X \ {x}. If c is a shortest κ-path in
X between the two points, then the point a that precedes x in c and the point
b that follows x in c are both contained in C, the only connected component of
Gκ(x,X) which is κ-adjacent to x. Therefore, a and b are κ-connected in X\{x},
like the two initial points.

It remains to be proved that the removal of a simple point preserves holes.
This will be the purpose of Section 5.

4 Homotopic Paths and the Digital Fundamental Group
of a GADS

In this section, ρ is a subset of V {2} such that ρ ∈ {κ, λ, π}, and X is a ρ-
connected subset of V .

Loosely speaking, two ρ-paths in X with the same initial and the same final
vertices are said to be ρ-homotopic within X in G if one of the paths can be
transformed into the other by a sequence of small local deformations within
X. The initial and final vertices of the path must remain fixed throughout the
deformation process. The next two definitions make this notion precise.

Definition 7 (Elementary G-Deformation). Two finite vertex sequences c
and c′ of G with the same initial and the same final vertices are said to be the
same up to an elementary G-deformation if there exist vertex sequences c1, c2,
γ and γ′ such that c = c1.γ.c2, c′ = c1.γ

′.c2, and either there is a proto-edge
{x, y} for which one of γ and γ′ is (x) and the other is (x, y, x), or there is a
loop of G that contains all of the vertices in γ and γ′.

Definition 8 (Homotopic ρ-Paths). Two ρ-paths c and c′ in X with the
same initial and the same final vertices are ρ-homotopic within X in G if there
exists a sequence of ρ-paths c0, . . . , cn in X such that c0 = c, cn = c′ and, for
0 ≤ i ≤ n − 1, ci and ci+1 are the same up to an elementary G-deformation.
Two ρ-paths with the same initial and the same final vertices are said to be
ρ-homotopic in G if they are ρ-homotopic within V in G.

The next proposition states a useful characterization of ρ-homotopy that is
based on a more restrictive kind of local deformation than was considered above,
which allows only the insertion or removal of either a “ρ-back-and-forth” or a
cycle that parameterizes a simple closed ρ-curve in a loop of G.

Definition 9 (Minimal ρ-Deformation). Two ρ-paths c and c′ with the same
initial and the same final vertices are said to be the same up to a minimal ρ-
deformation in G if there exist ρ-paths c1, c2 and γ such that one of c and c′ is
c1.γ.c2, the other of c and c′ is c1.c2, and either γ = (x, y, x) for some ρ-edge

314 S. Fourey

{x, y} or γ is a ρ-parameterization of a simple closed ρ-curve whose vertices are
contained in a single loop of G.

This concept of deformation is particularly simple when ρ = π, because a
simple closed π-curve whose vertices are contained in a single loop of G must in
fact be a loop of G, since a loop of G is a simple closed π-curve.

Proposition 1. Two ρ-paths c and c′ in X with the same initial and the same
final vertices are ρ-homotopic within X in G if and only if there is a sequence of
ρ-paths c0, . . . , cn in X such that c0 = c, cn = c′ and, for 0 ≤ i ≤ n− 1, ci and
ci+1 are the same up to a minimal ρ-deformation in G.

The proof of this proposition is not particularly difficult, and we leave it to
the interested reader.

Now, let b ∈ X be a point called the base point. We denote by Aρ
b(X) the

set of all closed ρ-paths c = (x0, . . . , xl) which are contained in X such that
x0 = xl = b. The ρ-homotopy relation is an equivalence relation on Aρ

b(X), and
we denote by Πρ

1 (X, b) the set of equivalence classes of this equivalence relation.
The concatenation of paths is compatible with the ρ-homotpy relation, hence it
defines an operation on Πρ

1 (X, b) which to the class of c1 and c2 associates the
class of c1.c2. This operation provides Πρ

1 (X, b) with a group structure. We call
this group the digital ρ-fundamental group of X.

Now, we consider Y ⊂ X ⊂ V and b ∈ X a base point. Any closed ρ-path in Y
is a particular case of a closed ρ-path in X. Furthermore, if two closed ρ-paths
in Y are ρ-homotopic in Y , then they are also ρ-homotopic in X. These two
properties enable us to define a canonical morphism i∗ : Πρ

1 (Y, b) −→ Πρ
1 (X, b)

induced by the inclusion map i : Y −→ X. To the class of a closed ρ-path
c ∈ Aρ

b(Y) in Πρ
1 (Y, b) the morphism i∗ associates the class of the same ρ-path

in Πρ
1 (X, b).

5 Simple Points and the Digital Fundamental Group

Here, we show that simple points have been properly defined. For this purpose,
we use the formalism of the digital fundamental group. Indeed, it allows us to
prove that “holes are preserved” when one removes a simple point from X, a
subset of the set of points of a gads.

In this section, ρ is either equal to κ or equal to λ, and X is a ρ-connected
subset of V .

Lemma 2. Let b ∈ X and let x ∈ X be a ρ-simple point distinct from b. Then
any ρ-path of Aρ

b(X) is ρ-homotopic to a ρ-path contained in X \ {x}.

Proof: Let c = (x0, . . . , xp) be a ρ-path in X such that x0 �= x and xp �= x. We
define a ρ-path P (c) as follows: For any maximal sequence γ = (xk, . . . , xl) with
0 ≤ k ≤ l ≤ p of points of c such that for all i = k, . . . , l we have xi �= x, we
define s(γ) = γ. For any maximal sequence γ = (xk, . . . , xl) with 0 ≤ k ≤ l ≤ p

Simple Points and Generic Axiomatized Digital Surface-Structures 315

of points of c such that for i = k, . . . , l we have xi = x, we define s(γ) as equal
to the shortest ρ-path from xl−1 to xk+1 in the single connected component of
Gρ(x,X) . Now P (c) is the concatenation of all s(γ) for all maximal sequences
γ = (xk, . . . , xl) of points of c such that either for i = k, . . . , l we have xi �= x or
for i = k, . . . , l we have xi = x. Now, it is readily seen that c is ρ-homotopic to
P (c) in X. �

Remark 1. If x ∈ X is a ρ-simple point in X and C is the single connected
component of Gρ(x,X), then any two ρ-paths in C with the same extremities are
ρ-homotopic in X \ {x}.

Lemma 3. Let b ∈ X and let x ∈ X be a ρ-simple point distinct from b. If two
closed ρ-paths c1 and c2 of Aρ

b(X \ {x}) are ρ-homotopic in X, then they are
ρ-homotopic in X \ {x}.

Proof: Let P (c1) and P (c2) be the two paths as defined in the proof of Lemma 2.
Following Proposition 1, it is sufficient to prove that if c1 and c2 are the same
up to a minimal ρ-deformation in X, then the two ρ-paths P (c1) and P (c2) are
ρ-homotopic in X \ {x}. Thus, we suppose that c1 = c.γ.c′ and c2 = c.c′ where
γ is either equal to (a, b, a) (with {a, b} being a ρ-edge) or is a simple closed ρ-
curve included in a loop L of L. First, if we suppose that x does not belong to γ,
then it is immediate that P (c1) and P (c2) are ρ-homotopic. Therefore, we may
suppose without loss of generality that x belongs to γ. Furthermore, in order
to clarify the proof, we suppose in the sequel that all paths are such that any
two consecutive points are distincts. Let C be the only connected component of
Gρ(x,X).

In a first case, we suppose that γ = (a, b, a) whith x = a. We write c1 =
μ.(y, x, z).μ′ with c = μ.(y, x) and c′ = (x, z).μ′. Thus, we have c2 = μ.(y, x, b, x,
z).μ′. Now, y, z and b all belong to C. Let α be the shortest ρ-path from y
to b in C and let β be the shortest ρ-path from b to z in C. Finally, let γ′

be the shortest ρ-path from y to z in C. We have P (c1) = P (μ).γ′.P (μ′) and
P (c2) = P (μ).α.β.P (μ′). From the previous remark and since γ′ and α.β are
ρ-paths in C with the same extremities, we obtain that P (c1) and P (c2) are
ρ-homotopic in X \ {x}.

The proof is similar in the case when γ is a closed ρ-path from the vertex x
to x.

In the case when γ = (a, b, a) with x = b we obtain that P (c1) = P (c2).
Remains the case when γ is a simple closed ρ-curve included in a loop and

containing x (not being an extremity). But in this case, P (γ) is included in C
and therefore ρ-homotopic to the path reduced to its extremities. Since in this
case P (c1) = P (c).P (γ).P (c′) and P (c2) = P (c).P (c′), we obtain that P (c1) and
P (c2) are ρ-homotopic. �

Theorem 1. Let b ∈ X and let x ∈ X be a ρ-simple point of X distinct from
b. The morphism i∗ : Πρ

1 (X \ {x}, b) −→ Πρ
1 (X, b) induced by the inclusion map

of X \ {x} in X is a group isomorphism.

316 S. Fourey

Proof: Lemma 2 implies that i∗ is onto and Lemma 3 implies that i∗ is one to
one. �

The latter lemma is the main result of this section. Indeed, it states that
when one removes a simple point (following Definition 6) from a connected set
X, then no hole is created nor removed. This, added to the fact that the removal
of a simple point cannot create some new connected components nor remove any
one (see Lemma 1), leads to the justification of the following affirmation:

“Removing a simple point preserves the topology.”

This achieves the justification of the local characterization of simple points
in a gads given by Definition 6.

6 Concluding Remarks

We have introduced two new notions in the context of gads: the digital funda-
mental group and the notion of simple point. In so doing, we illustrate the power
of this axiomatic theory that allows us to prove very general results of digital
topology. Indeed, the two previously mentionned notions are now valid for any
two dimensional digital space that one can reasonably consider.

References

1. G. Bertrand. Simple points, topological numbers and geodesic neighborhoods in
cubics grids. Patterns Recognition Letters, 15:1003–1011, 1994.

2. S. Fourey, T. Y. Kong, and G. T. Herman. Generic axiomatized digital surface-
structures. Discrete Applied Mathematics, 139:65–93, April 2004.

3. S. Fourey and R. Malgouyres. Intersection number and topology preservation
within digital surfaces. In Proceedings of the Sixth International Workshop on
Parallel Image Processing and Analysis (IWPIPA ’99, Madras, India, January
1999), pages 138–158, 1999.

4. S. Fourey and R. Malgouyres. Intersection number of paths lying on a digital
surface and a new Jordan theorem. In G. Bertrand, M. Couprie, and L. Perroton,
editors, Discrete Geometry for Computer Imagery: 8th International Conference
(DGCI ’99, Marne la Vallée, France, March 1999), Proceedings, pages 104–117.
Springer, 1999.

5. S. Fourey and R. Malgouyres. Intersection number and topology preservation
within digital surfaces. Theoretical Computer Science, 283(1):109–150, June 2002.

6. S. Fourey and R. Malgouyres. A concise characterization of 3D simple points.
Discrete Applied Mathematics, 125(1):59–80, January 2003.

7. G. T. Herman. Oriented surfaces in digital spaces. Graphical Models and Image
Processing, 55:381–396, 1993.

8. G. T. Herman. Geometry of digital spaces. Birkhäuser, 1998.
9. G. T. Herman and J. K. Udupa. Display of 3D discrete surfaces. In Proceeddings

of SPIE, volume 283, 1983.

Simple Points and Generic Axiomatized Digital Surface-Structures 317

10. E. D. Khalimsky, R. D. Kopperman, and P. R. Meyer. Computer graphics and
connected topologies on finite ordered sets. Topology and Its Applications, 36:1–17,
1990.

11. T. Y. Kong. A digital fundamental group. Computers and Graphics, 13:159–166,
1989.

12. T. Y. Kong. On topology preservation in 2-d and 3-d thinning. International
Journal of Pattern Recognition and Artificial Intelligence, 9(5):813–844, 1995.

13. T. Y. Kong and E. D. Khalimsky. Polyhedral analogs of locally finite topological
spaces. In R. M. Shortt, editor, General Topology and Applications: Proceedings of
the 1988 Northeast Conference, pages 153–164. Marcel Dekker, 1990.

14. T. Y. Kong, A. W. Roscoe, and A. Rosenfeld. Concepts of digital topology. Topol-
ogy and Its Applications, 46:219–262, 1992.

15. T. Y. Kong and A. Rosenfeld. Digital topology : introduction and survey. Computer
Vision, Graphics and Image Processing, 48:357–393, 1989.

16. R. Malgouyres and A. Lenoir. Topology preservation within digital surfaces. Graph-
ical Models (GMIP), 62:71–84, 2000.

17. A. Rosenfeld. Connectivity in digital pictures. Journal of the Association for
Computing Machinery, 17:146–160, 1970.

18. A. Rosenfeld, T.Y. Kong, and A. Nakamura. Topology-preserving deformations of
two-valued digital pictures. Graphical Models and Image Processing, 60(1):24–34,
January 1998.

19. Azriel Rosenfeld, T. Yung Kong, and A. Nakamura. Topolgy-preserving defor-
mations of two-valued digital pictures. Graphical Models and Image Processing,
60(1):24–34, January 1998.

20. J. K. Udupa. Multidimensional digital boundaries. CVGIP: Graphical Models and
Image Processing, 56:311–323, 1994.

Minimal Non-simple Sets in 4-Dimensional
Binary Images with (8,80)-Adjacency

T. Yung Kong1 and Chyi-Jou Gau2

1 Department of Computer Science, Queens College, City University of New York,
65-30 Kissena Boulevard, Flushing, NY 11367, U.S.A.

2 Doctoral Program in Computer Science, Graduate School and University Center,
City University of New York, 365 Fifth Avenue, New York, NY 10016, U.S.A.

Abstract. We first give a definition of simple sets of 1’s in 4D binary
images that is consistent with “(8,80)-adjacency”—i.e., the use of 8-
adjacency to define connectedness of sets of 1’s and 80-adjacency to define
connectedness of sets of 0’s. Using this definition, it is shown that in any
4D binary image every minimal non-simple set of 1’s must be isometric
to one of eight sets, the largest of which has just four elements. Our result
provides the basis for a fairly general method of verifying that proposed
4D parallel thinning algorithms preserve topology in our “(8,80)” sense.
This work complements the authors’ earlier work on 4D minimal non-
simple sets, which essentially used “(80,8)-adjacency”—80-adjacency on
1’s and 8-adjacency on 0’s.

1 Introduction

In this paper we use the term n-dimensional (or nD) binary image to mean a
partition of Zn into two subsets, one of which is a finite set of points called 1’s,
and the other of which is a (necessarily infinite) set of points called 0’s. Our main
goal is to establish the result stated as the Main Theorem below. In addition to
its theoretical interest, this result provides the basis for a fairly general method
of verifying that a proposed parallel thinning algorithm for 4D binary images
“preserves topology” for all possible input images, in a sense that is consistent
with the use of 8-adjacency to define connectedness within the set of 1’s of the
image (i.e., within the set that is thinned) and the use of 80-adjacency to define
connectedness within the set of 0’s.

Here 8- and 80-adjacency are symmetric binary relations on Z4 that are
analogous to the familiar concepts of 4- and 8-adjacency on Z2 and the concepts
of 6- and 26-adjacency on Z3: Two points x, y ∈ Z4 are 80-adjacent if x �= y but
each coordinate of x differs from the same coordinate of y by at most 1. Two
points x, y ∈ Z4 are 8-adjacent if they are 80-adjacent and they differ in just one
of the four coordinates. For κ = 80 or 8, each point in Z4 is κ-adjacent to just κ
points. Note that 8-adjacency on Z4 is a 4D analog of 4-adjacency on Z2 (and
not of 8-adjacency on Z2).

Let I be any subset of Z4. A point p ∈ I is said to be (8,80)-simple in I if
the deletion of {p} from I preserves topology in the sense of Definition 1 below.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 318–333, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Minimal Non-simple Sets in 4-Dimensional Binary Images 319

A subset S of I is said to be (8,80)-simple in I if S is finite and the points of S
can be arranged in a sequence whose first point is (8,80)-simple in I, and each of
whose subsequent points is (8,80)-simple in the set obtained from I by deleting
all of the preceding points. An immediate consequence of this definition is that
if p ∈ I then the singleton set {p} is (8,80)-simple in I if and only if the point p
is (8,80)-simple in I. Another fundamental property of (8,80)-simple sets, which
follows from Definition 1, is that if a set D ⊂ I is (8,80)-simple in I, then the
deletion of D from I preserves topology in the sense of Definition 1. We say that
a subset S of I is hereditarily (8, 80)-simple in I if every subset of S (including
S itself) is (8, 80)-simple in I.

Given sets S ⊆ I ⊆ Z4, we say that S is (8,80)-minimal-non-simple (or
(8,80)-MNS) in I if S is not (8,80)-simple in I, but every proper subset of S
is (8,80)-simple in I. Since (8,80)-simple sets are finite, so are (8,80)-MNS sets.
Evidently, any finite subset of I that is not hereditarily (8,80)-simple in I must
contain an (8,80)-MNS set of I. We say that a set S ⊂ Z4 can be (8, 80)-MNS if
there exists a set I ⊆ Z4 such that S ⊆ I and S is (8,80)-MNS in I.

Our Main Theorem will tell us that there are, up to isometry, just eight
different sets that can be (8,80)-MNS: In fact, it will say that a subset of Z4 can
be (8,80)-MNS if and only if it is a set of one of the following eight kinds:

A. a singleton set
B. a set of two 8-adjacent points
C. a set of two diagonally opposite points of a 2× 2 square
D. a set of two diametrically opposite points of a 2× 2× 2 cube
E. a set of two diametrically opposite points of a 2× 2× 2× 2 block
F. a set of three points in a 2×2×2 cube that are the vertices of an equilateral

triangle with a side-length of
√

2
G. a set of three points in a 2 × 2 × 2 × 2 block that are the vertices of an

isosceles triangle whose side-lengths are
√

3,
√

3, and
√

2
H. a set of four points in a 2 × 2 × 2 × 2 block such that there is a fifth point

in the block (but not in the set) that is 8-adjacent to each of the four

To see how the Main Theorem can be used to verify that a proposed 4D par-
allel thinning algorithm preserves topology (in the “(8,80)” sense of Definition 1)
for all possible input binary images, suppose O is a 4D parallel local operator1

that the thinning algorithm applies at some iteration or subiteration. How can
we show that whenever the parallel operator O is applied to a 4D binary image,
the set of 1’s that are deleted by O is (8,80)-simple in the set of all 1’s of that
image?

The Main Theorem tells us that we can establish this by verifying that the
parallel local operator O has the following property:
Property A: For every set S ⊂ Z4 of the eight kinds A – H, S is (8,80)-simple
in I whenever I satisfies the following conditions:

1 This is the 4D analog of the familiar concept of a parallel local 2D image processing
operator (as defined, e.g., on p. 41 of [8]). Operators used for thinning binary images
delete certain 1’s (i.e., change those 1’s to 0’s) but leave 0’s unchanged.

320 T.Y. Kong and C.-J. Gau

(i) S ⊆ I ⊆ Z4.
(ii) Every point of S is deleted when O is applied to the 4D binary image whose

set of 1’s is I.

It is easy to see that if Property A holds then, when O is applied to a 4D
binary image whose set of 1’s is J (say), the set of 1’s that are deleted by O
must actually be hereditarily (8,80)-simple in J . For otherwise the set of deleted
1’s would contain some set S that is (8,80)-minimal-non-simple in J , and (by
the Main Theorem) such an (8,80)-MNS set S must be a set of one of the eight
kinds A – H, which would contradict Property A (since A says all such sets are
(8,80)-simple in J and therefore are not (8,80)-MNS in J).

The concept of a minimal non-simple set, and the idea of proving that a par-
allel local deletion operator always preserves topology by verifying that it never
deletes a minimal non-simple subset of the 1’s, were introduced by Ronse [14]
in the 1980’s for 2D Cartesian grids. Hall [5] showed how Ronse’s proof method
was essentially equivalent to an older, path-based, proof method introduced by
Rosenfeld in the 1970’s [15]; ref. [5] also extended Ronse’s proof method to a
2D hexagonal grid. In the 1990’s Ma and Kong investigated minimal non-simple
sets on a 3D Cartesian grid [10, 13], and the present authors studied minimal
non-simple sets on a 3D face-centered cubic grid [3]. The concepts of minimal
non-simple and hereditarily simple sets are related to Bertrand’s concept of a
P -simple point [1]: A subset P of a finite set I ⊆ Zn is hereditarily simple in I
if and only if every point of P is P -simple in I.

Exactly which sets of points can be minimal non-simple? This fundamen-
tal question was answered by the above-mentioned work of Ronse, Ma, and the
authors in two and three dimensions, for definitions of topology-preserving dele-
tion that are consistent with (8, 4)- or (4, 8)-adjacency on the 2D Cartesian grid,
(26, 6)-, (6, 26)-, (18, 6)-, or (6, 18)-adjacency on the 3D Cartesian grid, and
(18, 12)-, (12, 18)-, or (12, 12)-adjacency on the 3D face-centered cubic grid.2

Here (κ, λ)-adjacency refers to the use of κ-adjacency to define connectedness on
the set from which grid points are to be deleted, and the use of λ-adjacency to
define connectedness on the complement of that set. In a more recent paper [4],
the authors answered the same question for the 4D Cartesian grid and (80, 8)-
adjacency. Our Main Theorem answers this question for the 4D Cartesian grid
and (8, 80)-adjacency.

2 The Xel X(p), the Complementary Polyhedron
CP (S), and a Definition of (2n, 3n − 1)-Topology
Preservation

In this section n is an arbitrary positive integer, I denotes an arbitrary subset
of Zn, and D denotes an arbitrary finite subset of I. We are going to define

2 On the face-centered cubic grid, 12- and 18-adjacency relate each grid point to each
of its 12 nearest neighbors and 18 nearest neighbors, respectively.

Minimal Non-simple Sets in 4-Dimensional Binary Images 321

what we mean when we say that the deletion of D from I “preserves topology”.
(The statement and proof of our Main Theorem will actually depend only on the
n = 4 case of this and other concepts defined in the present section and the next.
But consideration of lower-dimensional cases may help the reader to understand
the 4D case.) Our definition of topology-preserving deletion of D from I will be
consistent with the use of 2n-adjacency to define connectedness within I and the
use of (3n − 1)-adjacency to define connectedness within Zn \ I.

Here 2n- and (3n − 1)-adjacency are symmetric binary relations on Zn that
generalize the 4- and 8-adjacency relations on Z2: Writing pi for the ith coordi-
nate of a point p in Zn, x is 2n-adjacent to y, and is a 2n-neighbor of y, if and
only if

∑n
i=1 |xi − yi| = 1; x is (3n − 1)-adjacent to y, and is a (3n − 1)-neighbor

of y, if and only if max1≤i≤n |xi − yi| = 1. For all p ∈ Zn, we write N(p) to
denote the set consisting of p and its (3n − 1)-neighbors.

Now let α = 2n or 3n − 1, and let S ⊆ Zn. Then the restriction to S of the
reflexive transitive closure of the α-adjacency relation is an equivalence relation
on S; each of its equivalence classes is called an α-component of S. The set S
is α-disconnected if it consists of more than one α-component; otherwise S is
α-connected. An α-path is a nonempty sequence of points of Zn such that each
point of the sequence after the first is α-adjacent to its immediate predecessor;
an α-path whose first and last points are respectively p and q is called an α-path
from p to q.

We will use the term n-xel in Rn to mean an “upright” closed n-dimensional
unit hypercube in Euclidean n-space Rn that is centered on a point in Zn. Thus
an n-xel in Rn is a Cartesian product [i1− 0.5, i1 +0.5]× . . .× [in− 0.5, in +0.5]
of n closed unit intervals whose centers i1, . . . , in are all integers. For each point
p in Zn, we write X(p) to denote the n-xel in Rn that is centered at p.

Let S be any subset of Zn. Then the open consolidation of S, denoted by
O(S), and the complementary polyhedron3 of S, denoted by CP(S), are defined
as follows (where int is the topological interior operator):

O(S) = int
⋃
p∈S

X(p) and CP(S) = Rn \ O(S) =
⋃

p∈Zn\S

X(p)

It is readily confirmed that the connected components of O(S) and of CP(S)
(with the usual, Euclidean, topology) are related to the 2n-components of S and
the (3n − 1)-components of Zn \ S as follows:

I. The set {E ∩ Zn | E is a connected component of O(S)} is exactly the set
of all 2n-components of S.

II. The set {C ∩ Zn | C is a connected component of CP(S)} is exactly the set
of all (3n − 1)-components of Zn \ S.

We now define topology-preserving deletion in terms of the complementary
polyhedron:

3 We use the term polyhedron to mean a set that is a union of a locally finite collection
of simplexes. A polyhedron is a closed set, but need not be bounded.

322 T.Y. Kong and C.-J. Gau

Definition 1. Let I ⊆ Zn and let D be a finite subset of I. Then we say that
the deletion of D from I is (2n, 3n − 1)-topology-preserving if there is a
deformation retraction of CP(I \D) onto CP(I).

This definition says that the deletion of D from I is (2n, 3n − 1)-topology-
preserving if and only if the complementary polyhedron of I \D can be contin-
uously deformed over itself onto the complementary polyhedron of I in such a
way that all points that are originally in the latter set remain fixed throughout
the deformation process.4 It can be shown that if such a continuous deforma-
tion exists then each connected component of O(I) contains just one connected
component of O(I \D), and each connected component of CP(I \D) contains
just one connected component of CP(I). It follows from this, and facts I and
II above, that if the deletion of D from I is (2n, 3n − 1)-topology-preserving
then:

1. Each 2n-component of I contains just one 2n-component of I \D.
2. Each (3n−1)-component of Zn\(I \D) contains just one (3n−1)-component

of Zn \ I.

Condition 1 says that no 2n-component of I is split or completely eliminated
as a result of the deletion of D. Condition 2 says that no two (3n−1)-components
of Zn\I are merged as a result of the deletion of D, and also that no new (3n−1)-
component of Zn \ I is created.

We say that a point p ∈ I is (2n, 3n − 1)-simple in I if the deletion of {p}
from I is (2n, 3n − 1)-topology-preserving. Thus p is (2n, 3n − 1)-simple in I if
and only if there is a deformation retraction of the polyhedron CP(I \ {p}) onto
the polyhedron CP(I).

While this definition of (2n, 3n − 1)-simple points involves continuous de-
formation, Theorem 1 below gives essentially discrete necessary and sufficient
local conditions for p to be (2n, 3n − 1)-simple in I when n ≤ 4. Our proof
of the Main Theorem will be based on this discrete local characterization of
(2n, 3n − 1)-simple points.

In the case n = 2, (2n, 3n− 1) = (4, 8), it can be shown that the conditions 1
and 2 above are sufficient as well as necessary for the deletion of D from I to be
(4, 8)-topology-preserving in the sense of Definition 1. These two conditions can
arguably be regarded as the “standard” definition of (4,8)-topology preservation
when a finite set D of 1’s is deleted from the set I of all 1’s of a 2D binary
image—see, e.g., [12–p. 366] or [6–p. 156].

In the case n = 3, (2n, 3n − 1) = (6, 26), there is no “standard” definition
of what it means for the deletion of D from I to be (6,26)-topology-preserving
if D contains more than one point. However one can deduce from Theorem 1
below that the standard concept of a (6, 26)-simple point (see, e.g., [2–p. 117])
is equivalent to our concept of such a point.

4 Deformation retraction is defined in, e.g., [7]. This concept is sometimes called strong
deformation retraction (as in [16]).

Minimal Non-simple Sets in 4-Dimensional Binary Images 323

3 A Discrete Local Characterization of (2n, 3n−1)-Simple
Points, for 1 ≤ n ≤ 4

In Section 2 we defined n-xels in Rn. We now define the more general concept
of a k-xel in Rn, where k may be less than n. For any integer i, the singleton
set {i + 0.5} will be called an elementary 0-cell, and the closed unit interval
[i − 0.5, i + 0.5] of the real line will be called an elementary 1-cell. (Thus an
elementary 1-cell is the same thing as a 1-xel in R.)

A xel is a Cartesian product E1 × . . . × Em, where m can be any positive
integer and each of the E’s is an elementary 1-cell or an elementary 0-cell. If k of
the m E’s are elementary 1-cells and the other m−k E’s are elementary 0-cells,
then the xel is called a k-xel. Note that a k-xel E1× . . .×Em is an upright closed
k-dimensional unit (hyper)cube in Rm, and its vertices are located at points each
of whose coordinates differs from an integer by 0.5.

If a xel Y is a subset of a xel X then we say Y is a face of X. This is denoted
by Y ≤ X. If Y is a k-xel and Y ≤ X, then we say Y is a k-face of X. It is easy
to verify that, for all integers 0 ≤ j ≤ k, every k-xel has just 2k−j

(
k
j

)
different

j-faces. If Y ≤ X and Y �= X, then we say Y is a proper face of X; this is
denoted by Y < X. A xel-complex in Rn is a finite collection K of xels in Rn

with the property that K contains every proper face of each of its members (i.e.,
Y ∈ K whenever X ∈ K and Y < X).

The Euler number of a xel-complex K in Rn, which is denoted by χ(K), is the
integer

∑n
i=0(−1)ici(K), where ci(K) is the number of i-xels in K. If P is any

finite union of xels in Rn then the Euler number of P , which is denoted by χ(P),
is defined to be the number χ(K), where K is the xel-complex consisting of all
the xels in Rn that are contained in the polyhedron P (i.e., K is the xel-complex
such that

⋃
K = P). It is not hard to show that if X is any xel, then χ(X) = 1.

Note also that χ(∅) = 0.
The boundary complex of a k-xel X in Rn, denoted by Boundary(X), is the

xel-complex in Rn consisting of all the proper faces of X.
Let p ∈ I ⊆ Zn. Recall that X(p) denotes the n-xel in Rn that is centered at

p. The coattachment complex of p in I, denoted by Coattach(p, I), is the xel-
complex {Y ∈ Boundary(X(p)) | ∃q . q ∈ Zn \ I and Y < X(q)} in Rn. Thus
Coattach(p, I) consists of those faces of X(p) that also belong to the boundary
complex of at least one n-xel in the complementary polyhedron of I. The set⋃

Coattach(p, I) = X(p) ∩ CP(I) will be called the coattachment set of p in I;
this is a polyhedron in

⋃
Boundary(X(p)).

When n = 1, 2, 3, or 4, necessary and sufficient conditions for a point p to be
(2n, 3n−1)-simple in a subset I of Zn can be stated in terms of Coattach(p, I):

Theorem 1. Let I ⊆ Zn, where n = 1, 2, 3, or 4. Let p be a point in I. Then
p is (2n, 3n − 1)-simple in I if and only if the following conditions all hold:

1. The polyhedron
⋃

Coattach(p, I) is connected.
2. The set (

⋃
Boundary(X(p))) \

⋃
Coattach(p, I) is connected.

3. χ(Coattach(p, I)) = 1.

324 T.Y. Kong and C.-J. Gau

In the rest of this section we explain how Theorem 1 can be deduced from
Theorem 2.10 in [10] and Theorem 2 in [4]. Let p ∈ J ⊆ Zn. Then we denote
the xel-complex {Y ∈ Boundary(X(p)) | ∃q . q ∈ J \ {p} and Y < X(q)} in
Rn by Attach(p, J). We say that the point p is (3n − 1, 2n)-simple in J if there
is a deformation retraction of the polyhedron

⋃
q∈J X(q) onto the polyhedron⋃

q∈J\{p} X(q). (The reason for the name “(3n−1, 2n)-simple” is that deletion of
such a point p from J may reasonably be said to “preserve topology” in a sense
that is consistent with the use of (3n − 1)-adjacency to define connectedness
within J and the use of 2n-adjacency to define connectedness within Zn \ J .) It
is easily verified that if p ∈ I ⊆ Zn, and J = (Zn \I)∪{p}, then p is (2n, 3n−1)-
simple in I if and only if p is (3n − 1, 2n)-simple in J , and Coattach(p, I) =
Attach(p, J). It follows that Theorem 1 is equivalent to the following theorem:

Theorem 2. Let p ∈ J ⊆ Zn, where n = 1, 2, 3, or 4. Let p be a point in J .
Then p is (3n−1, 2n)-simple in J if and only if the following conditions all hold:

1. The polyhedron
⋃

Attach(p, J) is connected.
2. The set (

⋃
Boundary(X(p))) \

⋃
Attach(p, J) is connected.

3. χ(Attach(p, J)) = 1.

When n = 1, the truth of Theorem 2 can be verified by case-checking. When
n = 2 or 3, Theorem 2 follows from Theorem 2.10 in [10] and well known
topological facts. In the case n = 4, which is the case that our proof of the Main
Theorem will depend on, Theorem 2 is essentially equivalent5 to Theorem 2 in
[4]; for an elementary proof of the “if” part, see [11]. This justifies Theorem 1.

4 The Schlegel Diagram of Boundary (X(p)), for p ∈ Z4

When discussing the boundary complex of X(p) for a point p ∈ Z4 whose coor-
dinates are (p1, p2, p3, p4), a xel E1×E2×E3×E4 ∈ Boundary(X(p)) may be
denoted by a sequence of four symbols a1a2a3a4, where:

• The symbol ai is “+” if Ei = {pi + 0.5}.
• The symbol ai is “−” if Ei = {pi − 0.5}.
• The symbol ai is “±” if Ei is the closed interval [pi − 0.5, pi + 0.5].

For example, −++− denotes the 0-xel {(p1−0.5, p2+0.5, p3+0.5, p4−0.5)};
−±−+ denotes the 1-xel {p1−0.5}× [p2−0.5, p2 +0.5]×{p3−0.5}×{p4 +0.5};
the 3-xel [p1− 0.5, p1 +0.5]× [p2− 0.5, p2 +0.5]× [p3− 0.5, p3 +0.5]×{p4 +0.5}
is denoted by ±±±+.

5 Theorem 2 in [4] is directly applicable only if J is a finite set, but in proving Theo-
rem 2 we may assume this. For if Nk(p) denotes the set {x ∈ Z

n | ‖x − p‖∞ ≤ k},
then for any k ≥ 1 conditions 1 – 3 of the theorem hold if and only if they hold when
J is replaced by the finite set J ∩Nk(p); and the definition of (3n −1, 2n)-simpleness
implies that p is (3n − 1, 2n)-simple in J if and only if p is (3n − 1, 2n)-simple in
J ∩ Nk(p) for some k ≥ 1. (Theorem 2 implies that the latter is true even for k = 1,
but we cannot use this fact in proving Theorem 2.)

Minimal Non-simple Sets in 4-Dimensional Binary Images 325

For any p ∈ Z4, the xels in Boundary(X(p)) can be usefully represented by
a Schlegel diagram in R3 ∪ {∞} (where ∞ denotes a single “point at infinity”
whose topological neighborhoods are the complements of bounded subsets of
R3). This is shown in Figure 1. Each 0-xel in Boundary(X(p)) is represented
by the vertex with the corresponding label in the figure. With one exception,
each 1-, 2-, and 3-xel Y in Boundary(X(p)) is represented by the convex hull
(in R3) of the vertices of the Schlegel diagram that represent the 0-faces of Y .
The exception is that the 3-xel ±±±+ is represented by the closure of the
“outside” region of the diagram (i.e., the closure of the complement of the union
of the parts of the diagram that represent the other xels).

−−−+

−−++

+−−+

+−++

−+−+

−+++

++−+

++++

−−−− +−−−

−−+− +−+−

−+−− ++−−

−++− +++−

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
��

�
��

�
��

�
��

�
�

��

��� �����

�
�

��

�
�

��

	
	
	
	
	
	

�
�

�
�

�
� �
�

��

Fig. 1. A Schlegel diagram of Boundary(X(p)) in R
3 ∪ {∞} is shown here, for an

arbitrary point p ∈ Z
4. The large cube is subdivided into seven closed convex cells,

one of which is the small cube in the center. Each of the seven closed convex cells
represents one of the eight 3-xels in Boundary(X(p)). The closure of the unbounded
outside region represents the other 3-xel in Boundary(X(p)).

If P is any union of xels in Boundary(X(p)), then let Schlegelp(P) de-
note the union of the parts of the Schlegel diagram of Boundary(X(p)) that
represent the xels in P . It is not hard to show that the Schlegel diagram is a
topologically faithful representation of Boundary(X(p)), in the sense that there
is a homeomorphism of

⋃
Boundary(X(p)) onto R3 ∪ {∞} that maps each xel

Y ∈ Boundary(X(p)) onto Schlegelp(Y). It follows that if P is any union of
xels in BoundaryX(p), then:

(a) P is connected if and only if Schlegelp(P) is connected.
(b) (

⋃
Boundary(X(p)))\P is connected if and only if (R3∪{∞})\Schlegelp(P)

is connected.

326 T.Y. Kong and C.-J. Gau

The next two lemmas state properties of the xels of Boundary(X(p)) that
are evident from (b) and inspection of Figure 1.

Lemma 1. Let P be a union of xels in Boundary(X(p)) and let Y be a 1-xel
in Boundary(X(p)). Then (

⋃
Boundary(X(p))) \ (P ∪ Y) is connected if

(
⋃

Boundary(X(p))) \ P is connected. �

Lemma 2. Let P be a union of xels in Boundary(X(p)) and let Y be a 2-xel
in Boundary(X(p)) such that at most three of the four 1-faces of Y lie in P .
Then (

⋃
Boundary(X(p))) \ (P ∪ Y) is connected if (

⋃
Boundary(X(p))) \P

is connected. �

5 Properties of (8, 80)-MNS Sets

In the Introduction we defined (8, 80)-MNS sets in Z4. In this section we present
some important properties of such sets.

We begin with four basic facts. Let I be an arbitrary subset of Z4, let p be
any point in I, and let D be any finite subset of I \ {p}. Then:

S0 ∅ is (8, 80)-simple in I.
S1 If D is (8, 80)-simple in I, and p is (8, 80)-simple in I \D, then D ∪ {p} is

(8, 80)-simple in I.
S2 If D is (8, 80)-simple in I, and D ∪ {p} is also (8, 80)-simple in I, then p is

(8, 80)-simple in I \D.
S3 p is (8, 80)-simple in I if and only if p is (8,80)-simple in N(p) ∩ I.

Here S0 and S1 are immediate consequences of the definition of an (8, 80)-
simple set, and S3 is an easy consequence of Theorem 1. The truth of S2 can
be deduced from properties of deformation retraction.6

Our next theorem gives a convenient characterization (8,80)-MNS sets. This
theorem is a fairly straightforward consequence of S0, S1, and S2, as is shown
on p. 74 of [9].

Theorem 3. Let D ⊆ I ⊆ Z4. Then D is (8, 80)-MNS in I if and only if D is
nonempty and finite, and the following conditions hold for all p ∈ D:

6 Indeed, suppose D and D ∪ {p} are both (8, 80)-simple in I. Consider the inclusion
maps i1 : CP(I) → CP(I \ D) and i2 : CP(I \ D) → CP((I \ D) \ {p}). Since D is
(8,80)-simple in I, there is a deformation retraction of CP(I \ D) onto CP(I). This
implies that the map i1 is a homotopy equivalence. Let i′1 : CP(I \D) → CP(I) be a
homotopy inverse of i1, so that i′1 is a homotopy equivalence as well. Since D ∪ {p}
is (8,80)-simple in I, there is a deformation retraction of CP((I \ D) \ {p}) onto
CP(I), and so the inclusion map i2 ◦ i1 : CP(I) → CP((I \ D) \ {p}) is a homotopy
equivalence. As the inclusion map i2 : CP(I \D) → CP((I \D)\{p}) is homotopic to
(i2 ◦i1)◦i′1, it too must be a homotopy equivalence. By Cor. 1.4.10, Thm. 1.4.11, and
Cor. 3.2.5 in [16], this implies there is a deformation retraction of CP((I \ D) \ {p})
onto CP(I \ D), and so p is (8,80)-simple in I \ D, as S2 asserts.

Minimal Non-simple Sets in 4-Dimensional Binary Images 327

1. p is not (8, 80)-simple in I \ (D \ {p}).
2. p is (8, 80)-simple in I \ T for every T � D \ {p}. �

We now deduce three important but fairly easy corollaries from Theorem 3.
Recall from the Introduction that we say a set S ⊂ Z4 can be (8, 80)-MNS if
there exists a set I ⊆ Z4 such that S ⊆ I and S is (8,80)-MNS in I.

Corollary 1. Let X � D ⊆ Z4. Then if D can be (8,80)-MNS, so can D \X.

Proof. Suppose D ⊆ I ⊆ Z4 and D is (8, 80)-MNS in I. Then Theorem 3 implies
that D \X is (8, 80)-MNS in I \X. �

From S3 and Theorem 3, we see that if D ⊆ I ⊆ Z4 and D is (8, 80)-MNS
in I, then q ∈ N(p) for all pairs of points p and q in D. [Indeed, under these
hypotheses Theorem 3 tells us that, for all distinct points p and q in D, p is not
(8, 80)-simple in I \ (D \ {p}), but p is (8, 80)-simple in I \ (D \ {p, q}), which
(together with S3) implies N(p) ∩ (I \ (D \ {p})) �= N(p) ∩ (I \ (D \ {p, q}), so
that q ∈ N(p).] In other words:

Corollary 2. D cannot be (8, 80)-MNS if D is not a subset of a 2 × 2 × 2 × 2
block of points in Z4. �

Corollary 3. Let D be a subset of a 2× 2× 2× 2 block in Z4 and suppose there
exist distinct points p, q, r ∈ D such that q lies on one of the shortest 8-paths (in
Z4) from p to r. Then D cannot be (8, 80)-MNS.

Proof. Let I be any superset of D in Z4. Then X(p) ∩X(r) ⊆ X(p) ∩X(q) ⊆⋃
Coattach(p, I \ (D \ {p, r})). It follows that

⋃
Coattach(p, I \ (D \ {p})) =⋃

Coattach(p, I \(D\{p, r}))∪(X(p)∩X(r)) =
⋃

Coattach(p, I \(D\{p, r})).
Hence (by Theorem 1) if p is not (8,80)-simple in the set I \ (D \ {p}), then p is
also not (8,80)-simple in I \ (D \ {p, r}). This and Theorem 3 imply that D is
not (8, 80)-MNS in I. �

6 The Main Theorem

In this section we state our Main Theorem, which identifies all sets that can
be (8,80)-MNS. Note that we already know every such set is contained in some
2× 2× 2× 2 block (by Corollary 2 of Theorem 3).

Let p, q ∈ Z4. The set {p, q} will be called an antipodean pair (of a 2×2×2×2
block) if p is 80-adjacent to q and none of the four coordinates of p is equal to the
same coordinate of q. The set {p, q} will be called a

√
3-pair if p is 80-adjacent

to q and just one of the four coordinates of p is equal to the same coordinate
of q. The set {p, q} will be called a

√
2-pair if p is 80-adjacent to q and just

two of the four coordinates of p are equal to the same coordinate of q. Thus if
p is 80-adjacent to q then p and q constitute an antipodean pair, a

√
3-pair, a√

2-pair, or a pair of 8-adjacent points according to whether X(p) ∩ X(q) is a
0-xel, a 1-xel, a 2-xel, or a 3-xel in R4.

328 T.Y. Kong and C.-J. Gau

A set {p, q, r} will be called a
√

2-equilateral triple if each of {p, q}, {q, r},
and {p, r} is a

√
2-pair. We will call {p, q, r} a (

√
3,
√

3,
√

2)-isosceles triple if
two of the three pairs {p, q}, {q, r}, {p, r} are

√
3-pairs and the other is a

√
2-

pair. (It is easily verified that every (
√

3,
√

3,
√

2)-isosceles triple lies in a unique
2× 2× 2× 2 block.) A set {p, q, r, s} will be called a

√
2-spanning quadruple (of

a 2 × 2 × 2 × 2 block) if there is a 2 × 2 × 2 × 2 block B and a point x ∈ B
such that p, q, r, and s are the four 8-neighbors of x in B. (Each 2-point subset
of a

√
2-spanning quadruple is a

√
2-pair, but this property does not uniquely

characterize
√

2-spanning quadruples: A 2×2×2×1 block contains 4-point sets
in which every 2-point subset is a

√
2-pair, but these sets are not considered to

be
√

2-spanning quadruples.)
We are now ready to state the Main Theorem:

Theorem 4 (Main Theorem). A set D ⊂ Z4 can be (8, 80)-MNS if and only
if D is one of the following:

1. a singleton set
2. a pair of 8-adjacent points
3. a

√
2-pair

4. a
√

3-pair
5. an antipodean pair of a 2× 2× 2× 2 block
6. a

√
2-equilateral triple

7. a (
√

3,
√

3,
√

2)-isosceles triple
8. a

√
2-spanning quadruple of a 2× 2× 2× 2 block

7 Proof of the “If” Part of the Main Theorem

The eight kinds of set listed in the Main Theorem have the property that if D1
and D2 are any two sets of the same kind, then there is an isometry of Z4 onto
itself that maps D1 onto D2. So if we can show that one set of each of these
kinds can be (8, 80)-MNS, then it will follow that all sets of these kinds can be
(8, 80)-MNS and that the “if” part of the Main Theorem holds.

In fact, it suffices to verify that one set of each of the following four kinds
can be (8, 80)-MNS:

• a pair of 8-adjacent points
• an antipodean pair of a 2× 2× 2× 2 block
• a (

√
3,
√

3,
√

2)-isosceles triple
• a
√

2-spanning quadruple of a 2× 2× 2× 2 block

This is because each set of the other four kinds listed in the Main Theorem
is a subset of a set of one of these four kinds, and Corollary 1 of Theorem 3 tells
us that if a set can be (8,80)-MNS, then so can each of its nonempty subsets.

For brevity, when a, b, c, and d are single digit numbers we write abcd to
denote the point (a, b, c, d) in Z4. For example, 1203 denotes the point (1,2,0,3).
With the aid of the Schlegel diagram of Boundary(X(1111)), we can see from
Theorems 1 and 3 that the antipodean pair {1111, 2222} and the

√
2-spanning

Minimal Non-simple Sets in 4-Dimensional Binary Images 329

quadruple {1111, 2112, 2121, 2211} are (8,80)-MNS in I if I is the 2× 2× 2× 2
block {1, 2} × {1, 2} × {1, 2} × {1, 2}. (For this I, Coattach(1111, I) consists
of all the xels in Boundary(X(1111)) that do not have ++++ as a 0-face.)
We can similarly see that the (

√
3,
√

3,
√

2)-isosceles triple {1111, 1222, 2221}
is (8,80)-MNS in the same set I, with the aid of the Schlegel diagrams of
Boundary(X(1111)) and Boundary(X(2221)). Finally, with the aid of the
Schlegel diagram of Boundary(X(1111)), we can see that the pair of 8-adjacent
points {1111, 2111} is (8,80)-MNS in the 2× 3× 1× 1 block {1, 2} × {0, 1, 2} ×
{1} × {1}. It follows that the “if” part of the Main Theorem is true.

8 Proof of the “Only If” Part of the Main Theorem

We already know (from Corollary 2 of Theorem 3) that a set can only be (8,80)-
MNS if it is a subset of a 2 × 2 × 2 × 2 block in Z4. Our next lemma classifies
subsets of 2× 2× 2× 2 blocks in a useful way.

If D and E are subsets of Z4 then we say that D is E-like if there is an
isometry of Z4 onto itself that maps D onto E. We give two examples. Writing
abcd to denote the point (a, b, c, d) as before, a set is an antipodean pair if and
only if it is {1111, 2222}-like, and is a

√
2-spanning quadruple if and only if it is

{1111, 2112, 2121, 2211}-like.

Lemma 3. Let D be a subset of a 2× 2× 2× 2 block of points in Z4. Then D
satisfies one of the following conditions:

1. D is a set of one of the eight kinds listed in the Main Theorem.
2. D strictly contains a pair of 8-adjacent points.
3. D strictly contains an antipodean pair.
4. D contains a 4-point set that is {1111, 1221, 2121, 2212}-like,
{1111, 1222, 2121, 2212}-like, or {1111, 1221, 2121, 2211}-like.

Proof. This lemma is easily verified by case-checking. (Note that it is enough to
check that the lemma holds whenever D has five or fewer points. This is because
condition 1 cannot hold if D has five points, and, for any set D0, if one of the
other three conditions holds when D is some 5-point subset of D0, then it also
holds when D = D0.) We leave the details to the reader. �

Lemma 4. Let D be a subset of a 2 × 2 × 2 × 2 block such that D strictly
contains either a pair of 8-adjacent points or an antipodean pair. Then D cannot
be (8,80)-MNS.

Proof. This lemma follows from Corollary 3 of Theorem 3. Indeed, let a, b, and
c be distinct points in a 2× 2× 2× 2 block. If {a, b} is an antipodean pair, then
c lies on one of the shortest 8-paths from a to b. If a and b are 8-adjacent points
that differ just in the ith coordinate, then c has the same ith coordinate as one
of the two points a and b, and that point lies on one of the shortest 8-paths from
the other of those two points to c. �

330 T.Y. Kong and C.-J. Gau

It follows from Lemmas 3 and 4 that we can now complete the proof of the
“only if” part of the Main Theorem by showing that a set D ⊂ Z4 cannot be
(8,80)-MNS if D satisfies condition 4 of Lemma 3. In view of Corollary 1 of The-
orem 3, it is enough to show that none of the three sets {1111, 1221, 2121, 2212},
{1111, 1222, 2121, 2212}, and {1111, 1221, 2121, 2211} can be (8,80)-MNS.

Consider the first set, {1111, 1221, 2121, 2212}. We claim that:

X(1111)∩X(1221)∩X(2121)∩X(2212) = X(1111)∩X(2121)∩X(2212) �= ∅ (1)

This is easily seen because

X(1111) ∩X(1221) = ±++± in Boundary(X(1111))
X(1111) ∩X(2121) = +±+± in Boundary(X(1111))
X(1111) ∩X(2212) = ++±+ in Boundary(X(1111))

which shows that the triple and the quadruple intersections in (1) are both equal
to the 0-xel ++++ in Boundary(X(1111)). It is readily confirmed that the
second set, {1111, 1222, 2121, 2212}, and the third set, {1111, 1221, 2121, 2211},
satisfy analogous conditions:

X(1111) ∩X(1222) ∩X(2121) ∩X(2212) = X(1111) ∩X(2121) ∩X(2212) �= ∅
X(1111) ∩X(1221) ∩X(2121) ∩X(2211) = X(1111) ∩X(2121) ∩X(2211) �= ∅

Theorem 5 below will tell us that this makes it impossible for these three sets
to be (8,80)-MNS in a 4D binary image.

We will deduce Theorem 5 from the next two lemmas. These lemmas will be
proved using the following identity, which holds when each of P1, P2, . . . , Pk is a
finite union of xels in Rn: χ(

⋃k
i=1 Pi) =

∑
T⊆{1,2,...,k},T �=∅(−1)|T |−1χ(

⋂
i∈T Pi).

We call this the Inclusion-Exclusion Principle for Euler numbers. It can be de-
duced from the definition of χ(P) and the Inclusion-Exclusion Principle for car-
dinalities of finite sets.

Lemma 5. Let p ∈ Z4, let Y be a xel in Boundary(X(p)), and let P be a
union of xels in Boundary(X(p)) such that χ(P) = χ(P ∪ Y) = 1. Then:

1. χ(P ∩ Y) = 1.
2. P ∪ Y is connected if P is connected.
3. If Y is a 1-xel or a 2-xel, then (

⋃
Boundary(X(p))) \ (P ∪ Y) is connected

if (
⋃

Boundary(X(p))) \ P is connected.

Proof. It follows from the Inclusion-Exclusion Principle for Euler numbers that
χ(P ∪ Y) = χ(P) + χ(Y) − χ(P ∩ Y). This implies assertion 1, since χ(P) =
χ(P ∪ Y) = 1 and since χ(Y) = 1 (as Y is a xel). Assertion 1 implies that
P ∩Y �= ∅. This implies assertion 2, since Y is connected. Assertion 3 is trivially
valid if Y ⊆ P , so let us assume that Y �⊆ P . Now if Y is a 2-xel then assertion
1 implies that at most three of the four 1-faces of Y lie in P . Hence assertion 3
follows from Lemmas 1 and 2. �

Minimal Non-simple Sets in 4-Dimensional Binary Images 331

Lemma 6. Let p ∈ Z4, let X1, X2, and X3 be xels in Boundary(X(p)) such
that X1∩X2 = X1∩X2∩X3 �= ∅, and let P be a union of xels in Boundary(X(p))
such that χ(P) = χ(P ∪ X1) = χ(P ∪ X2) = χ(P ∪ X3) = χ(P ∪ X1 ∪ X2) =
χ(P ∪X1 ∪X3) = χ(P ∪X2 ∪X3) = 1. Then χ(P ∪X1 ∪X2 ∪X3) = 1.

Proof. Any nonempty intersection of xels is a xel. So, since X1, X2, and X3 are
xels and X1 ∩X2 ∩X3 �= ∅, we have

χ(Xi) = χ(Xi ∩Xj) = χ(X1 ∩X2 ∩X3) = 1 (2)

for all i and j in {1, 2, 3}. By assertion 1 of Lemma 5, we also have

χ(P ∩X1) = χ(P ∩X2) = χ(P ∩X3) = 1 (3)

For all i and j in {1, 2, 3}, it follows from the Inclusion-Exclusion Principle
for Euler numbers that

χ(P ∪Xi ∪Xj) = χ(P) + χ(Xi) + χ(Xj)
−χ(P ∩Xi)− χ(P ∩Xj)− χ(Xi ∩Xj)
+χ(P ∩Xi ∩Xj) (4)

Since χ(P) = χ(P ∪Xi ∪Xj) = 1, it follows from (2), (3), and (4) that

χ(P ∩X1 ∩X2) = χ(P ∩X1 ∩X3) = χ(P ∩X2 ∩X3) = 1 (5)

The Inclusion-Exclusion Principle for Euler numbers also implies that:

χ(P ∪X1 ∪X2 ∪X3) = χ(P) + χ(X1) + χ(X2) + χ(X3)

−
∑

1≤i<j≤3

χ(Xi ∩Xj)−
3∑

i=1

χ(P ∩Xi)

+χ(X1 ∩X2 ∩X3) +
∑

1≤i<j≤3

χ(P ∩Xi ∩Xj)

−χ(P ∩X1 ∩X2 ∩X3) (6)

Since χ(P) = 1, and since χ(P ∩X1 ∩X2 ∩X3) = χ(P ∩X1 ∩X2) = 1 (by
(5) and the fact that X1 ∩X2 ∩X3 = X1 ∩X2), it follows from (2), (3), (5), and
(6) that χ(P ∪X1 ∪X2 ∪X3) = 1. �

Theorem 5. Let D be a subset of a 2× 2× 2× 2 block in Z4 and suppose there
exist distinct points q1, q2, q3, and p in D such that X(p) ∩ X(q1) ∩ X(q2) =
X(p) ∩X(q1) ∩X(q2) ∩X(q3) �= ∅. Then D cannot be (8, 80)-MNS.

Proof. By Corollary 1 of Theorem 3, it is enough to show that the four-point
set {p, q1, q2, q3} cannot be (8,80)-MNS.

Suppose {p, q1, q2, q3} ⊆ I ⊆ Z4 and {p, q1, q2, q3} is (8, 80)-MNS in I. Let
Xi = X(p) ∩X(qi) for i = 1, 2, and 3, so that X1 ∩X2 = X1 ∩X2 ∩X3 �= ∅. It
follows from Lemma 4 that each of X1, X2, and X3 is a 1-xel or a 2-xel.

332 T.Y. Kong and C.-J. Gau

Let P =
⋃

Coattach(p, I). Then
⋃

Coattach(p, I \ {qi}) = P ∪Xi and⋃
Coattach(p, I \{qi, qj}) = P ∪Xi∪Xj for all i, j ∈ {1, 2, 3}; and we also have⋃
Coattach(p, I \ {q1, q2, q3}) = P ∪X1 ∪X2 ∪X3.
Since {p, q1, q2, q3} is (8, 80)-MNS in I, it follows from Theorem 3 that p is

(8,80)-simple in I, in I \ {qi}, and in I \ {qi, qj}, for all i, j ∈ {1, 2, 3}. Hence
it follows from Theorem 1 that P,X1, X2, and X3 satisfy the hypotheses of
Lemma 6, and so we have:

χ(Coattach(p, I \ {q1, q2, q3})) = χ(P ∪X1 ∪X2 ∪X3) = 1 (7)

Since χ(P) = χ(P ∪ X1) = χ(P ∪ X1 ∪ X2) = χ(P ∪ X1 ∪ X2 ∪ X3) =
1, and since Theorems 1 and 3 imply that both P =

⋃
Coattach(p, I) and

(
⋃

Boundary(X(p))) \ P are connected, we can deduce from Lemma 5 that⋃
Coattach(p, I \ {q1, q2, q3}) = P ∪ X1 ∪ X2 ∪ X3 is connected, and that

(
⋃

Boundary(X(p))) \Coattach(p, I \ {q1, q2, q3}) = (
⋃

Boundary(X(p))) \
(P ∪X1∪X2∪X3) is also connected. But this, (7), and Theorem 1 imply that p is
(8,80)-simple in I \{q1, q2, q3}, which contradicts Theorem 3 (since {p, q1, q2, q3}
is (8, 80)-MNS in I). �

As explained above, Theorem 5 and Corollary 1 of Theorem 3 imply that
a set D ⊂ Z4 cannot be (8,80)-MNS if D satisfies condition 4 of Lemma 3. It
follows from this, and Lemmas 3 and 4, that the “only if” part of the Main
Theorem is valid.

References

[1] G. Bertrand. On P -simple points. C. R. Acad. Sci. Paris, Série I, 321:1077–1084,
1995.

[2] G. Bertrand. A Boolean characterization of three-dimensional simple points. Pat-
tern Recogn. Lett., 17:115–124, 1996.

[3] C. J. Gau and T. Y. Kong. Minimal nonsimple sets of voxels in binary images on
a face-centered cubic grid. Int. J. Pattern Recogn. Artif. Intell., 13:485–502, 1999.

[4] C. J. Gau and T. Y. Kong. Minimal nonsimple sets in 4D binary images. Graph.
Models, 65:112–130, 2003.

[5] R. W. Hall. Tests for connectivity preservation for parallel reduction operators.
Topology and Its Applications, 46:199–217, 1992.

[6] R. W. Hall. Parallel connectivity-preserving thinning algorithms. In T. Y. Kong
and A. Rosenfeld, editors, Topological Algorithms for Digital Image Processing,
pages 145–179. Elsevier/North-Holland, 1996.

[7] L. C. Kinsey. Topology of Surfaces. Springer, 1993.
[8] R. Klette and P. Zamperoni. Handbook of Image Processing Operators. Wiley,

1996.
[9] T. Y. Kong. On the problem of determining whether a parallel reduction operator

for n-dimensional binary images always preserves topology. In R. A. Melter and
A. Y. Wu, editors, Vision Geometry II (Boston, September 1993), Proceedings,
pages 69–77. Proc. SPIE 2060, 1993.

[10] T. Y. Kong. On topology preservation in 2D and 3D thinning. Int. J. Pattern
Recogn. Artif. Intell., 9:813–844, 1995.

Minimal Non-simple Sets in 4-Dimensional Binary Images 333

[11] T. Y. Kong. Topology preserving deletion of 1’s from 2-, 3- and 4-dimensional
binary images. In E. Ahronovitz and C. Fiorio, editors, Discrete Geometry for
Computer Imagery: 7th International Workshop (DGCI ’97, Montpellier, France,
December 1997), Proceedings, pages 3–18. Springer, 1997.

[12] T. Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Com-
puter Vision, Graphics, and Image Processing, 48:357–393, 1989.

[13] C. M. Ma. On topology preservation in 3D thinning. CVGIP: Image Understand-
ing, 59:328–339, 1994.

[14] C. Ronse. Minimal test patterns for connectivity preservation in parallel thinning
algorithms for binary digital images. Discrete Appl. Math., 21:67–79, 1988.

[15] A. Rosenfeld. A characterization of parallel thinning algorithms. Information and
Control, 29:286–291, 1975.

[16] E. H. Spanier. Algebraic Topology. Springer, 1989.

Jordan Surfaces in Discrete
Antimatroid Topologies

Ralph Kopperman1 and John L. Pfaltz2

1 City University of New York, New York, NY
rdkcc@cunyvm.cuny.edu

2 University of Virginia, Charlottesville, VA
jlp@virginia.edu

Abstract. In this paper we develop a discrete, T0 topology in which
(1) closed sets play a more prominent role than open sets, (2) atoms
comprising the space have discrete dimension, which (3) is used to define
boundary elements, and (4) configurations within the topology can have
connectivity (or separation) of different degrees.

To justify this discrete, closure based topological approach we use it
to establish an n-dimensional Jordan surface theorem of some interest.
As surfaces in digital imagery are increasingly rendered by triangulated
decompositions, this kind of discrete topology can replace the highly reg-
ular pixel approach as an abstract model of n-dimensional computational
geometry.

1 Axiomatic Basis

Let U be a universe of arbitrary elements, or as we will call them, atoms. We
let R denote a binary relation on U. We denote the identity relation I on U by
R0. Relational composition is defined in the usual way, so Rk = R◦Rk−1, and in
particular, R1◦R0 = R◦I = R. Notationally, we denote elements (x, z) ∈ Rk by
x.Rk.z.1 Then, x.Rk = {z | x.Rk.z} and X.Rk = {z | ∃x ∈ X,x.Rk.z}.

In addition to R, we assume an integer function δ : U→ Z that satisfies the
following basic axiom

x.R.z implies δ(x) > δ(z). (1)

An easy induction on k establishes that x.Rk.z also implies δ(x) > δ(z).
Consequently,

Lemma 1. If x.Rm.z and z.Rn.x then n = m = 0 and x = z.

Proof. If x.Rm.z then δ(x) > δ(z), so if z.Rn.x we have δ(z) > δ(x), a contra-
diction unless m = n = 0 and x = z. ��

1 We employ a dot notation to clearly delineate the operator symbol from its argu-
ment(s).

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 334–350, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Jordan Surfaces in Discrete Antimatroid Topologies 335

Consequently, we can let

δ(x) = min{k | x.Rk �= ∅, x.Rk+1 = ∅} (2)

We should note that the implication of Lemma 1 coupled with the definition
of δ in (2) together imply (1) and so these could be taken as the axiomatic basis
instead.

Any relation R satisfying the functional constraint (1) is anti-symmetric. It
is a pre-partial order; and its transitive closure R∗ =

⋃
k≥0 R

k is a partial order.
Given such a relation R and function δ, we create a discrete topology τ by
defining a closure operator ϕ. Since closure ϕ is just a relation on U, as is R, we
use a similar kind of notation. A topology τ = (U, R, δ, ϕ) is said to be locally
finite if for all atoms x ∈ U, their closure x.ϕ is finite. We will always assume
that τ is locally finite.

Depending on one’s choice of δ and ϕ, there are many varieties of discrete
topology τ capable of describing the structure that R imposes on U. For the
closure operator ϕ on U we choose, in this paper, to use the ideal, or “downset”,
operator with respect to R, that is X is closed in U (with respect to ϕ), if
x ∈ X implies z ∈ X for all z ∈ x.Rk, k ≥ 0, or equivalently X.ϕ = X.R∗.
Ideal operators are antimatroid, in that they satisfy the following anti-exchange
axiom

if x, y �∈ Z.ϕ, then y ∈ (x ∪ Z).ϕ implies x �∈ (y ∪ Z).ϕ. (3)

(We often elide the braces { ... } around singleton sets in expressions such
as ({x} ∪Z)). We can visualize any topological space τ (n) as R on an n-partite
space such as Figure 1.

.

........
.

.
.

.
.

.

..
.

.
.

..

.. .

.....

.....

1x

2x

(n)
A

(2)
A

(1)
A

(0)
A

.
.

.

.
.

.

Fig. 1. An n-partite topological space, τ (n)

We may assume δ : U→ [0, n] because

Lemma 2. If τ = (U, R, δ, ϕ) is locally finite and ϕ is the ideal operator on R,
then ∀x ∈ U,∃k, x.Rk = ∅.

336 R. Kopperman and J.L. Pfaltz

Proof. Suppose not. Since R∗ =
⋃

k≥0 R
k, |x.R∗| = |x.ϕ| > k contradicting local

finiteness. ��

By this definition, δ(∅) = −1, and those atoms x of U which are minimal
with respect to R∗ have δ(x) = 0. If δ(x) = 1, for every y ∈ x.R, δ(y) = 0. More
generally, if δ(x) = k, then for every y ∈ x.R, δ(y) ≤ k − 1, and there exists at
least one y, δ(y) = k − 1. Clearly, δ : U → [0, n], so defined satisfies (1), and
it is very reasonable in the context of the specific domain we will be examining
later in this paper. As a notational convenience, we denote the collections of
all atoms x, such that δ(x) = k by A(k). Thus the universe of all atoms U =⋃

k=1,n A(k). An arbitrary collection Z of atoms we will call a configuration
which we will denoted by Z = [Z(0), Z(1), . . . Z(n)], where Z(k) = Z ∩A(k). Sets
and configurations we denote with uppercase letters; elements and atoms by
lower case. A configuration Z is closed if Z.ϕ = Z.R∗ = Z. In Figure 1, a closed
configuration Z = [Ø,Ø, {x2}, . . . , {x1}].ϕ has been indicated by darker lines.
We extend δ to configurations by letting δ(Z) = k where k = max{i | δ(a) =
i, a ∈ Z}. One can regard δ as a dimension concept.

2 Generators, Separation and Connectivity

A closure operator ϕ is a relation on U that is closed under intersection, that is
(X ∩ Y).ϕ = X.ϕ ∩ Y.ϕ. Alternatively, it satisfies the standard closure axioms,
e.g. it’s monotone and idempotent, When the closure operator ϕ is defined by
ideals in R, that is ϕ = R∗, these properties are evident. Moreover the anti-
symmetry of R∗ ensures it satisfies the anti-exchange property (3) and so ϕ
is antimatroid. Equally important, this kind of ideal closure operator also has
(X ∪ Y).ϕ = X.ϕ ∪ Y.ϕ, so it is also a “topological” closure operator.2

A topological space is T0 if for any pair of points x and y, there exists at least
one closed set containing one of them, but not the other [5]. Thus the reason for
wanting the closure operator ϕ to be antimatroid is evident with the following
theorem.

Theorem 1. A discrete topology τ = (U, R, δ, ϕ) is T0 if and only if its topo-
logical closure operator ϕ is antimatroid.

Proof. Let ϕ be antimatroid. If we let Z = ∅ in (3), it immediately follows that
τ is T0.

Conversely, let x, y �∈ Z.ϕ and let y ∈ (Z ∪ x).ϕ. We must show that x �∈
(Z ∪ y).ϕ. Since τ is T0, there exists a closed set C containing precisely one
of x or y, but not both. Suppose first that x ∈ C. Since Z.ϕ ∪ C is closed
(Z ∪ x).ϕ ⊆ Z.ϕ ∪ C. But, now y �∈ Z.ϕ and y ∈ (Z ∪ x).ϕ imply that y ∈ C,

2 The Kuratowski closure axioms [10] assume closure under union. This is not true
for most closure operators.

Jordan Surfaces in Discrete Antimatroid Topologies 337

contradicting choice of C. So, we must have y ∈ C, x �∈ C. Again, since x.ϕ∪C
is closed, (Z.ϕ∪ y).ϕ ⊆ Z.ϕ∪C. Then x �∈ Z.ϕ, x �∈ C imply x �∈ (Z ∪ y).ϕ ��

Theorem 2 will establish that the closed configurations of a discrete topology
can be “shelled”, one atom at a time.

Theorem 2. Let Z = [Z(0), Z(1), . . . , Z(k), . . . , Z(n)] be a closed configuration
of dimension k in τ (n). For every atom, z ∈ Z(k), Z−{z} is closed.

Proof. Let Z = [Z(0), Z(1), . . . , Z(k), . . . , Z(n)] be any closed configuration of
dimension k in Lϕ. Thus, Z(k) �= ∅, but for ∀m > k,Z(m) = ∅. For any atom
z ∈ Z(k), Z−{z} = [Z(0), Z(1), . . . , Z(k)−z, . . . , Z(n)] and because z �∈ Z.R,
(Z−z).R∗ ⊆ Z−z. Readily, Z−z ⊆ (Z−z).R∗, so Z−z is closed. ��

This is actually a well-known consequence of the antimatroid nature of ϕ in
τ (n). See [9, 11]. Alternately, Theorem 2 can be regarded as another proof that
ϕ is antimatroid; one that is based solely on the definition of closure ϕ as an
ideal R∗.

A set Y generates a closed set Z if Y.ϕ = Z. We say Y is a generator of
Z, denoted Z.γ, if it is a minimal set that generates Z. The generator concept
is fundamental in closure theory. For example, if closure is defined by a convex
hull operator, then the generators of a convex polytope are its vertices. It is not
hard to show that a closure operator is antimatroid if and only if every closed
configuration has a unique minimal generator [11]. The set X = {x1, x2} is the
unique generator of the closed configuration of Figure 1. Many closure systems
are not uniquely generated, therefore not antimatroid [4]. It is shown in [11] that

Theorem 3. Let Z be closed in an antimatroid space τ (n). Y is a maximal
closed subset of Z if and only if Z−Y = {xi}, where xi ∈ Z.γ.

This has been called the “Fundamental Covering Theorem” since it com-
pletely defines the covering relationships in the lattice of closed subspaces of
τ (n).

It is evident from the definition of δ(Z) and of generators that δ(Z) = δ(Z.γ).
If Z.γ ⊆ A(k), we say Z is homogeneously generated, or just homogeneous.
Readily δ(Z) = k. The entire space τ (n) must be closed; it is homogeneous if
τ (n).γ ⊆ A(n). Although the entire space as illustrated in Figure 1 is homoge-
neous, the closed set generated by X = {x1, x2} is not.

Let τ (n) = R over A(0), A(1), . . . , A(n) be an antimatroid topology. The re-
striction of R to A(0), . . . , A(k), k < n, denoted τ

(n)
k , is called the kth subtopol-

ogy of τ (n). If τ (n) is the topology of Figure 1, then τ
(n)
2 is just the lower

tri-partite graph. Readily, if τ (n) is homogeneous then τ
(n)
k is homogeneous.

A configuration Y is said to be separable, or disconnected, if there exist
non-empty, disjoint, closed configurations Z1, Z2 such that Y.ϕ = Z1 ∪ Z2.3 A

3 A more customary definition would have Y ⊆ Z1 ∪ Z2, with Y ∩ Zk
= ∅ [5]. But,
since Z1 ∪Z2 is closed and Y.ϕ is the smallest closed set containing Y , this definition
is preferable.

338 R. Kopperman and J.L. Pfaltz

configuration Y is connected if it is not separable. A configuration X connects
Y1, Y2 if Y1.ϕ ∩ Y2.ϕ = X �= ∅. Readily, only closed configurations can connect
closed configurations.

This is just the classical sense of separation and connectivity cast in terms
of closure. But, in discrete systems, it is often useful to consider connectivity
of different “strengths”. We say that X is k-separable if there exist closed
configurations Z1, Z2 such that X.ϕ = Z1 ∪ Z2, δ(Z1 ∩ Z2) = k ≥ −1.4 When
δ(Z1 ∩ Z2) = k < δ(Zi) we will say that Z1 ∩ Z2 k-separates Z1 and Z2.

X is k-connected if it is not (k-1)-separable. X is disconnected if it is (-1)-
separable, that is Z1 ∩ Z2 = ∅. X is 0-connected if Z1 ∩ Z2 ⊆ A(0).

Theorem 4. X is k-connected if and only if X.ϕ is k-connected.

Proof. Let Z1, Z2 be closed configurations such that Z1 ∩Z2 (k-1)-separates X.
X = Z1 ∪ Z2. Since Z1 ∪ Z2 is closed, X.ϕ = Z1 ∪ Z2, so Z1 ∩ Z2 also (k-1)-
separates X.ϕ.

Proof of the converse is similar. ��
Thus closure cannot increase connectivity. In particular, disconnected config-

urations cannot become connected by closure.

Lemma 3. In τ (n), if δ(X) = k ≤ n then X is at most (k-1)-connected.

Proof. Let X.ϕ = Z1 ∪ Z2 where Zi, i = 1, 2, is non-empty and closed. Readily,
δ(Zi) = δ(X) = k.

Suppose δ(Z1 ∩ Z2) = k, that is there exists x ∈ Z1 ∩ Z2 ∩ A(k). Readily,
X.ϕ = (Z1−{x})∪Z2. By Theorem 2, Z1−{x} is also closed. Use finite induction
to remove all common atoms of dimension k until δ(Z1 ∩ Z2) = k − 1. ��

If X is not (k-1)-separable, it cannot be (j-1)-separable, where j < k. So,

Lemma 4. If X is k-connected, then X is j-connected for all j ≤ k.

From which it follows that

Lemma 5. If X is i-connected in τ (n), then X is i-connected in τ
(n)
k , for all

0 < i ≤ k.

Two atoms x, z ∈ A(k) are said to be pathwise i-connected if there exists a
sequence ρi = < y0, . . . , ym >,m ≥ 0 such that x = y0, ym = z and yj .ϕ∩yj+1.ϕ∩
A(i) �= ∅. That is, yj and yj+1 are at least i-connected. Pathwise connectivity
can be regarded as a relation ρi on the atoms of the space with (x, z) ∈ ρi if
they are pathwise i-connected. Demonstrating that ρi is an equivalence relation
is an easy exercise.

One would like to show that topological connectivity and pathwise connec-
tivity are equivalent concepts, that is, a configuration X is topologically k-
connected if and only if it is pathwise k-connected. Unfortunately, this is only
partially true. To begin, it is easy to show that,

4 Recall that in Section 1 we had defined δ(∅) = −1.

Jordan Surfaces in Discrete Antimatroid Topologies 339

Theorem 5. If a configuration X is pathwise k-connected it is topologically k-
connected.

Proof. Let X be pathwise k-connected and suppose there exists closed, non-
empty Z1, Z2 such that X = Z1 ∪ Z2 and δ(Z1 ∩ Z2) ≤ k − 1. By Lemma 3,
δ(X) = δ(Z1 ∪ Z2) > k. Let x ∈ Z1, z ∈ Z2 where δ(x) = δ(z) = k + 1. Let
ρk =< y0, . . . , ym > be a k connected chain of k+1 atoms between x and z which
exists by hypothesis.

Since y0 ∈ Z1, ym ∈ Z2 there exists some pair of atoms yi ∈ Z1, yi+1 ∈ Z2.
But, yi.R ⊆ yi.ϕ ⊆ Z1 and yi+1.R ⊆ yi+1.ϕ ⊆ Z2. So δ(Z1 ∩ Z2) = k > k − 1, a
contradiction. ��

To see that the converse need not be true, consider the simple counter example
of Figure 2. Readily the entire space τ (n) = [A(0), A(1), A(2)] = [{x1, x2, x3, x4},
{y1, y2}, {z}] is topologically connected. But, the two 1-atoms y1 and y2 are not
pathwise 0-connected.

y2y1

x1 x2 x3 x4

z

Fig. 2. A topologically connected configuration that is not pathwise 0-connected

A configuration X in τ (n) is said to be completely k-connected if in each
subtopology τ

(n)
i , i ≤ k, X is (i-1)-connected. If X ∈ τ (n) is completely (n-1)-

connected, we just say it is completely connected. Complete connectivity and
pathwise connectivity are equivalent concepts because,

Theorem 6. If a configuration Z is completely k-connected it is pathwise k-
connected.

Proof. This is most easily shown by the contrapositive. Suppose X is not path-
wise k-connected. That is, there exists no sequence of (k+1) atoms between a
pair of atoms z1, z2 ∈ Z. Consider the subtopology τ

(n)
k+1. Let G1 be the config-

uration of all (k+1)-atoms that can be reached by a k-path from z1. Similarly,
let G2 be the configuration of all (k+1)-atoms reachable by a k-path from z2.

Now, let Z1 = G1.ϕ and Z2 = G2.ϕ. W.l.o.g we can assume Z = Z1 ∪ Z2.
(If not, we can form Z3 in the same way from remaining (k+1)-atoms.) Readily,
δ(Z1 ∩Z2) < k else there would be a k-path from z1 to z2. Z is not k-connected.

��

340 R. Kopperman and J.L. Pfaltz

We can use virtually the same proof to show that complete connectedness is
inherited by subconfigurations.

Corollary 1. If X is a k-connected subconfiguration of Z which is completely
k-connected, then X is completely k-connected.

Lemma 6. Let X ∈ τ (n). If X is completely k connected then X.γ ⊆ A(k+1) ∪
. . . A(n).

Proof. Suppose x ∈ X.γ ∩A(i), i ≤ k. Since x is a generator, for all j < i, x.Rj ∩
X = ∅, (i.e. x is maximal in the n-partite representation). But, then x can
at most be (k-1)-connected to any other atom, contradiction assumption of k-
connectivity. ��

As suggested by this lemma, one would like to be able to somehow equate
homogeneity and complete connectivity. But this need not be true. Figure 3(a)
is homogeneous, but not 1-connected. Figure 3(b) is completely 1-connected
(by default), but not homogeneous. However, when τ (n) is completely (n-1)-
connected we do have the corollary:

(b)(a)

a b

g hd e f

ki j l m

c

a

b c d e f g

k l mjih

Fig. 3. Contrasting homogeneity and complete connection

Corollary 2. If X is completely connected in τ (n), then X is homogeneously
generated.

In contrast to complete connectivity which is a global property, we have
weak connectivity which is local. A configuration X with δ(X) = m is weakly
connected at p if there exist atoms x, z ∈ X,

(a) δ(x) = δ(z) = m,
(b) x.ϕ ∩ z.ϕ = p,
(c) δ(p) = k < m− 1, and
(d) X ∩ p.R−1.ϕ is not (k+1)-connected.

In Figure 3(a), Z = {a, b}.ϕ is weakly connected at k. Figure 3(b) is not
weakly connected at i because δ(b) = δ(i) + 1 = 1 violating condition (c) above.
The point of this condition is to prevent the strongest possible connectivity from
being called “weak”.

Jordan Surfaces in Discrete Antimatroid Topologies 341

a

b

A

A

A
(0)

(1)

(2). . .

d e f g

c . . .

Fig. 4. A non-normal configuration

3 Normality and Boundaries

A space is said to be normal if for all k > 0, x ∈ A(k) implies x.R ⊆ A(k−1)

and | x.R | ≥ 2. The topology of Figure 4 is non-normal at both atoms c and f .
Heretofore all our examples have been normal, even though none of the proofs
have required it. From now on we will assume that topologies are normal, even
though it is still unnecessary for many of the results of this section.

By the boundary of a closed configuration Z, denoted Z.β, we mean that
configuration of atoms, Z.β = {x ∈ Z.ϕ | x.(R−1)∗ �⊆ Z}. We say y ∈ Z.β is a
face of Z if y is a generator of Z.β, that is y ∈ Z.β.γ.

Lemma 7. Z.β is closed.

Proof. Z.β.ϕ = {x | ∃y ∈ Z.β, x ∈ y.R∗}. Since y ∈ Z.ϕ, z ∈ z.R∗ for some z ∈
Z, and by transitivity, x ∈ z.R∗. Further, since y.(R−1)∗ �⊆ Z,and y.(R−1)∗ ⊆
x.(R−1)∗, x.(R−1)∗ �⊆ Z. So x ∈ Z.β. ��

Lemma 8. If y is a face of Z.β then y.R−1 �⊆ Z

Proof. y ∈ Z.ϕ implies y.R−1 ∩ Z.ϕ �= ∅. Since y.(R−1)∗ �⊆ Z, there exists
y′ ∈ y.R−1 such that y′ ∈ Z.β. y ∈ y′.ϕ implies y is not a minimal generator. ��

We often think of Z.β as separating Z from its complement in τ (n).

Lemma 9. Let Z be any configuration in τ (n), and let W = τ (n)−Z. Then
Z.β = W.β.

Proof. By definition y ∈ Z.β if there exists z ∈ Z and w ∈ W such that y ∈
z.R∗ ∩ w.R∗. By symmetry, y ∈W.β, and conversely. ��

Lemma 10. If τ (n) is homogeneously generated and δ(Z) < n, then Z.β = Z.ϕ.

Proof. Readily Z.β ⊆ Z.ϕ. Conversely, ∀y ∈ z.ϕ, y.(R−1)∗∩A(n) �= ∅ (since τ (n)

is homogeneous) so y.(R−1)∗ �⊆ Z implying Z.ϕ ⊆ Z.β. ��

The boundaries of homogeneous configurations are homogeneous.

Lemma 11. Let Z be a configuration in a completely connected space τ (n). If
Z.γ ⊆ A(n), then Z.β.γ ⊆ A(n−1).

342 R. Kopperman and J.L. Pfaltz

Proof. Let Z.γ ⊆ A(n). Suppose b ∈ Z.β.γ ∩ A(k), k < n − 1. b ∈ Z.β ⊆ Z.ϕ
implies there exists a ∈ Z.γ ⊆ A(n) such that b ∈ a.ϕ. b ∈ Z.β also implies there
exists a′ �∈ Z.ϕ. Because by Corollary 2, τ (n) is homogeneous, we may assume
w.l.o.g. that a′ ∈ A(n). Now a ∈ b.(R−1)∗ and a′ ∈ b.(R−1)∗.

Since a and a′ are k-connected (through b) and τ (n) is completely connected,
a and a′ are (n-1)-connected, say through c ∈ A(n−1). By definition c ∈ Z.β,
and by transitivity b ∈ c.R−1, so b cannot be in Z.β.γ. ��

The converse need not be true.
A generator x of a topology τ (n) is said to be on the border of the space if

there exists y ∈ x.R, such that y.R−1 = {x}. Let τ (n).B denote the collection
of border generators. Note that τ (n).B may be empty. A configuration Z is said
to be in interior position if Z.ϕ ∩ τ (n).B.ϕ = ∅.

Theorem 7. Let Z be a completely connected configuration in interior position
of τ (n), n ≥ 2, then Z.β is completely (n-2)-connected.

Proof. By induction on |Z.γ |. Readily, if |Z.γ | = 1, then Z.β is (n-2)-connected
because Z in interior position ensures that Z.β ⊆ Z.γ.R∗, and normality then
ensures connectivity of Z.β.

To make the induction work, we must establish that when |Z.γ | = n there
exists a generator x ∈ Z.γ which has a face in Z.β, whose removal will still leave
Z (n-1)-connected.

The tricky induction step is when |Z.γ | = 2. Let Z.γ = {x1, x2}, where
Z is completely connected. Because, Z is (n-1)-connected, Z is homogeneous
(Corollary 2) with x1, x2 ∈ A(n), and x1.R ∩ x2.R = y ∈ A(n−1); y �∈ Z.β. But,
since τ (n) is normal, x2.R−{y} �= ∅, so x2 has a face in Z.β. Readily, one can
remove x2 from Z so that Z−{x2} is still (n-1)-connected. Now, let |Z.γ | = n.
Let x ∈ Z.γ be any generator with a face in Z.β. If Z−{x} is still (n-1)-connected,
remove x. Otherwise, consider either of the two (n-2)-separated configurations
Z1 or Z2, Z1 ∪Z2 = Z. |Zi.γ | < |Z.γ |, so by induction there exists a generator
x ∈ Zi.γ satisfying our requirements.

Remove x. (Z−{x}).β is pathwise (n-2)-connected as is {x}.β by induc-
tion. Since the faces common to (Z−{x}).β and {x}.β are each pathwise (n-2)-
connected to the remaining faces, (Z−{x}∪{x}).β is pathwise (n-2)-connected.

��
The converse need not be true. Even though a boundary is pathwise connected

it may bound a weakly connected configuration. However we do know that:

Lemma 12. If Z.β is completely (n-2)-connected in τ (n), then Z is at least
(n-2)-connected.

Proof. By Theorem 4, we may assume Z is closed. Since it is not (n-1)-connected,
there exist two closed configurations Z1 and Z2 such that Z = Z1 ∪ Z2, and
δ(Z1 ∩ Z2) ≤ n− 2. But, Z.β ⊆ Z.ϕ = Z, so δ(Z1 ∩ Z2) ≥ n− 2. ��

Jordan Surfaces in Discrete Antimatroid Topologies 343

4 Geometric Spaces

In the rest of this paper we develop a specific discrete topology which is appro-
priate for digital images. It assumes an ideal closure and bounded dimension
δ : U→ [0, n]. Its culmination will be another “Jordan Surface Theorem” which
has attracted so much attention in the digital topology literature [3, 6–8].

Intuitively, a discrete n-dimensional, geometric space is formed by subdivid-
ing the space with (n-1)-dimensional constructs, whose intersections yield (n-
2)-dimensional objects, etc. A 2-dimensional space is subdivided by lines which
intersect in points, as in Figure 5(a). We will begin using geometric terms and
call 0-atoms, “points”; 1-atoms, “lines”. Instead of calling 2-atoms, regions, we
prefer to use “tiles”; and instead of volumes, we will call 3-atoms “bricks”. Com-
puter applications, such as digital image processing, typically expect much more
regular topologies such as Figure 5(b). In this field, “pixels” and “voxels” are a
standard terminology. Atoms in x.R and x.R−1 are said to be incident to x.
Thus, line 6 is incident to tile I and to the points b and h, but tiles I and II are
not incident to each other. Terminology with a visual basis can help intuitive
understanding; but fundamentally, any discrete topology can still be represented
as an n-partite graph such as Figure 6.

2 3
4

5

6
7

8 9
10

11

12

I
II

III

IV

1
a

b

c
d

e

f

g

h

V
XXIII

IXVIIIVII

XII XIII XIV

XIXXVI XVII

x0y

y1

XXIV

(a) (b)

XVIII

I II III IV V

VI

XI

X

XV

XX

XXVXXI XXII

Fig. 5. Two geometric τ (2) topologies

A(2)

A(1)

A(0)

VII III IVI

12103 1164 987521

a e f g hdcb

Fig. 6. The n-partite representation of Figure 5(a)

344 R. Kopperman and J.L. Pfaltz

The notion of a boundary becomes more intuitive in geometric spaces such
as Figures 5(a) and (b). Let Z = {II, IV }.ϕ in Figure 5(a) corresponding to
the darkened edges of Figure 6. Then Z.β = [{a, c, d, f, g}, {2, 3, 7, 8, 10}, ∅].
Observe that the line 5 is not in Z.β. Intuitively, an atom is in the boundary of
Z only if it is incident to some atom not in Z. Readily, the generator of Z.β is
Z.β.γ = {2, 3, 7, 8, 10}. These are the faces of Z Only the generating tiles, two
lines, and one point have been labelled in Figure 5(b). Here {XIII}.β consists
of the surrounding four bold lines; but {I}.β consists of just the two bold lines.
The remaining lines in {I}.R are not incident to a tile “not in in Z”. Tile I is a
border tile of τ (n). The atoms {1, 4, 6, 9, 12} ⊆ A(1) of Figure 6 are covered by
singleton atoms. These singletons {I, III, V } ∈ A(2) constitute τ (n).B.

A homogeneously generated n-dimensional topology τ (n), will be called ge-
ometric if 5

G1: x ∈ y.R, y ∈ z.R implies there exists a unique y′ �= y such that
x ∈ y′.R and y′ ∈ z.R.

G2: for all k > 0, x ∈ A(k) implies | x.R | ≥ k + 1.
G3: for all k < n, x ∈ A(k) implies | x.R−1 | ≥ n− k + 1, and
G4: y ∈ A(n−1) implies | y.R−1 | ≤ 2.

1 3 4 5

II

a b c d

(a)

a

c

b

d

1

2

3 III

5

4

(b)

2

I

Fig. 7. Illustration of G1: (a) the n-partite representation of the geometry shown
in (b)

Figure 7(a) illustrates the G1 property. Given the presence of line 3, with
incident point c, that is incident to tiles I and II then the existence of two more
lines, which we have labelled 2 and 5, that are also incident to tiles I and II
and point c is forced. The other lightly dashed lines in Figures 7(a) and (b), the
geometric equivalent of Figure 7(a), denote possible configurations; but other
boundaries of the tiles I and II are quite possible. Only the two lines 2 and 5
are forced.

Property G2 further strengthens the usual normal constraint of | x.R | ≥ 2
if δ(x) > 0. It says that each line must have at least 2 end points, each tile
must have at least 3 bounding lines, and each brick must have at least 4 bound-
ing tiles. This corresponds to simplicial decomposition of physical space as we
normally view it into triangles and tetrahedrons. Condition G3 implies that in

5 That G1 thru G4 are properties of “geometric” topologies can be easily verified.
Whether they are sufficient to characterize these topologies is unknown.

Jordan Surfaces in Discrete Antimatroid Topologies 345

a 2-dimensional space, any point must be in the boundary (an endpoint) of at
least 3 lines. Otherwise, the point is topologically redundant. Similarly, in a
3-dimensional space, each line segment must be incident to at least 3 tiles,
because otherwise it too would be topologically redundant. Condition G4 which
asserts that any (n-1)-atom can be the face of at most two atoms ensures
that connected 1 and 2-dimensional topologies are strings and planar surfaces
respectively. The closure structure of a geometric τ (1) is the connected ordered
topological space, or COTS, described in [6, 7, 8] and later illustrated in Figure
9. In 3, and higher dimensions, it asserts that a topological hyperplane separates
exactly two regions.

Condition G3 says that (n-1)-atoms must separate at least two n-atoms, while
condition G4 says they can separate no more than two n-atoms. Consequently,
(n-1)-atoms must separate exactly 2 n-atoms, except possibly when the n-atom
is at the border, τ (n).B, of the entire space. Finite, discrete spaces often have
borders where the expected properties of geometric spaces no longer hold. For
example, in Figure 5(a), lines 1, 4, 6, 9 and 12 are incident to only one tile,
and the points b and e are incident to only two lines. We must allow for these
exceptions.

In Figure 5(a) and Figure 6, tiles I, III, V are border generators of τ (2).B.
There are no interior tiles in these two figures. In Figure 5(b), the 16 “outside”
tiles constitute the border. All the remaining tiles satisfy the geometric con-
straints G1 through G4, but only tile XIII is an interior tile. Generators in
interior position are well removed from the border of τ (n), if there is one. In the
discussions that follow we will assume all configurations have only generating
atoms in interior position.

We now focus on the properties of the boundaries Z.β of configurations Z in
interior position in geometric topologies.

Lemma 13. Let Z be a homogeneous n-dimensional configuration in interior
position in a geometric topology τ (n). Let y be a face of Z.β and let x ∈ y.R.
There exists a unique y′ �= y such that

(a) x ∈ y′.R, and
(b) y.R−1 ∩ Z ⊆ y′.R−1 ∩ Z.

Proof. Since y ∈ Z.β, y separates some z ∈ Z from some w ∈ τ (n)−Z. Because
y ∈ A(n−1), y.R−1 = {w, z}, so y.R−1 ∩ Z = z. Since y ∈ z.R, x ∈ y.R the
existence of a unique y′ with x ∈ y′.R follows from G1. y′ ∈ z.R assures (b). ��

Note that y′ need not be an element of Z.β.
The following “continuation” theorem asserts that given a face y0 ∈ Z.β, one

can move in any “direction”, e.g. across any face x of y0, and find another face,
possibly several, in Z.β. To see the import of this theorem, consider the two
configurations of Figure 8. In Z.β of Figure 8(a), line 2 in A(1) is 0-connected to
lines 1 and 3 in Z.β. Since Z.β is defined with respect to the n-atoms of Z and
τ (n)−Z, we cannot ignore the topology of these configurations as we investigate
Z.β. In Figure 8(a) tile V is pathwise 1-connected to III and V (itself) of

346 R. Kopperman and J.L. Pfaltz

(a) (b)

.

...

.

. . .

.
.

. .
Z

p
..

.

.

.
.

..

.

..

....

.

. . .
.
. .

.
. .

pI II

III IV

V VI VII

I

1

2

3

4

6

7
5

VIII

Fig. 8. Two configurations that are weakly connected at p

which 1 and 3 are faces. Similarly the corresponding tiles of the complement
are pathwise connected. It is at places where Z is weakly (n-2) connected that
possible complications can arise. Continuing face 4 of Z.β through p could lead
to faces 5, 6, or 7. Face 5 is pathwise connected through Z; and face 6 is pathwise
connected through its complement. To make these ideas more formal we modify
our path notation somewhat. Assuming the connectivity k is known, we now
let ρx(y0, . . . , yn) denote a k-connected path such that x ∈ yi.β for 0 ≤ i ≤ n.
ρx(y0, . . . , yn) can be visualized as a path around x. In Figure 8(b) the tile
labelled I in Z.β is (n-2) path connected to three distinct tiles around p, two of
which are hidden in the “tunnel”.

Theorem 8. Let Z be a homogeneous n-dimensional configuration in interior
position in a geometric topology τ (n), n ≥ 2. Let y0 be any face in Z.β separating
z0 ∈ Z from w0 ∈W = τ (n)−Z, and let x ∈ y0.R. There exists a face yn of Z.β
separating zn ∈ Z from wm ∈W , such that x separates y0 from yn and either

(a) yn is unique, in which case z0, zn are pathwise (n-1)-connected in
Z and

w0, wm are pathwise (n-1)-connected in W ,
or else

(b) Z (and W) is weakly (n-2)-connected at x.

Proof. Let W = τ (n)−Z and let y0 separate z0 ∈ Z from w0 ∈ W . Application
of Lemma 13 using x, y0, z0 ensures the existence of a unique y1 such that x ∈
y1.R, y1 ∈ z0.R. Since y1 ∈ A(n−1), y1 separates z0 from some a ∈ A(n).

If a ∈W , y1 is a face of Z.β. Let yn = y1.
If a ∈ Z, let z1 = a and iterate the application of Lemma 13 using x, yi, zi.

By local finiteness, this construction must terminate with a face yn separating
zn ∈ Z from w′ ∈ W such that x separates y0 from yn. Observe that we have
created an (n-1)-connected path ρx(z0, zn) such that x ∈ zi.R

2, 0 ≤ i ≤ n.
We now repeat this construction using x, y0, w0 to first obtain y′

1, and if neces-
sary continue the construction to yield y′

m ∈ Z.β separating z′ ∈ Z

Jordan Surfaces in Discrete Antimatroid Topologies 347

from wm ∈ W . ρx(w0, wm) is another (n-1)-connected path with x ∈ wj .R
2,

0 ≤ j ≤ m.
If ym = yn then z′ = zn and yn is a unique face.
If ym �= yn, we let z′

0 = z′, y′
0 = ym and repeat the construction using x, y′

0, z
′
0.

Eventually, we obtain a face y′
k ∈ Z.β separating z′

k from w′′ ∈ W where
ρ(z′

0, z
′
k) is (n-1)-connected and x ∈ z′

i.R
2, 0 ≤ i ≤ k.

Since weak connectivity is a local property, we need only observe that
{z0, z1, . . . zn} ⊂ Z is weakly connected to {z′

0, z
′
1, . . . z

′
m} ⊂ Z at x. ��

The role of “interior position” in this theorem can be visualized using Figure
5(b). Suppose tile V has been deleted from the space and that Z consists of the
central 9 tiles. Suppose y0 is the face of IX separating it from IV . Rotating
“counterclockwise” around x one gets y1 separating IX from tile X ∈ W . But
tiles IV and X in W are not pathwise connected because V is missing.

5 Jordan Surface Theorem

A traditional statement of the Jordan Curve Theorem is:

Theorem 9 (Jordan Curve Theorem). Let C be a simple closed curve in
R2. Then R2−C consists of exactly two components A and B. Moreover, C =
A−A = B−B.[2].

Is the essence of the “Jordan curve property” that of subdividing the space
into precisely two components, with the purpose of the theorem to show that
any simple closed curve in R2 has this property; or rather is the property a
constraint on the curve, which one then shows separates the space. Examples of
both interpretations can be found in the literature. Our approach is to define a
discrete Jordan surface in a geometric topology τ (n), to be a configuration
S that separates τ (n) into precisely two pathwise (n-1)-connected components,
W and Z such that S = W.β = Z.β, where one is in interior position.6 Neither
W nor Z need be simply connected. For example, a discrete torus floating in
τ (3) could be a Jordan surface. If n ≥ 3 either W or Z can be locally weakly
connected. The boundary X.β of Figure 8(b) is a Jordan surface; the boundary
in Figure 8(a) is not.

We briefly review the considerable history associated with configurations such
as Figure 8(a); which has become known as the “Rosenfeld Paradox”. The com-
mon assumption has been that a “curve” in a pixel space is a “thin” connected
sequence of pixels, no more than one pixel wide. If Z, the foreground configu-
ration of Figure 8(a), is regarded as a closed, 0-connected “curve” then it does
not separate the background into two components because the complement too
is 0-connected at p. If it is not a closed curve, i.e. not everywhere 1-connected,

6 Requiring one component to be in interior position, by convention Z, eliminates
analogs of hyperplanes from being considered as Jordan surfaces.

348 R. Kopperman and J.L. Pfaltz

1 b 2 c 3 d 4a e

Fig. 9. A COTS, or Khalimsky topology

then it does separate the space.7 A common means of resolving the paradox is to
use 0-connectivity for the foreground (or background) and 1-connectivity for its
complement[12, 13, 14]. The paradox partially arises from the assumption that
pixels are the only elements of the space. This is a perfectly natural assumption
if one is analyzing digital images. Then Figure 8(a) may, or may not, be regarded
as a “thin, continuous, closed curve” which may, or may not, be a Jordan curve
separating the space.

Several authors have resolved this paradox by introducing spatial elements of
lower dimension much as we have. One of us has begun with a connected ordered
topological space (COTS), or Khalimsky topology shown in Figure 9. It has two
kinds of element. It is T0; it is antimatroid. Its direct product is equivalent to the
geometric τ (2) of Figure 5(b) ith the “pure” direct product of lines corresponding
to tiles; the “pure” direct product of points would be a point; and the “mixed”
direct products of a line with s point would be the same as our line [7, 8].

Although he only considers pixel elements, Gabor Herman [3] effectively intro-
duces (n-1)-dimensional elements by considering the “boundary” of Z, denoted
∂(Z,U−Z), to be the collection of pixel pairs whose first element is in Z, with
the second in U−Z. When the topology is a pixel plane, these pixel pairs are
equivalent to line segments; when it’s a 3-dimensional array of voxels, it is a
collection of voxel faces. It corresponds to our interpretation of a Jordan surface
S in τ (n) as being a boundary where S.γ ⊆ A(n−1).

Theorem 10. Let Z be a homogeneous n-dimensional configuration in interior
position in a geometric topology τ (n). The boundary Z.β is a Jordan surface if

(a) Z.β is completely (n-2) connected, and
(b) if Z is weakly (n-2) connected at X ⊂ Z.β, then there exists neither

a subset Z ′ of Z such that X ⊆ Z ′.β ⊂ Z.β, nor
a subset W ′ of the complement, W = U−Z, such that X ⊆W ′.β ⊂ Z.β.

Proof. (Necessity) If Z.β is a Jordan surface, then both Z and W are completely
(n-1)-connected, so (a) follows from Theorem 7 and Lemma 12 assures us that
all points where Z.β is (n-2)-connected, Z must be at least (n-2)-connected as
well. The complete connectivity of Z and W ensures that neither Z ′ nor W ′ can
exist at these points.

(Sufficiency) Because Z.β = W.β is (n-2)-connected, both Z and W are at
least (n-2)-connected by Lemma 12. Moreover, because Z is in interior position,

7 We should note that Rosenfeld used the terms 8-connected and 4-connected instead
of 0-connected and 1-connected [12]. This designated the number of “connected”
pixels in a rectangular pixel space; it is standard in image processing.

Jordan Surfaces in Discrete Antimatroid Topologies 349

p p

(a) (b) (c)

p

q
qZ Z Z

Z’ Z’ Z’

Fig. 10. Three configurations Z with different connectivities: (a) Z′ is (n-1)-connected
to Z, (b) Z′ is (n-2)-connected to Z, (c) Z′ is (n-3)-connected to Z

our definition of “interior” ensures that all generators of W that are border
atoms belong to a single (n-1)-connected component. Now suppose that Z (or
W) is not (n-1)-connected. Say, Z = Z1 ∪ Z2, where Z1 and Z2 are only (n-2)-
connected. Then Z1, β ⊂ Z.β. But, this is explicitly ruled out by condition (b).
Thus Z.β must be a Jordan surface. ��

Theorem 10 can be more easily visualized, where n = 3, by Figure 10. In
Figure 10(a), Z.β is 1-connected at p, but it is still a Jordan surface because no
matter how the subconfiguration Z ′ ⊂ Z is chosen, its boundary, Z ′.β �⊂ Z.β.
The portion at the base of Z ′ cannot be in the boundary of Z. In contrast, the
boundary of Z in Figure 10(b) is not a Jordan surface because Z ′.β ⊂ Z.β.
Neither is the boundary of Z in Figure 10(c) a Jordan surface, but in this case
it is because Z.β is not (n-2)-connected.

Corollary 3. Let Z be a homogeneous n-dimensional configuration in interior
position in a geometric topology τ (n). If Z is (n-1)-connected and nowhere weakly
k-connected, where k < n− 1, then Z.β is a Jordan surface.

Theorem 10 is of interest for two reasons. First, it completely characterizes
all those surfaces which subdivide a geometric topology τ (n) into precisely two
completely (n-1)-connected components, one of which is in interior position.
That component, which we have been denoting a Z, can be wildly contorted
with many weak connectivities. But, we have shown that only at points of weak
(n-2)-connectivity (where the argument of Theorem 8 shows the complement W
must also be (n-2) connected) is further examination is required.

Second, it provides a theoretical basis for procedures to decide whether a
specific surface of (n-1) atoms is a Jordan surface, thus reducing a potentially
n-dimensional problem to one of (n-1) dimensions. Although provision of such
an algorithm is beyond the scope of this paper, it is easy to envision one uti-
lizing Theorem 8 which marks faces as examined and at each new face stacks

350 R. Kopperman and J.L. Pfaltz

all possible unmarked “adjacent” faces. For more sophisticated “face crawling”
algorithms, the reader is refered to [3]. But, remember that those algorithms
depend on a regular decomposition of the space. Our topologies need not be at
all regular. They can easily arise from Voronoi decompositions [1] or polygonal
mesh refinements [15].

References

1. Franz Aurenhammer. Voronoi diagrams — a survey of a fundamental geometric
data structure. ACM Computer Surveys, 23(3):345–406, Sept. 1991.

2. Dick Wick Hall and Guilford L. Spencer. Elementary Topology. Wiley, New York,
1955.

3. Gabor T. Herman. Geometry of Digital Spaces. Birkäuser, Boston, 1998.
4. Robert E. Jamison and John L. Pfaltz. Closure Spaces that are not Uniquely Gen-

erated. In Ordinal and Symbolic Data Analysis, OSDA 2000, Brussels, Belgium,
July 2000.

5. John L. Kelley. General Topology. Van Nostrand, 1955.
6. E. D. Khalimsky, Ralph Kopperman, and Paul R. Meyer. Computer Graphics

and Connected Topologies on Finite Ordered Sets. Topology and its Applications,
36:1–17, Jan. 1990.

7. T. Yung Kong, Ralph Kopperman, and Paul R. Meyer. A Topological Approach
to Digital Topology. Am. Math. Monthly, 98(10):901–917, Dec. 1991.

8. Ralph Kopperman, Paul R. Meyer, and R. G. Wilson. A Jordan Surface Theo-
rem for Three-dimensional Digital Spaces. Discrete and Computational Geometry,
6:155–161, 1991.

9. Bernhard Korte, László Lovász, and Rainer Schrader. Greedoids. Springer-Verlag,
Berlin, 1991.

10. Kazimierz Kuratowski. Introduction to Set Theory and Topology. Pergamon Press,
1972.

11. John L. Pfaltz. Closure Lattices. Discrete Mathematics, 154:217–236, 1996.
12. Azriel Rosenfeld. Picture processing by computer. ACM Computer Surveys, 1(3),

Sept. 1969.
13. Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing. Academic, New

York, 1982.
14. Azriel Rosenfeld and John L. Pfaltz. Distance Functions on Digital Pictures. Pat-

tern Recog., 1(1):33–61, Sept. 1968.
15. Colin Smith, Przemyslaw Prusinkiewicz, and Faramarz Samavati. Local Specifi-

cation of Surface Subdivision Algorithms. Second Int’l. Workshop AGTIVE 2003,
Lecture Notes in Computer Science, # 3062:313–328, Sept. 2004.

How to Find a Khalimsky-Continuous
Approximation of a Real-Valued Function

Erik Melin

Uppsala University, Department of Mathematics,
Box 480, SE-751 06 Uppsala, Sweden

melin@math.uu.se

Abstract. Given a real-valued continuous function defined on n-dimen-
sional Euclidean space, we construct a Khalimsky-continuous integer-
valued approximation. From a geometrical point of view, this
digitization takes a hypersurface that is the graph of a function and
produces a digital hypersurface—the graph of the digitized function.

Keywords: Khalimsky topology, digitization, discretization, digital sur-
face.

1 Introduction and Background

The increasing use of multi-dimensional images in applications of computer im-
agery calls for a development of digital geometry in three dimensions and higher.
In particular, digital curves, surfaces, planes and other digital counterparts of
Euclidean geometrical objects have been extensively studied. Several different
approaches have been used in this study. Historically, the first attempts to de-
fine digital objects were algorithmic; a digital object was defined to be the result
of a given algorithm. We may here mention the works by Bresenham (1965) and
Kaufman (1987). One major drawback of this approach is that it may be hard
to determine the geometrical properties of the defined objects.

To get precise definitions, a more recent approach is to let digital objects be
defined by their local properties. This point of view is generally graph-theoretic
but is often called topological, although no topology is actually involved. Key-
words sometimes used by the advocates of this direction are topological and
geometrical consistency; however, from time to time it is a little unclear what
these concepts really mean. Much has been written in this field and we have no
ambition to provide all significant references. A survey of the field with many
references has been written by Kong and Rosenfeld (1989). Concerning digital
surfaces a pioneering work is Morgenthaler & Rosenfeld’s (1981) paper. This
study was continued by Kim (1984), Rosenfeld et al. (1991), Cohen-Or and
Kaufman (1995) and by Chen et al. (1999). A slightly different approach was
suggested by Herman (1998). Here, the space consists of voxels and surface el-
ements (surfels) where the surfels alternatively can be thought of as adjacency

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 351–365, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

352 E. Melin

relations between voxels. A different method of describing linear digital objects
is through Diophantine inequalities (Reveillès 1991). This sort of description is
often called arithmetic or analytic.

An important aspect of the subject is the problem of finding a digital repre-
sentation of, say, a surface in R3. This process is sometimes called discretization
and sometimes digitization. There are many ways to perform digitization but a
general goal is that the digitized object should preserve characteristic properties
of the original object. Straight lines in the plane are naturally of fundamental
importance and Rosenfeld (1974) clarified the properties of the grid intersection
digitization of straight lines. A new digitization of straight lines in the plane
was suggested by Melin (2003a), where the digital lines respect the Khalimsky
topology. The present paper treats a generalization of this digitization to higher
dimensions. Some advantages of working in a topological space compared to
the purely graph-theoretical approach has been discussed by for example Kong,
Kopperman & Meyer (1991) and in Kong (2003) it is shown that the Khalimsky
topology is in a sense the natural choice.

Another digitization scheme that should be mentioned is the supercover.
Ronse and Tajine (2000, 2002) showed that the supercover is a Hausdorff dis-
cretization. A generalization of the supercover to a partition of Rn, where the
quotient topology is homeomorphic to Khalimsky n-space, has been considered
by Couprie, Bertrand & Kenmochi (2003). However, since the space in that paper
is viewed as partition av Rn, the properties of this digitization is quite different
from our digitization.

2 Mathematical Background

In this section we present a mathematical background for this paper. The first
subsection contains some general topology for digital spaces. After that, the two
following subsections give an introduction to the Khalimsky topology and to
Khalimsky-continuous functions. Some properties of such functions are proved.
The mathematical background is concluded by a result on continuous extension
which is needed.

2.1 Topology and Smallest-Neighborhood Spaces

In any topological space, a finite intersection of open sets is open, whereas the
stronger requirement that an arbitrary intersection of open sets be open is not
satisfied in general. Alexandrov (1937) considers topological spaces that fulfill
the stronger requirement, where arbitrary intersections of open sets are open.
Following Kiselman (2002), we will call such spaces smallest-neighborhood spaces.
Another name that has been used is Alexandrov spaces.

Let B be a subset of a topological space X. The closure of B is a very well
known notion, and the closure of B usually denoted by B. In this paper, we will
instead denote the closure of B in X by CX(B). This allows us to specify in
what space we consider the closure and is also a notation dual to NX defined

How to Find a Khalimsky-Continuous Approximation 353

below. The closure of a set is defined to be the intersection of all closed sets
containing it.

Dually, we define NX(B) to be the intersection of all open sets containing B.
In general NX(B) is not an open set, but in a smallest-neighborhood space it is.
Clearly NX(B) is the smallest neighborhood of the set B. If there is no danger
of ambiguity, we will just write N(B) and C(B) instead of NX(B) and CX(B).
If x is a point in X, we define N(x) = N({x}) and C(x) = C({x}). Note that
y ∈ N(x) if and only if x ∈ C(y).

We have already remarked that N(x) is the smallest neighborhood of x.
Conversely, the existence of a smallest neighborhood around every point implies
that an arbitrary intersection of open sets is open; hence this existence could
have been used as an alternative definition of a smallest-neighborhood space. A
topological space X is called connected if the only sets which are both closed
and open are the empty set and X itself. A point x is called open if the set {x}
is open, and is called closed if {x} is closed. If a point x is either open or closed
it is called pure, otherwise it is called mixed.

Two distinct points x and y in X are called adjacent if the subspace {x, y}
is connected. It is easy to check that x and y are adjacent if and only y ∈ N(x)
or x ∈ N(y). Another equivalent condition is y ∈ N(x) ∪ C(x). The adjacency
set in X of a point x, denoted AX(x), is the set of points adjacent to x. Thus
we have AX(x) = (NX(x) ∪ CX(x)) � {x}. Often, we just write A(x). A point
adjacent to x is called a neighbor of x. This terminology, however, is somewhat
dangerous since a neighbor of x need not be in the smallest neighborhood of x.

Kolmogorov’s separation axiom, also called the T0 axiom, states that given
two distinct points x and y, there is an open set containing one of them but
not the other. An equivalent formulation is that N(x) = N(y) implies x = y
for every x and y. The T1/2 axiom states that all points are pure. Clearly any
T1/2 space is also T0. Smallest-neighborhood spaces satisfying the T1 axiom
must have the discrete topology and are therefore not so interesting. A useful
observation is that if X and Y are topological spaces and x ∈ X and y ∈ Y ,
then NX×Y (x, y) = NX(x)×NY (y) and similarly for the closure.

2.2 The Khalimsky Topology

We will construct a topology on the digital line, Z, originally introduced by Efim
Khalimsky (see Khalimsky, Kopperman & Meyer (1990) and references there).
Let us identify with each even integer m the closed, real interval [m−1/2,m+1/2]
and with each odd integer n the open interval]n− 1/2, n + 1/2[. These intervals
form a partition of the Euclidean line R and we may therefore consider the
quotient space. Identifying each interval with the corresponding integer gives
us the Khalimsky topology on Z. Since R is connected, the Khalimsky line is
connected. It follows readily that an even point is closed and that an odd point
is open. In terms of smallest neighborhoods, we have N(m) = {m} if m is odd
and N(n) = {n± 1, n} if n is even.

Let a and b, a � b, be integers. A Khalimsky interval is an interval [a, b] ∩ Z

of integers with the topology induced from the Khalimsky line. We will denote

354 E. Melin

such an interval by [a, b]Z and call a and b its endpoints. A Khalimsky arc in a
topological space X is a subspace that is homeomorphic to a Khalimsky interval.
If any two points in X are the endpoints of a Khalimsky arc, we say that X is
Khalimsky arc-connected.

Theorem 1. A T0 smallest-neighborhood space is connected if and only if it is
Khalimsky arc-connected.

Proof. See for example Theorem 11 of Melin (2004). Slightly weaker is Khalim-
sky, Kopperman & Meyer’s (1990, Theorem 3.2c) result. �

On the digital plane, Z2, the Khalimsky topology is given by the product
topology. Points with both coordinates odd are open and points with both co-
ordinates even are closed. These are the pure points in the plane. Points with
one odd and one even coordinate are mixed. Let us call a point q such that
‖q − p‖∞ = 1 an l∞-neighbor of p. We may note that a mixed point p is con-
nected only to its four pure l∞-neighbors (p1 ± 1, p2) and (p1, p2 ± 1), whereas
a pure point p is connected to all eight l∞-neighbors.

(p1 ± 1, p2), (p1, p2 ± 1), (p1 + 1, p2 ± 1) and (p1 − 1, p2 ± 1)

More generally, Khalimsky n-space is Zn equipped with product topology.
Here, points with all coordinates odd are open and points with all coordinates
even are closed. Let Pn denote the set of pure points in Zn. Note that Pn is not
a product space: Pn �= Pn

1 = Zn.
Let ON(p) = {x ∈ A(p); x is open} be the set of open neighbors of a point p

in Zn and similarly CN(p) = {x ∈ A(p); x is closed} be the set of closed neigh-
bors. The cardinality of a set X is denoted by card(X). If c is the number of even
coordinates in p and d is the number of odd coordinates, then card(ON(p)) = 2c

and card(CN(p)) = 2d. Define also PN(p) = CN(p) ∪ON(p) to be the set of all
pure neighbors of a point p. A pure point in Zn has always 2n pure neighbors.
For mixed points, however, the situation is different. In Z2 every mixed point
has 4 pure neighbors. In Z3 a mixed point has 21 + 22 = 6 pure neighbors. But
in Z4 a mixed point may have 21 + 23 = 10 or 22 + 22 = 8 pure neighbors.
Obviously, the number of possibilities increases even more in higher dimension.
These different types of points have different topological properties and may
cause the digitization process to become more complex in higher dimension, cf.
Remark 20.

2.3 Continuous Functions

Unless otherwise stated we shall assume that Z is equipped with the Khalim-
sky topology from now on. This makes it meaningful to consider (for example)
continuous functions f : Z→ Z. Continuous integer-valued functions will some-
times be called Khalimsky-continuous, if we want to stress that a function is
not real continuous. We will discuss some properties of such functions; more de-
tails can be found in e.g. (Kiselman 2002). Suppose that f is continuous. Since
M = {m,m + 1} is connected it follows that f(M) is connected, but this is the

How to Find a Khalimsky-Continuous Approximation 355

case only if |f(m)− f(m+ 1)| � 1. Hence f is Lipschitz with Lipschitz constant
1; we say f is Lip-1. Lip-1, however, is not sufficient for continuity. If y = f(x)
is odd, then U = f−1({y}) must be open, so if x is even then x ± 1 ∈ U . This
means that f(x ± 1) = f(x). In a more general setting, this generalizes to the
following:

Proposition 2. Let X be a topological space and f : X → Z be a continuous
mapping. Suppose that x0 ∈ X. If f(x0) is odd, then f is constant on N(x0)
and |f(x)− f(x0)| � 1 for all x ∈ C(x0). If f(x) is even, then f is constant on
C(x0) and |f(x)− f(x0)| � 1 for all x ∈ N(x0).

Proof. Let y0 = f(x0) be odd. Then {y0} is an open set. Hence f−1({y0}) is
open and therefore N(x0) ⊂ f−1({y0}), that is, f(N(x0)) = {y0}. Moreover, the
set A = {y0, y0 ± 1} is closed. But then the set f−1(A) is closed also and this
implies that f(x) ∈ A for all x ∈ C(x0). The even case is dual. �

Let us define the length of a Khalimsky arc A to be the number of points in A
minus one, L(A) = cardA− 1. Theorem 1 allows us to define the arc metric on
a T0 connected smallest-neighborhood space X to be the length of the shortest
arc connecting x and y in X:

ρX(x, y) = min(L(A); A ⊂ X is a Khalimsky arc containing x and y).

Proposition 3. Let X be a connected, T0 smallest-neighborhood space. If f is
a continuous mapping X → Z, then f is Lip-1 for the arc metric.

Proof. This is Proposition 15 of Melin (2004). �

Theorem 4. Let X be a connected, T0 smallest-neighborhood space and consider
a family of continuous mappings fj : X → Z, j ∈ J . If the set {fj(a); j ∈ J} is
bounded for some a ∈ X, then the mappings f�(x) = infj∈J fj(x) and f�(x) =
supj∈J fj(a) are continuous.

Proof. We first prove that f� and f� are finite everywhere. Assume the contrary
and suppose that there is a sequence of indices jk ∈ J , k = 1, 2, . . . and a
point x ∈ X such that fjk

(x) → +∞ (for example) as k → ∞. Then also
fjk

(a) → +∞, contrary to our assumption, since each fj is continuous and
therefore, by Proposition 3, Lip-1 for the arc metric.

To demonstrate continuity, we have to prove that for each x ∈ X we have
NX(x) ⊂ f−1(NZ(f(x))). Therefore we fix x ∈ X and suppose y ∈ NX(x). Let
f�(x) = m and let j ∈ J be an index such that fj(x) = m.

We consider two cases separately. The relations that come from Proposition 2
are marked with a †. If m is even, then f�(y) � fj(y) �† m + 1. We may
conclude that for any index i ∈ J , we have fi(y) �† m − 1 since x ∈ C(y) and
fi(x) � m. But then f(y) ∈ NZ(m) = {m,m ± 1} as required. If m is odd, we

356 E. Melin

still have fi(y) � m − 1 for the same reason as above. But m − 1 is even, so if
fi(y) = m−1, then also fi(x) =† m−1 < f�(x), which is a contradiction. Finally,
note that f�(y) � fj(y) =† fj(x). Hence, f�(y) = m ∈ NZ(m) and therefore f�

is continuous. Continuity of f� is proved in the same way. �
Given a mapping f : X → Y between any two sets, the graph of f is defined

by Gf = {(x, f(x)); x ∈ X} ⊂ X×Y . Suppose now that X and Y are topological
spaces. It is a general topological fact that if f : X → Y is continuous, then Gf

is homeomorphic to X. This means that the graph of a Khalimsky-continuous
map f : Zn → Z is homeomorphic to Zn. An intuitive interpretation of this is
that the graph has no redundant connectedness and in particular is bubble-free,
cf. Andrès (2003).

2.4 Continuous Extension

We will find use for a result on continuous extension in Khalimsky spaces, which
can be found in Melin (2003b, Theorem 12). To formulate it, we need first the
following definition:

Definition 5. Let A ⊂ Zn and let f : A→ Z be a function. Let x and y be two
distinct points in A.

If one of the following conditions are fulfilled for some i = 1, 2, . . . , n,

1. |f(x)− f(y)| < |xi − yi| or
2. |f(x)− f(y)| = |xi − yi| and xi ≡ f(x) (mod 2),

then we say that the function is strongly Lip-1 with respect to (the points)
x and y. If the function is strongly Lip-1 with respect to every pair of distinct
points in A then we simply say that f is strongly Lip-1.

Theorem 6. Let A ⊂ Zn, and let f : A → Z be any function. Then f can be
extended to a continuous function on all of Zn if and only if f is strongly Lip-1.

3 Khalimsky-Continuous Digitization

Let X be a set and Z an arbitrary subset of X. A digitization of X is a map-
ping D : P(X) → P(Z). Given a subset A ⊂ X, we think of D(A) as a digital
representation of A. In this paper, we will mainly be interested in the case when
X is the Euclidean space Rn and Z is Zn equipped the Khalimsky topology.

Given a digitization D : P(Rn) → P(Zn) and a function f : Rn−1 → R, we
can define a set-valued mapping (Dsf) : Zn−1 → P(Z) via the graph of f .

(Dsf)(p) = {m ∈ Z; (p,m) ∈ D(Gf)}

We would like to construct a integer-valued mapping from this set-valued
mapping. Obviously it may happen that (Dsf)(x) = ∅ for some x, The set of
points where this does not occur is of interest, hence we define the digitized
domain as the set

Dom(Df) = {p ∈ Zn−1; (Dsf)(x) �= ∅} (1)

How to Find a Khalimsky-Continuous Approximation 357

We shall also assume from now on that the function and the digitization are
such that (Dsf)(x) is a finite set for each x. Under this assumption we may
define two integer-valued mappings, namely an upper digitization of f

D�f : Dom(Df)→ Z, z �→ max(m ∈ L; (z,m) ∈ D(Gf))

and similarly a lower digitization

D�f : Dom(Df)→ L, z �→ min(m ∈ L; (z,m) ∈ D(Gf)).

If it happens that D�f = D�f , we can define the restricted digitization of f
at a point as the common value, Df = D�f = D�f . The digitized domain is in
general not equal to all of Zn−1 and therefore the restricted digitization need to
be extended in some way.

The next task is to define the a digitization (P) that will form the foundation
for the remaining parts of this paper. Then the main goal of this section will be
to prove Theorem 14 which states that the following algorithm will result in the
desired approximation.

Algorithm 7. Khalimsky-Continuous Digitization

1. Apply the pure digitization, P, to the graph of f (see (3)) to obtain the pure
points in the digitization of the graph.

2. Extend the obtained function to be defined on all pure points in the domain.
This is a local operation, which depends only on Pf in a small neighborhood
of each pure point. See Definition 10.

3. Extend the digital function to all of Zn using the formulas of Theorem 14.
This is again a local operation. ��

The first goal is to define a digitization of Rn into Pn, the set of pure points
in Zn. Let

Un = {x ∈ Rn; |xi| = 1/2 for i = 1, 2, . . . , n− 1 and xn = 1/2}

and define
Cn =

⋃
x∈Un

{tx; t ∈]−1, 1] }.

Thus Cn is a cross with 2n arms. Let

Hn(0) = Cn ∪ {x ∈ Rn; ‖x‖∞ < 1/2}, (2)

be the union of this cross and an open cube in Rn. This definition is illustrated
in Fig. 1. Note that Hn(0) is in fact the open cube together with finitely many
(2n−1) points added to half of the vertices, i.e.,

Hn(0) = Un ∪ {x ∈ Rn; ‖x‖∞ < 1/2}

358 E. Melin

(a)
H2(0)

(b) H3(0) (c) (d)

Fig. 1. (a) and (b) The sets H2 and H3. (c) A curve, f(x), that does not intersect U2

but intersects H2. (d) The upper image shows the result of the digitization with H2,
the lower shows what the result would be if only U2 were used (see Definintion 10 on
page 359). Thus the inclusion of the open cube improves the approximation

The reason for us to use (2) as the definition is that from the topological
point of view the important fact is that Hn contain all the diagonal arms of Cn.
The cube only improves the metric approximation as illustrated in Fig. 1 (c)
and (d) and as discussed in Sect. 4.

For each p ∈ Pn let Hn(p) = Hn(0) + p be Hn(0) translated by the vector p.
Note that Hn(p)∩Hn(q) is empty if p �= q and that

⋃
{Hn(p); p ∈ Pn} contains

every diagonal grid line of the type {tx + p; t ∈ R} where p ∈ Pn and x is a
vector in Un. Note also that if x, y ∈ Hn(p), then −1/2 < xn − pn � 1/2 and
in particular |xn − yn| < 1. Since most of the time, we will consider a fixed
dimension n, we shall just write H(p) instead of Hn(p) to simplify notation.
Using the set H(p), we define the pure digitization of a subset A ⊂ Rn as:

P(A) = {p ∈ Pn; H(p) ∩A �= ∅}. (3)

Lemma 8. Suppose That the Mapping f : Rn → R is Lip-1 for the l∞-metric.
Then P�f = P�f so that Pf = P�f = P�f can be defined. Furthermore, Pf is
also Lip-1 for the l∞-metric in Zn.

Proof. Let p ∈ Dom(Pf) ⊂ Zn and suppose that i, j ∈ Z, i �= j, are integers
such that (p, i) ∈ P(Gf) and (p, j) ∈ P(Gf). Then there are x, y ∈ Rn such that
(x, f(x)) ∈ H(p, i) and (y, f(y)) ∈ H(p, j). Clearly this implies that ‖x− y‖∞ �
1. Since (p, i) and (p, j) are pure points, i and j have the same parity and
therefore |i−j| � 2. But then it follows that |f(x)−f(y)| > 1 and this contradicts
the fact that f is Lip-1. Hence Pf can be defined.

For the second part, let p, q ∈ Dom(Pf) where p �= q. Define d = ‖p− q‖∞,
i = (Pf)(p) and j = (Pf)(q). Again there are points x, y ∈ Rn−1 such that
(x, f(x)) ∈ H(p, i) and (y, f(y)) ∈ H(q, j). We must show that |i− j| � d. Since
‖x−y‖∞ � d+1, the Lip-1 assumption gives that |f(x)−f(y)| � d+1. Suppose
that |i− j| > d. Since (p, i) and (q, j) are pure points it follows that d ≡ |i− j|
(mod 2), and therefore |i− j| � d + 2. But then

|f(x)− f(y)| > |i− j| − 1 � d + 2− 1 = d + 1 � |f(x)− f(y)|,

which is contradictory. �

How to Find a Khalimsky-Continuous Approximation 359

Clearly, Dom(Pf) need not be equal to all of Pn. If f = 0 is the zero function,
then Dom(Pf) consists of precisely the closed points in Pn. Note that if p is an
open point in Pn, then all its neighbors are closed and therefore in Dom(Pf).
The following lemma shows that this is not a coincidence. Note that only the
diagonal gridlines of Cn are used in the proof.

Lemma 9. Suppose That f : Rn → R is Lip-1 for the l∞-metric, and let Pf
be its pure digitization. If p ∈ Pn does not belong to Dom(Pf), then every pure
neighbor of p belongs to Dom(Pf). Furthermore, there is an integer r such that
(Pf)(q) = r for every pure neighbor q of p.

Proof. Let us say, for definiteness, that p is an open point. Since (p, k) �∈ P(Gf)
for any (odd) k ∈ Z, there must be an even integer r such that |f(p)− r| < 1.
Let q be a pure neighbor of p. This means that q = p + (a1, a2, . . . , an) where
|ai| = 1 and that q is closed. The point (q, r) ∈ Pn+1 is closed and we will show
that it belongs to the digitized graph.

If f(q) = r, then clearly (q, r) ∈ P(Gf). Suppose f(q) < r (the case f(q) > r
is similar). Let ψ : [0, 1] → Rn be the parameterization of the real line segment
[p, q] given by ψ(t) = q + t(p− q). In particular we have ψ(0) = q and ψ(1) = p.
Now, we define a mapping g : [0, 1] → R by g(t) = f(ψ(t)) − (r − t). Note that
g(0) = f(q) − r < 0 and that g(1) = f(p) − r + 1 > 0. Hence there is a ξ
such that g(ξ) = 0. Define x = ψ(ξ). By construction, the point (x, f(x)) is on
the diagonal grid line between the pure points (q, r) and (p, r − 1), i.e., the line
segment {(ψ(t), r− t); t ∈ [0, 1] }. Therefore, either (q, r) or (p, r− 1) belongs to
the digitized graph, but (p, r− 1) does not by assumption. Hence q ∈ Dom(Pf)
and (Pf)(q) = r. �

Using this result, we will extend Pf to a mapping defined on all pure points.
Let p ∈ Pn�Dom(Pf). It is easy to see that in fact, with r as in the lemma above,
|f(x)− r| � 1/2 for every x with ‖x− p‖∞ � 1/2. Therefore, it is reasonable to
let the extension take the value r at p. Since f takes the value r at all neigh-
bors of p, by the lemma, it is also clear that this choice results in a function
that is strongly Lip-1 in Zn. Note that it is easy to find this r given a function
f and a p ∈ Pn; let r = r(f, p) be the integer r such that (p, r) is mixed and
|f(p)− r| � 1/2.

Definition 10. Suppose that f : Rn → R is Lip-1 for the l∞-metric. Then the
pure Khalimsky digitization, Kpf : Pn → Z is defined by:

(Kpf)(p) =
{

(Pf)(p) if p ∈ Dom(Pf)
r(f, p) otherwise (4)

Example 11. The Khalimsky line has no mixed points. Therefore, given a Lip-1
function f : R → R, the pure Khalimsky-continuous digitization is a mapping
Kpf : Z → Z. This digitization is illustrated in Fig. 2. If f(x) = kx + m where
|k| � 1, then this digitization agrees with the Khalimsky-continuous lines treated
in Melin (2003a).

360 E. Melin

(a) (b)

Fig. 2. Khalimsky-continuous digitization in two dimensions. In (a) the pure points in
the graph are defined (large squares) and (b) shows the extension of this mapping to
all integers

Note that the pure digitization of a set is a set of pure points and the pure
digitization of a function is a function defined on pure points. The digitization
on the mixed points of Zn−1 remains to be defined. The values of a continuous
function on the pure points do not determine the whole function uniquely, as
the following example in Z2 demonstrates.

Example 12. Let f : P2 → {0, 1} ⊂ Z be defined by f(p1, p2) ≡ p1 (mod 2). For
each mixed point we can extend f continuously by defining it to be either 0 or
1. Since each point can be treated independently, there are uncountable many
different extensions. Confer Remark 20.

Definition 13. Let f : Rn → R be Lip-1 for the l∞-metric. Then the lower
Khalimsky digitization, K�f : Zn → Z, is the infimum of all continuous ex-
tensions of Kpf . Similarly, the upper Khalimsky digitization, K�f , is the
supremum of all continuous extensions of K.

By Theorem 4, the lower and upper Khalimsky digitizations are continuous.
We will now give an explicit way to calculate them. Suppose f : Rn → R is Lip-1
for the l∞-metric, and let q be a mixed point. Define the set E(q) by:

E(q) = {m ∈ Z; (Kpf) ∪ {(q,m)} is strongly Lip-1}.

The notation (Kpf) ∪ {(q,m)} is set theoretic and means the extension of
(Kpf) at point q with the value m. Since Kp is strongly Lip-1, Theorem 6 guar-
antees that E(q) is never the empty set. It is easy to see that it is only nec-
essary to check the strongly Lip-1 condition with respect to the points in the
pure neighborhood of q, PN(q). And there are not so many possibilities. Let
(Kpf)(PN(q)) ⊂ Z denote the image of this neighborhood. Since the l∞-distance
between two point in a neighborhood is at most two and Kpf is Lip-1, it follows
that

max(Kpf)(PN(q))−min(Kpf)(PN(q)) � 2. (5)

Suppose that the difference in (5) equals two. Then the only possible value
for a strongly Lip-1 extension of Kpf at q is the mean of these extreme values,
since this extension must necessarily be Lip-1.

How to Find a Khalimsky-Continuous Approximation 361

Next, suppose that the difference in (5) equals zero. Since q is not pure, it
has at least one closed and one open neighbor. One of these neighbors will fail
to match in parity with the value in (Kpf)(PN(p)). Therefore again, the only
possible extension at the point q is this value.

Finally, suppose the difference in (5) equals one. Then Kf takes both an even
and an odd value in the neighborhood of q. If (Kpf) is even for all points in
CN(q) and odd for all points in ON(q), then we have a choice; E(q) consists of
these two values. If on the other hand, (Kpf)(p) is odd for some point p ∈ CN(q),
then E(q) can contain only this value—and similarly if (Kpf)(p) is even for some
point p ∈ ON(q). Since we know that the extension exists, it cannot happen that
(Kpf) is odd for some point in CN(q) and even for some point in ON(p).

By Theorem 6, every function Kpf extended at a mixed point q with a value
in E(q) can be extended to a continuous function defined on all of Zn. To sum
up, we get the following result:

Theorem 14. The lower and upper Khalimsky digitizations of a Lip-1 function
f : Rn → R can be calculated by the following formulas:

(K�f)(x) =
{

(Kpf)(x) if x ∈ Pn

minE(x) otherwise. (6)

(K�f)(x) =
{

(Kpf)(x) if x ∈ Pn

maxE(x) otherwise. (7)

Figure 3 shows the result of a Khalimsky-continuous digitization of a func-
tion of two variables. We remark that the Khalimsky-continuous digitization is
increasing in the following sense: If f and g are Lip-1 mappings f, g : Rn → R

and f � g, then K�f � K�g and K�f � K�g. This is straightforward to prove
from the definitions.

(a) (b)

Fig. 3. The function f(x, y) = 7 + 5
2 sin x

5 + 2 cos y
4 . A continuous picture is showed in

(a) and the lower Khalimsky continuous digitization is showed in (b). The black voxels
are the pure points in the digitization

362 E. Melin

4 Approximation Properties

By just using rounding, it is immediate that there is a integer-valued approxi-
mation F of a real-valued function f such that |F (x)− f(x)| � 1/2 for all x in
the domain. When we in addition require that the approximation be Khalimsky-
continuous, it is reasonable to expect that the approximation property deterio-
rates.

Theorem 15. Let f : Rn → R be Lipschitz for the l∞-metric with Lipschitz
constant α � 1 and let F : Zn → Z be either the upper or the lower Khalimsky
continuous digitization of f . Then |f(p)− F (p)| � (1 + 3α)/2 for each p ∈ Zn.

Proof. We have to treat different types of points in the digitization separately.
First, suppose that p ∈ Zn is pure and let r = F (p). If (p, r) ∈ Zn+1 is pure,
then the graph of f must intersect H(p, r) and it follows that |f(p)− F (p)| �
1/2+α/2. If instead (p, r) is mixed, then for all x ∈ Rn such that ‖x− p‖∞ � 1/2
the inequality |f(x)− F (x)| � 1/2 must hold and of course, in particular, this
is true for x = p. Now, let q be a mixed point in Zn. Suppose first that a pure
neighbor, p, of q is mapped to a mixed point in the graph, i.e., (q, F (q)) is mixed.
This implies F (q) = F (p). Let x = 1

2 (p+ q) be the point halfway between p and
q. Then F (q) = F (p) and |f(x)− F (p)| � 1/2 by the argument above, so that

|f(q)− F (q)| � |F (q)− F (x)|+ |f(q)− f(x)| � 1
2

+ α‖x− q‖∞ � 1 + α

2
.

Next, we consider the case where all pure neighbors of q are mapped to pure
points in the graph. There are two sub-cases to consider. Suppose first that the
difference in (5) is two so that there are points p1, p2 ∈ PN(q) such F (p1) = r
and F (p2) = r + 2. Starting at p1 and using an estimation similar to the one
above, we obtain f(q) � r + 1/2 + 3α/2. If we instead start at p2, we obtain
f(q) � r+3/2−3α/2. By definition, F (q) = r+1 so we can estimate |F (q)− f(q)|
from above and below:

f(q)− (r + 1) � −1/2 + 3α/2 = (−1 + α)/2 + α � α

and
f(q)− (r + 1) � 1/2− 3α/2 = (1− α)/2− α � −α

so |f(q)− F (q)| � α. Note that this case can occur only if α > 1/3. Finally,
we consider the case when the difference in (5) is one; say that F (p1) = r and
F (p2) = r+1. Here, there is a difference depending on whether we use the lower
or the upper digitization; we may have F (q) = r or F (q) = r+1. Let us consider
the lower digitization, i.e., F (q) = r. Then

f(q)− F (q) � f(p1) + α− r � (1 + 3α)/2, (8)

and from below we have

f(q)− F (q) � f(p2)− α− r � (1/2− α/2)− α = (1− 3α)/2 � −α,

so that |f(q)− F (q)| � (1 + 3α)/2 and the proposition is proved. �

How to Find a Khalimsky-Continuous Approximation 363

Since α is bounded by 1, we obtain |f(q)− F (q)| � 2 for any mapping where
the Khalimsky digitization is defined. The following example shows that the
bound in the theorem is sharp.

Example 16. Let f : R2 → R be defined by f(x, y) = min(x+1, 3−x). It is easy to
check that (Kpf)(0, 0) = (Kpf)(2, 0) = 0 and that (Kpf)(1, 1) = (Kpf)(1,−1) =
1. Thus (K�f)(1, 0) = 0, while f(1, 0) = 2. More generally, for 0 < α � 1, define
a Lip-α mapping as

fα(x, y) = min
(
α(x + 1

2) + 1
2 , α(5

2 − x) + 1
2

)
We have (Kpfα)(0, 0) = (Kpfα)(2, 0) = 0 and (Kpf)(1,±1) = 1 as before.

Therefore, we again get (K�fα)(1, 0) = 0, while fα(1, 0) = (3α + 1)/2.

If one checks the proof of Theorem 15, one sees that it is only in one case
that we get the bound (1+3α)/2. It is in (8). In the proof, the lower digitization
is considered and there we have the bad bound above. If instead one considers
the upper digitization, then the bad bound is from below. In all other cases, the
bound is α or (1 + α)/2, so in the one-dimensional case we obtain the following
corollary, since there are no mixed points in the domain.

Corollary 17. Let F be the Khalimsky-continuous digitization of a mapping
f : R→ R, which is Lip-1. Then |f(p)− F (p)| � (1 + α)/2 for each p ∈ Z.

In two dimensions, it is also possible to improve the approximation. Since a
mixed point in the Khalimsky plane never has a mixed neighbor, we can define
the optimal Khalimsky-continuous digitization as follows:

(Kf)(x) =
{

(K�f)(x) if |(K�f)(x)− f(x)| < |(K�f)(x)− f(x)|
(K�f)(x) otherwise. (9)

Corollary 18. Let F be the optimal Khalimsky-continuous digitization of a
mapping f : R2 → R which is Lipschitz for the l∞-metric with Lipschitz con-
stant α � 1. Then |f(p)− F (p)| � (1 + α)/2 for each p ∈ Z2.

The following example shows that in general, the bound (α+1)/2 cannot be
improved. It is stated in one dimension, but can clearly be extended to higher
dimensions.

Example 19. Let 0 � α � 1 and define f : R → R, fα(x) = αx + (1 − 3α)/2.
Suppose that Fα is a Khalimsky-continuous approximation of fα. Since fα(1) =
1 − (1 + α)/2, it is necessary that Fα(1) = 0, if F is to approximate fα better
than Kfα. By continuity, it follows then that F (2) = 0, while fα(2) = (α+ 1)/2.

Remark 20. The definition of the optimal Khalimsky digitization is utterly de-
pendent on the fact that mixed points in the plane are not connected, and
therefore can be treated one by one. In three and more dimensions, this is no
longer true. If, for example, we have f : Z3 → Z and define f(1, 0, 0) = 1 then
necessarily f(1, 1, 0) = 1 if f is to be continuous. One way out of this is to define
an order among the mixed points. We can decide to first define the extension
of Kp on the points with precisely two odd coordinates (which are independent)
and then on the remaining mixed points.

364 E. Melin

5 Conclusions

We have shown that it is possible to find a reasonable Khalimsky-continuous
approximation of Lip-1, real-valued function of real variables. The Lip-1 condi-
tion is of course a restriction, although it is clearly impossible to avoid. For a
sufficiently nice function defined on, say, a bounded set, it is of course always
possible to rescale the function to satisfy this condition. In a forthcoming paper
we will investigate more carefully the properties of the Khalimsky-continuous
digitization when applied to hyperplanes. A future task is to generalize these
results and definitions to more general surfaces than the graphs of functions.

Acknowledgement

I am grateful to Christer Kiselman for comments on earlier versions of this
manuscript and to Ola Weistrand for letting me use his routines for voxel visu-
alization.

References

Alexandrov, Paul. 1937. “Diskrete Räume.” Mat. Sb. 2(44):501–519.
Andrès, Eric. 2003. “Discrete linear objects in dimension n: the standard model.”

Graphical Models 1–3(65):92–111.
Bresenham, Jack E. 1965. “Algorithm for computer control of a digital plotter.” IBM

Systems Journal 4(1):25–30.
Chen, Li, Donald H. Cooley & Jianping Zhang. 1999. “The equivalence between two

definitions of digital surfaces.” Inform. Sci. 115(1-4):201–220.
Cohen-Or, Daniel & Arie Kaufman. 1995. “Fundamentals of surface voxelization.”

Graphical Models and Image Processing 57(6):453–461.
Couprie, Michel, Gilles Bertrand & Yukiko Kenmochi. 2003. “Discretization in 2D and

3D orders.” Graphical Models 65(1–3):77–91.
Herman, Gabor T. 1998. Geometry of digital spaces. Applied and Numerical Harmonic

Analysis Boston, MA: Birkhäuser Boston Inc.
Kaufman, Arie. 1987. “Efficient algorithms for 3D scan-conversion of parametric curves,

surfaces and volumes.” Computer Graphics 21(4):171–179.
Khalimsky, Efim, Ralph Kopperman & Paul R. Meyer. 1990. “Computer graphics and

connected topologies on finite ordered sets.” Topology Appl. 36(1):1–17.
Kim, Chul E. 1984. “Three-dimensional digital planes.” IEEE Trans. Pattern Anal.

Machine Intell. PAMI-6(5):639–645.
Kiselman, Christer O. 2002. Digital geometry and mathematical morphology. Lecture

notes. Uppsala University. Available at www.math.uu.se/~kiselman.
Kong, T. Yung. 2003. “The Khalimsky topologies are precisely those simply con-

nected topologies on Z
n whose connected sets include all 2n-connected sets but no

(3n − 1)-disconnected sets.” Theoret. Comput. Sci. 305(1-3):221–235.
Kong, T. Yung & Azriel Rosenfeld. 1989. “Digital topology: Introduction and survey.”

Comput. Vision Graph. Image Process. 48(3):357–393.
Kong, T. Yung, Ralph Kopperman & Paul R. Meyer. 1991. “A topological approach

to digital topology.” Amer. Math. Monthly 98(10):901–917.
Melin, Erik. 2003a. “Digital straight lines in the Khalimsky plane.” (To appear in

Mathematica Scandinavica).

How to Find a Khalimsky-Continuous Approximation 365

Melin, Erik. 2003b. Extension of continuous functions in digital spaces with the
Khalimsky topology. U.U.D.M. Report 2003:29 Uppsala University. Available at
www.math.uu.se/~melin.

Melin, Erik. 2004. Continuous extension in topological digital spaces. U.U.D.M. Report
2004:2 Uppsala University.

Morgenthaler, David G. & Azriel Rosenfeld. 1981. “Surfaces in three-dimensional dig-
ital images.” Inform. and Control 51(3):227–247.

Reveillès, Jean-Pierre. 1991. Géométrie discrète, calcul en nombres entiers et algorith-
mique. Ph.D. thesis. Université Louis Pasteur, Strasbourg.

Ronse, Christian & Mohamed Tajine. 2000. “Discretization in Hausdorff space.” J.
Math. Imaging Vision 12(3):219–242.

Rosenfeld, Azriel. 1974. “Digital straight line segments.” IEEE Trans. Computers C-
23(12):1264–1269.

Rosenfeld, Azriel, T. Yung Kong & Angela Y. Wu. 1991. “Digital surfaces.” CVGIP:
Graph. Models Image Process. 53(4):305–312.

Tajine, Mohamed & Christian Ronse. 2002. “Topological properties of Hausdorff dis-
cretization, and comparison to other discretization schemes.” Theoret. Comput. Sci.
283(1):243–268.

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 366–393, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Algorithms in Digital Geometry Based on
Cellular Topology

V. Kovalevsky

University of Applied Sciences, Berlin
kovalev@tfh-berlin.de

www.kovalevsky.de

Abstract. The paper presents some algorithms in digital geometry based on the
topology of cell complexes. The paper contains an axiomatic justification of the
necessity of using cell complexes in digital geometry. Algorithms for solving
the following problems are presented: tracing of curves and surfaces,
recognition of digital straight line segments (DSS), segmentation of digital
curves into longest DSS, recognition of digital plane segments, computing the
curvature of digital curves, filling of interiors of n-dimensional regions
(n=2,3,4), labeling of components (n=2,3), computing of skeletons (n=2, 3).

1 Introduction

First of all let us discuss the question, why should one use cell complexes in digital
geometry. The author supposes that there are three categories of researchers in this
field. Those of the first category would prefer a mathematical proof of the assertion
that cell complexes belong to the class of locally finite topological spaces that are in
agreement with the axioms and with most definitions of the classical topology.

Researcher of the second category would perhaps ask, whether classical axioms
are really important for applications. They may believe that it is possible to find
another set of axioms and deduce the properties of the topological space best suitable
for applications in image analysis and in computer graphics from these new axioms.

Researcher of the third category pay no attention at all to axiomatic theories. They
are only interested in methods enabling one to develop efficient solutions of
geometric and topological problems in image analysis and in computer graphics.

The author hopes to satisfy with the present paper the desires of researchers of all
three categories.

Let us start with the second category. First of all it is necessary to mention that we
need not considering spaces in which each neighborhood of a point contains an
infinite number of points, since such a space cannot be explicitly represented in a
computer. A space in which each element has a neighborhood containing a finite
number of elements is called a locally finite space (LFS).

The author believes that everybody will agree that the features of a space, most
important for applications are those of connectivity and of boundary. Therefore we
suggest the following set of axioms concerned with these notions. We denote the
elements of the space not as “points” since, as we shall see soon, there are in an LFS
elements with different neighborhoods. They have different topological properties and
thus must have different notations.

Algorithms in Digital Geometry Based on Cellular Topology 367

Axiom 1: For each space element e there are certain subsets containing e, which are
neighborhoods of e. Since the space is locally finite there exists the smallest
neighborhood of e.

We shall denote the smallest neighborhood of e by SON(e). The exact definition
of the neighborhood will be derived from the whole set of the Axioms below.

Axiom 2: There are space elements whose SON consists of more than one element. If
a and b are space elements and b∈SON(a) then the set {a, b} is connected. Also a set
{a} consisting of a single space element is connected.

We shall say that a and b are directly connected or incident to each other. This is a
binary relation Inc. Since {a, b} and {b, a} denote one and the same set, the incidence
relation Inc is symmetric. It is reflexive since according to Axiom 2 the set {a} is
connected.

Axiom 3: The connectivity relation is the transitive hull of the incidence relation. It is
symmetric, reflexive and transitive. Therefore it is an equivalence relation.

Let us now formulate the axioms related to the notion of a boundary. The classical
definition of a boundary (exactly speaking, of the topological boundary or of the
frontier) is as follows:

Definition BD: The topological boundary of a subset T of the space S is the set of all
space elements whose each neighborhood intersects both T and its complement S−T.

In the case of a locally finite space it is obviously possible to replace “each
neighborhood” by “smallest neighborhood”. We shall denote the topological
boundary i.e. the frontier of the subset T of the space S by Fr(T,S). Now we introduce
the notion of a thin boundary:

Definition TB: The boundary Fr(T,S) of a subset T of an n-dimensional space S is
called thin if it contains no n-dimensional cube of 2n mutually incident space
elements.

Axiom 4: The topological boundary of any subset T is thin and is the same as the
topological boundary of the complement S−T.

Let us remain the reader the classical axioms of the topology. The topology of a
space S is defined if a collection of subsets of S is declared to be the collection of the
open subsets. These subsets must satisfy the following Axioms:

Axiom C1: The whole set S and the empty subset ∅ are open.
Axiom C2: The union of any number of open subsets is open.
Axiom C3: The intersection of a finite number of open subsets is open.
Axiom C4: The space has the separation property.

There are (at least) three versions of the separation property and therefore three
versions of Axiom C4 (Fig. 1.1) :

Axiom T0: For any two distinct points x and y there is an open subset containing
exactly one of the points.

Axiom T1: For any two distinct points x and y there is an open subset containing x
but not y and another open subset, containing y but not x.

368 V. Kovalevsky

Axiom T2: For any two distinct points x and y there are two non-intersecting open
subsets containing exactly one of the points.

A space with the separation property T2 is called Hausdorff space. The well-
known Euclidean space is a Hausdorff space.

Fig. 1.1. A symbolic illustration to the separation axioms

It is easily seen that if a single point is not an open subset, then only the Axiom T0
may be applied to a locally finite space (LFS). Really, Axioms T1 and T2 demand that
the open subsets under consideration contain infinitely many points, no matter how
small they are. Such subsets do not exits in a LFS and cannot be explicitly represented
in a computer. Therefore only Axiom T0 is relevant for an LFS.

The author has proved [11] that the above set of Axioms C1, C2, C3 and T0 is
equivalent to the set of our suggested set of Axioms 1 to 4. This means that Axioms
C1 to C3 and T0 may be deduced from Axioms 1 to 4 as theorems. This proves that
the classical notion of open subsets is important for providing a space with the
features of connectivity and boundary that satisfy the “obviously true” demands
formulated as our Axioms 1 to 4.

Unfortunately, it is impossible to repeat here the proof because of lack of space.
We shall only show that the classical Axiom T0 follows from the demands that the
boundaries be thin and that the boundary of a subset T be the same as the boundary of
its complement S−T.

Theorem NT. If the neighborhood of a space element e in the Definition BD contains
besides e itself all elements that stay in a symmetric binary relation with e then there
exist subsets whose boundary is not thin.

Proof: We presume that two elements whose one coordinate differs by 1 while all
other coordinates are equal satisfy the symmetric relation mentioned in Theorem NT.

Fig. 1.2. An illustration to the proof of Theorem NT for n=2

C2 C1

b a

 X

 Y

 T0 T1 T2

Algorithms in Digital Geometry Based on Cellular Topology 369

Let T be a subset of the space S that contains an (n−1)-dimensional cube
C1={x1=m}×{x2, x2+1}×...×{xn, xn+1} while all elements of the “adjacent” cube
C2={x1=m+1}×{x2, x2+1}×...×{xn, xn+1} belong to the complement S−T (Fig. 1.2).
The neighborhood of any element a∈C1 contains the element b∈C2 whose coordinate
x1 is equal to m+1 and all other coordinates are equal to the corresponding coordinates
of a. Thus b∈S−T and a belongs to the boundary of T. Since the relation defining the
neighborhoods is symmetric, a belongs to the neighborhood of b, that intersects T at a
and S−T at b. Therefore b belongs to the boundary of T. This is true for all elements of
the cube C2. Thus both cubes C1 and C2 are in the boundary of T. Their union is an n-
dimensional cube and hence the boundary is not thing.

There are two possibilities to achieve that the boundary be thin for any subset:

1. To change the Definition BN of the boundary so that only elements of T may
belong to the boundary of T.

2. To define the neighborhood by means of an antisymmetric relation, which means
that if b is in the smallest neighborhood of a then a is not in the smallest
neighborhood of b.

The first possibility leads to different boundaries of T and of its complement S−T,
which may be considered as a topological paradox and contradicts our Axiom 4. The
remaining possibility 2 demands that the smallest neighborhoods satisfy the classical
Axiom T0. This is exactly what we wanted to demonstrate.

In the next chapters we will describe some algorithms in digital geometry that are
based on the theory of abstract cell complex (AC complexes). In an AC complex the
neighborhoods are defined by means of an antisymmetric bounding relation.
Therefore the boundaries in AC complexes are thin and they satisfy the classical
axioms. The author hopes that this will satisfy the desire of a reader of the first
category mentioned at the beginning of Introduction. As to a reader of the second
category, we have demonstrated that an attempt to “invent” a new “obviously true”
set of axioms leads to no new concept of a topological space: the set of the new
axioms has turned out to be equivalent to that of classical axioms. We suppose that
this will be the case of all other sets of axioms that are in accordance with our
“healthy” understanding of topology.

As to the readers of the third category, we hope that they will be convinced and
satisfied after having read Part II “The Algorithms”.

Part I − Theoretical Foundations

2 Short Remarks on Cell Complexes

We presume that the reader is acquainted with the theory of AC complexes. To make
the reading of the paper easier we have summarized the most important definitions in
the Appendix. For more details we refer to [2, 5, 8].

370 V. Kovalevsky

3 Data Structures

In this Section we shall describe some data structures used in algorithms for solving
topological and geometrical problems when using AC complexes.

3.1 The Standard Raster

Two- and three-dimensional images are usually stored in a computer in arrays of the
corresponding dimension. Each element of the array contains either a gray value, or a
color, or a density. This data structure is called the standard raster. It is not designed
for topological calculations, nevertheless, it is possible to perform topological
calculations without changing the data structure. For example, it is possible to trace
and encode the frontier of a region in a two-dimensional image in spite of the
apparent difficulty that the frontier according to Definition FR (see Appendix)
consists of 0- and 1-cells, however, the raster contains only pixels which must be
interpreted as 2-cells. The reason is that a pixel is a carrier of an optical feature that is
proportional to certain elementary area. Thus pixels, which are the 2-cells, must
correspond to elementary areas rather than 0- or 1-cells whose area is zero. On the
same reason voxels must correspond to 3-cells.

When considering an image as an AC complex one must admit that a 2-
dimensional image contains besides the pixels also cells of lower dimension 0 and 1.
This often arises objections since we can see on a computer display only the pixels,
i.e. the cells of the highest dimension. However, this fact is not important: really, one
should think about the rendering of a 3-dimensional object that is a set of voxels.
What we see are not the 3-dimensional voxels but rather their 2-dimensional facets
and 1-dimensional edges. This fact does not prevent us from working with voxels
which we do not see on the display. All these are peculiarities of the human viewing
system rather than that of the objects. By the way, it is no problem to make, if desired,
the lower dimensional cells visible on a display [2].

The tracing in the standard raster is possible because the concept of an AC
complex is the way of thinking about topological properties of digitized images rather
than a way of encoding them. Let us explain this idea for the case of tracing frontiers.

Fig. 3.1. Non-topological coordinates of cells of lower dimensions

Y

3

2

1

0

 0 1 2 3

F=(1,2)

C2=(1,2)

P2=(2,2)

P4=(2,3)

P1=(1,2)

P3=(1,3)

C1=(1,2)

 X

 X

Algorithms in Digital Geometry Based on Cellular Topology 371

We think of a two-dimensional (2D) image as of a 2D Cartesian complex
(Appendix) containing cells of dimensions form 0 to 2. The 2-cells (pixels) have in
the standard raster coordinates which, unlike to topological coordinates of a pixel
being always odd (Appendix and Fig. A.1), may take in the standard raster any
integer values, both odd and even. Pixels are explicitly represented in the raster,
however, the 0- and 1-cells are present implicitly.

Coordinate Assignment Rule: Each pixel F of a 2D image gets one 0-cell assigned
to it as its “own” cell. This is the 0-cell lying in the corner of F which is the nearest to
the origin of the coordinates (P1 in Fig. 3.1). Also two 1-cells incident to F and to P
are declared to be own cells of F (C1 and C2 in Fig. 3.1). Thus each pixel gets three
own cells of lower dimensions. All own cells of F get the same coordinates as F. They
can be distinguished by their type.

In the three-dimensional case each voxel gets seven own cells of lower dimensions
which are arranged similarly. These seven cells get the same coordinates as the
corresponding voxel.

Unfortunately, some cells in the boundary of the raster remain without an
“owner”. In most applications this is of no importance. Otherwise the raster must be
correspondingly enlarged.

According to the above rule, it is not difficult to calculate the coordinates of all
pixels incident to a given point. This coordinates are used to get the gray values of the
pixels from the array containing the image. Depending on these gray values the
virtual tracing point P moves for one position to the next. The movement is
represented by the changing coordinates of the virtual point. The details of the tracing
algorithm are described in Section 4.

The majority of low level topological problems in image processing may be
solved in a similar way, i.e. without representing cells of lower dimension as elements
of some multidimensional array. A typical exception is the problem of filling the
interior of a region defined by its frontier (Section 8). The solution is simpler when
using two array elements per pixel: one for the pixel itself and one more for its own
vertical crack (1-cell). The solution consists in reading the description of the frontier
(e.g. its crack code), labeling all vertical cracks of the frontier in the array and in
counting the labeled cracks in each row (starting with 0) and filling the pixels
between the crack with an even count 2⋅i and the next crack (with the count 2⋅i+1).
The details of this algorithm are described in Section 8.

Even more complicated topological problems may be solved by means of the
standard raster. For example, when tracing surfaces (Section 7) or producing
skeletons (Section 11) the so called simple pixels must be recognized. It is easier to
correctly recognize all simple pixels if cells of all dimensions of the region under
consideration are labeled. To perform this in a standard raster, it is possible to assign a
bit of a raster element representing the pixel F to each own cell of F. For example,
suppose that one byte of a two-dimensional array is assigned to each pixel of the
image shown in Fig. 3.1. Consider the pixel F with coordinates (1, 2) and the byte
assigned to it. The bit 0 of the byte may be assigned to the 0-cell P1, the bit 1 to the 1-
cell C1, the bit 2 to the 1-cell C2. The remaining bits may be assigned to F itself.
Similar assignments are also possible in the 3D case.

372 V. Kovalevsky

As we see, there is no necessity to allocate memory space for each cell of a
complex, which would demand four times more memory space than that needed for
pixels only, or eight times more than that needed for the voxels in the 3D case.

3.2 The Topological Raster

To explicitly represent an image as a Cartesian AC complex the so called topological
raster [8] must be used. It is again a 2- or 3-dimensional array in which a memory
element is reserved for each cell of each dimension.

In a topological raster each cell has different coordinates which simultaneously
are the indices of the array. Each coordinate axis is a topological line (Definition TL,
Appendix). The 0-cells of the axis have even coordinates, the 1-cells have odd
coordinates (Fig. A1, Appendix). The dimension and the orientation (if defined) of
any cell may be calculated from its topological coordinates. The dimension of any cell
is the number of its odd coordinates, the orientation is specified by indicating which
of the coordinates are odd. For example, the cell C1 in Fig. A.1 has one odd
coordinate and this is its X-coordinate. Thus it is a one-dimensional cell oriented
along the X-axis. The 2-cell F has two and the 0-cell P has no odd coordinates. In a
three-dimensional complex the orientation of the 2-cells may be specified in a similar
way: if the ith coordinate of a 2-cell F is the only even one then the normal to F is
parallel to the ith coordinate axis.

The advantages of the topological raster are shaded by its drawback that it
demands 2n times more memory space than the standard raster. Also the time needed
to process it is correspondingly greater. Therefore it is reasonable to use the
topological raster to save images only for not too large images or for research
purposes where the processing time is not so important.

The best way to use the topological coordinates consists in the following. When
thinking about the problem to be solved one should use the topological coordinates.
Also a program which must solve a topological or geometrical problem in which
notions like the connectivity, boundary, incidence etc. are involved should work with
topological coordinates. Only the storage of values assigned to the ground cells, i.e. to
pixels or voxels, should be performed in the standard raster to save memory space.
This is possible since the cells of lower dimension do not carry values like color, gray
value or density. They only carry indices of subsets to which they belong, i.e.
foreground or background. These indices may be specified by means of predefined
rules called membership rules [2].

For example, to compute the connected components of a binary 2D image the rule
may be formulated which says that each cell of dimension 0 or 1, which is incident to a
foreground pixel, belongs also to the foreground. There are relatively seldom problems
the solution of which demands that certain values must be assigned to cells of lower
dimensions and then evaluated during the computation. For example, when tracing the
boundaries of all connected components of a binary 2D image it is necessary to label the
cells of the boundaries which are already processed. Otherwise one and the same
component may be found many times. This, however, does not mean that one must label
all cells of a boundary. If the process of finding a new component looks for vertical 1-
cells of a boundary while comparing the values of two adjacent pixels in a row then it is

Algorithms in Digital Geometry Based on Cellular Topology 373

sufficient to label only the vertical cracks of the boundary being processed. It is
sufficient to have one bit of memory to save such a label. This bit may be located in the
byte of the standard raster, which byte is assigned to the pixel lying in the same row as
the crack to be labeled just to the right from the crack. In this case 7 bits remain for the
gray values of the pixels which is sufficient in the most cases.

It is also possible to have another array for the cracks along that for the pixels. In
this case one needs two times more memory space than for the pixels only. However,
it is still more economical than using a topological raster which needs 4 times more
memory space. We shall show more examples of using the standard raster while
working with cells of lower dimensions in the algorithms of Part II.

Part II − The Algorithms

We describe here some algorithms for computing topological features of subsets in
2D and 3D digitized images. Since the programming languages of the C-family are
now more popular than that of the PASCAL-family, we use here a pseudo-code that
resembles the C-language.

4 Boundary Tracing in 2D Images

Boundary tracing becomes extremely simple when thinking of a 2D image as of a 2D
complex. The main idea of the algorithm consists in the following: at each boundary
point (0-cell) P (Fig. 4.1) find the next boundary crack C incident to P and make a step
along the crack to the next boundary point. Repeat this procedure until the starting point
is reached again. Starting points of all boundary components must be found during an
exhaustive search through the whole image. The following subroutine Trace() is
called each time when a not yet visited boundary point of a region is found.

To avoid calling Trace() more than once for one and the same foreground
component vertical cracks must be labeled (e.g. in a bit of Image[]) as “already
visited”. Trace() follows the boundary of one foreground region while starting and
stopping at the given point (x,y). Points and cracks are present only implicitly (see
Section 3). Trace() starts always in the direction of the positive Y-axis.

Fig. 4.1. The four directions (a) and the right and left pixels (b)

a

(P.X, P.Y)

 R

 L

(R.X, R.Y)

(L.X, L.Y)

b

C 2

1

3

0

374 V. Kovalevsky

After each move along a boundary crack C the values of only two pixels R and L
of SON(P) of the end point P of C must be tested since the values of the other two
pixels of SON(P) have been already tested during the previous move. Note that the
cracks in a 2D Cartesian complex have only 4 different directions. Therefore the
variable “direction” takes the values from 0 to 3 (Fig. 4.1a).

The point corresponding to the corner of a pixel, which is the nearest to the
coordinate origin, has the same coordinates as the pixel. For a detailed description of
this algorithm see [4].

The Pseudo-Code of Trace(): Image[NX, NY] is a 2D array (standard raster)
whose elements contain gray values or colors. The variables P, R, L and the
elements of the arrays right[4], left[4] and step[4] are structures each
representing a 2D vector with integer coordinates, e.g. P.X and P.Y. The operation
“+” stands for vector addition. Text after // is a comment.

void Trace(int x, int y, char image[])
{ P.X=x; P.Y=y; direction=1;
 do
 { R=P+right[direction]; // R is the “right” pixel
 L=P+left[direction]; // L is the “left” pixel
 if (image[R]==foreground)
 direction=(direction+1) MOD 4; // right turn
 else
 if (image[L]==background)
 direction=(direction+3) MOD 4; // left turn
 P=P+step[direction]; //a move in the new direction
 } while(P.X!=x || P.Y!=y);
} // end Trace

This simple algorithm is used in any program for the analysis of boundaries in 2D
images, e.g. in segmenting the boundary into digital straight segment, in the
polygonal approximation of boundaries, in calculating the curvature etc.

5 Segmentation of Digital Curves into Longest DSSs

5.1 Theoretical Preliminaries

Definition HS: A digital half-space is a region (Definition RG, Appendix) containing
all ground cells of the space, whose coordinates satisfy a linear inequality. A digital
half-plane is a half-space of a two-dimensional space.

Definition DSS: A digital straight line segment (DSS) is any connected subset of the
frontier of a digital half-plane.

Fig. 5.1 shows an example of the half-plane defined by the inequality
2·x−3·y+3 ≥ 0. All pixels of the half-plane are represented by shaded squares.
We suggest to consider two kinds of digital curves: visual curves as sequences of
pixels and boundary curves as sequences of alternating points and cracks. We

Algorithms in Digital Geometry Based on Cellular Topology 375

Fig. 5.1. Examples of a half-plane and of a DSS in topological coordinates

consider DSSs as boundary curves while in the most publication (e.g. in [14]) they are
considered as visual curves, i.e. as sequences of pixels.

Since in practice DSSs are mostly used in image analysis rather than in computer
graphics, considering them as boundary curves is more adequate to the demands of
applications as this will be shown below in Section 5.3.

5.2 Most Important Properties of a DSS

To investigate the properties of DSSs it is easier and more comprehensible to consider
at first the 2-cells (pixels) incident to the cells of a DSS rather than the cells of the
DSS themselves. Consider a digital curve K in a two-dimensional space. It is possible
to assign an orientation to K and thus to the 1-cells of K. Suppose that K does not
intersect the boundary of the space. Then each 1-cell C of K is incident to exactly two
pixels. One of them lies to the positive side and the other to the negative side of the
ordered pair of the end points of C. (The cell c lies to the positive side of the ordered
pair (a, b) if the rotation from b to c about a is in the mathematically positive
direction, as e.g. the rotation from the positive X-axis to the positive Y-axis).

Definition PP: The pixel P which is incident with an oriented crack C of the curve K
and lies to the positive side of the ordered pair of the end points of C is called the
positive pixel of K. Similarly, the incident pixel lying to the negative side of the
ordered pair of the end points of C is called the negative pixel of K.

In Fig. 5.1 the positive pixels are labeled by “+” and the negative ones by “−“.
The set of all positive pixels of K will be called the positive pixel set of K and

denoted by SP(K). The set of all negative pixels of K will be called the negative pixel
set of K and denoted by SN(K).

If K is a DSS then SP(K) lies in a half-plane while SN(K) lies in its complement.
Therefore there is a linear form H(x, y) such that H(x, y)≥0 for all positive pixels of K

14

12

10

 8

 6

 4

 2

 0
 0 2 4 6 8 10 12 14 16 18 X

 Y

 +

 + +

+

+ +

+

+ +

−

 − −

−

− −

−

− −

EP

 SP
 EN

 SN

376 V. Kovalevsky

and H(x, y)<0 for the negative ones. We shall call H(x, y) the separating linear form
of the DSS.

The properties of a DSS which we are interested in and which are important for
the recognition of a DSS are known from the literature [Kim 90] during many years.
The majority of the publications consider visual lines in standard coordinates. We
repeat here the properties necessary for the recognition of DSS and reformulate them
for boundary lines in topological coordinates. The necessary proofs are to be found in
[12]. The most part of our results is applicable for both standard and topological
coordinates due to introducing a parameter e which is the minimum distance between
two pixels: e is equal to 1 in standard coordinates and to 2 in topological ones.

Definition SSF: The separating linear form H(x, y)=a·x+b·y+r of a DSS D is called
the standard separating form (SSF) of D if it satisfies the following conditions:

H(x, y)≥0 for all positive pixels of D, H(x, y)<0 for all negative ones;
The coefficients of H(x, y) are integers while a and b are mutually prime;
There are either at least two positive pixels P1 and P2 of D at which H(x, y) takes
its minimum value with respect to all positive pixels of D or at least two negative
pixels N1 and N2 of D at which H(x, y) takes its maximum value with respect to all
negative pixels of D.

Definition BS: The set of positive pixels of a DSS D at which the SSF of D takes its
minimum value with respect to all positive pixels of D is called the positive base of D.
Similarly, the set of negative pixels of a DSS D at which the SSF of D takes its
maximum value with respect to all negative pixels of D is called the negative base of D.

The pixel of the base B, which is the nearest to the starting point (respectively, end
point) of the oriented DSS is called the starting pixel (respectively, the end pixel) of
B. In Fig. 5.1 the starting pixel of the positive base is denoted by SP, its end pixel is
denoted by EP. Similarly, the starting and the end pixel of the negative base are
denoted by SN and EN.

It is well-known and proved in [12] that a DSS contains cracks of at most two
different directions and that the values of H(.) satisfy the inequalities:

 0≤H(x, y)≤e·(max(|a|,|b|)−1) for positive pixels;
 −e·max(|a|,|b|)≤H(x, y)≤−e for negative ones.

Let S and E be the starting and the end pixel of those base of the DSS, which
contains more than one pixel. Then the vector parallel to E−S whose components are
mutually prime is called the base vector of the DSS. If both bases contain a single
pixel, which is only the case, when the DSS consists of a single crack, then the base
vector is a unit vector parallel to that crack.

The problem most important for applications is that of segmenting a given digital
curve into as long as possible DSSs. The author has developed an algorithm [3] which
starts with the first two cracks of the curve (two adjacent cracks with the point
between them compose always a DSS) and then tests the following cracks one crack
after another whether the sequence of cracks is still a DSS. Section 5.3 describes a
slightly modified more comprehensible version of the algorithm. The idea is as
follows.

Algorithms in Digital Geometry Based on Cellular Topology 377

The first two cracks uniquely specify the bases and the SSF H(V) of the DSS. The
algorithm checks whether the direction of the next crack C is allowed. If not then C
does not belong to the actual DSS which ends at the starting point of C. Otherwise the
values H(P) and H(N) of the SSF for the two pixels P and N incident to C must be
checked. If both H(P) and H(N) are in the allowed intervals then C belongs to the
actual DSS. If one of these values is at the boundary of the allowed interval then the
corresponding pixel P or N belongs to the corresponding base which must be
prolonged until P or N. If one of the values H(P) and H(N) deviates from the
boundary of the allowed interval by the value of e (e=1 for standard coordinates and
e=2 for topological coordinates) then the coefficients of H(V) must be redefined: the
sequence of cracks is a DSS slightly different from the actual DSS. If one of the
values H(P) and H(N) deviates from the boundary of the allowed interval by a value
greater than e then there is no DSS containing C and all previous cracks. The actual
DSS ends at the starting point of C.

The author has proved the correctness of the algorithm [12]. The proofs of all
necessary lemmas and theorems take about 10 pages and cannot be repeated here.

5.3 The Algorithm “Subdivide In DSS”

In this section we describe an algorithm which traces a given digital curve CV in a 2D
image, e.g. the boundary of a region, and subdivides the curve into the longest
possible DSSs. The output of the algorithm is a list of the coordinates of the endpoints
of the DSSs.

Tracing the Curve: Call the subroutine Ini (see below). Choose an arbitrary crack SC
of CV , choose its orientation while specifying its direction dir as one of the numbers
0 to 3 as shown in Fig. 4.1a. SC is the starting crack. Save the coordinates of the
starting point of SC as the starting point of the first DSS. Set the running crack C=SC
and start the tracing loop. The loop runs through all cracks of CV. For each new
location of the running crack C call the subroutine Reco(C, dir) (see below) where dir
is the direction of the oriented crack C. If the return value of Reco is zero go over to
the next crack. Otherwise save the starting point of the running crack C as the end
point of the current DSS and start the recognition of the next DSS while calling Ini
and Reco(C, dir) again. Stop when the starting crack SC is reached again. The curve
CV is subdivided into as long as possible DSSs by the saved points.

Subroutine Ini: Set the crack counter CC to zero and the two prohibited directions
Proh1 and Proh2 to −1 as “unknown”.

Subroutine Reco: It gets as parameters the coordinates of the running crack C and its
direction dir. The subroutine performs as follows.

As the first step it calculates the coordinates of the positive P and the negative N
pixels incident to C while considering the value of dir.

If the counter CC=0 then set the first prohibited direction Proh1 as opposite to dir.
Set the starting pixel StartP and the end pixel EndP of the positive base both equal to
P. Similarly set StartN and EndN equal to N. Set the base vector (b, −a) equal to the
unit vector with the direction dir. Increment CC; return 0.

378 V. Kovalevsky

If CC≠0 then, independently upon the value of CC, test whether dir is equal to one
of the prohibited directions. If this is the case then return 1: the actual crack C does
not belong to the running DSS. If dir is not prohibited and Proh2 is still unknown
then set Proh2 as opposite to dir.

 If CC=1 then
 BEGIN

Set EndP=P and EndN=N and increment CC. If Proh2 is still unknown return 0:
the first two cracks have the same direction, the parameters a and b remain
unchanged. Otherwise calculate the coefficients a, b, r of the separating linear
form H(x, y)=a·(x−StartP.x)+b·(y−StartP.y) so that H(x, y)=0 for the positive
pixels and H(x, y)=−e for the negative ones. Concretely: if the endpoints of the
positive base coincide then

a=−(EndN.y−StartN.y)/e;
b=(EndN.x−StartN.x)/e;

otherwise (5.3.1)
a=−(EndP.y−StartP.y)/e;
b=(EndP.x−StartP.x)/e;

Return 0.
 END IF

For all subsequent cracks (CC>1) calculate the values HP and HN of the
separating form for P and for N: HP=H(P) and HN=H(N).

The following steps of the Algorithm are the decisive ones:

If HP<−e or HN>0 then return 1: the actual crack C does not belong to the running
DSS.
If HP=0 then set EndP=P: P lies on the positive base which must be prolonged.
Otherwise, if HP=−e then redefine both bases while setting EndP=P;
StartN=EndN and redefine the parameters a and b of H(x, y) according to the
redefined bases.
If HN=−e then set EndN=N: N lies on the negative base which must be prolonged.
Otherwise, if HN=0 then redefine both bases while setting EndN=N; StartP=EndP
and redefine the parameters a and b of H(x, y) according to the redefined bases.
return 0.

End of Subroutine Reco.

The Pseudo-Code of Reco:

int CRecoDSS::Reco(CPoint Crack, int dir)
{ P=Crack+ToPos[dir]; // The Array “ToPos[4]” contains vectors pointing

// from a crack to its positive pixel P
 N=Crack-ToPos[dir]; // N is the negative pixel of Crack
 if (CC==0) // “CC” is the number of tested cracks
 { Prohibit1=Opposite(dir); Prohibit2=-1; CC=1;
 StartP=EndP=P; StartN=EndN=N;
 a=−Param[dir].y; b=Param[dir].x; // a unit vector along “dir”
 return 0;
 }

Algorithms in Digital Geometry Based on Cellular Topology 379

 if (dir==Prohibit1 || dir==Prohibit2) return 1;
 if (dir!=Opposite(Prohibit1) && Prohibit2==-1)

Prohibit2=Opposite(dir);
if (CC==1)
 { EndP=P; EndN=N; CC=2;
 if (Prohibit2==-1) return 0; // only one direction
 if (EndP==StartP)
 { a=−(EndN.y-StartN.y)/e; b=(EndN.x-StartN.x)/e;
 }
 else
 { a=−(EndP.y-StartP.y)/e; b=(EndP.x-StartP.x)/e;
 }
 return 0; // any two allowed cracks compose a DSS
 }
 int HP=GetH(P); int HN=GetH(N); //the values of the SSF “H”
 if (HP<-e || HN>0) return HP; // not a DSS
 if (HP==0) EndP=P;
 else
 if (HP==-e)
 { EndP=P; StartN=EndN;
 a=−(EndP.y-StartP.y)/e; b=(EndP.x-StartP.x)/e;
 }
 if (HN==-e) EndN=N;
 else
 if (HN==0)
 { EndN=N; StartP=EndP;
 a=−(EndN.y-StartN.y)/e; b=(EndN.x-StartN.x)/e;
 }
 return 0;
} //************************** end Reco *******************************

The recognition of DSS is one of fastest and most economical methods of
encoding geometrical objects. For example, it is possible to encode the boundary of a
region as a sequence of DSSs while saving the coordinates of a single point and four
integer parameters for each DSS [6]. The parameter exactly specify the location of the
DSS in the image thus enabling the exact reconstruction of the region. The author has
developed an economical code which needs on the average 2.3 bytes per one DSS.
When encoding a quantified gray value image a compression rate of 3.1 was reached
[6]. The method is very fast: for example, it encodes a binary image of 640×480
pixels containing about 30 disk-shaped objects in 20 ms on a PC with a processor of
700 MHz. In that time also the recognition of the disks and estimating their locations
and diameters was performed.

6 Recognition of Digital Plane Patches (DPP)

The notion of a digital plane patch (or segment) is well known from the literature.
[1, Rev 95]. The DPPs were mostly considered as sets of voxels, i.e. as three-
dimensional objects (“thick DPPs”). However, it is more appropriate to consider a

380 V. Kovalevsky

DPP as a subset of a surface, i.e. as a two-dimensional object. Our approach based on
cell complexes makes it possible.

Definition DPP: A connected subset of the frontier of a three-dimensional half-space
(Definition HS, Section 5.1) is called a digital plane patch (DPP).

A DPP contains no voxels (as any frontier in a 3D space does). It contains only 2-
cells called facets, 1-cells called cracks and 0-cells called points.

6.1 The Problem of the Segmentation of Surfaces into DPPs

This problem is of great practical importance since its solution promises an
economical and precise encoding of 3D scenes.

The Problem Statement:

Given: a surface in a 3D space, e.g. the boundary of a connected subset.
Find: the minimum number of DPPs representing the surface in such a way that it is

possible to reconstruct the surface, at least with a predefined precision, from the
code of the DPPs.
The problem consists of two partial problems:

1. Recognition: Given a set of facets decide whether it is a DPP or not.
2. Choice: Given a surface S and a subset of facets, which is known to be a DPP,

decide which facet of S should be appended to the subset to achieve that the
number of the DPPs in the segmentation of S be minimal.

6.2 The Partial Problem of the Recognition of a DPP

Similarly as in the case of the DSS (Section 5), a surface S specifies two sets of
voxels incident to the facets of S: a positive and a negative set. The voxels of the
positive set lie outside of the body whose boundary is S, that of the negative set lie
inside. If a subset T 2 of facets of S is a DPP then it lies in the frontier of a half-space
whose voxels satisfy a linear inequality. The inequality separates the positive voxels
of T from its negative voxels.

To decide whether T 2 is a DPP it is sufficient to solve the following system of 2·N
linear inequalities in the components Hk, k=1, 2, 3; of a 3D vector H and a scalar
value C where N is the number of facets in T 2.

 k Hk⋅Vk
+(Fi) − C ≥ 0;

 with Fi∈T 2; i=1...N; (UV)
 k Hk⋅Vk

−(Fi) − C < 0;

Vk
+(Fi) stays for the kth topological coordinate of the positive voxel incident to the

face Fi. Similarly, Vk
−(Fi) is the kth topological coordinate of the negative voxel

incident to Fi. The vector H is the normal to a plane separating all positive voxels
from the negative ones, while C specifies the distance of the plane from the
coordinate origin.

It is possible to solve the problem by a fast method similar to that of recognizing a
DSS (Section 5). The corresponding algorithm and the related theory are, however,

Algorithms in Digital Geometry Based on Cellular Topology 381

rather complicated. Their presentation here is impossible because of the page limit.
We describe a rather simple algorithm [13] whose only drawback is its low speed: it is
an O(N²) algorithm. Nevertheless, the algorithm is well suited for research purposes.

The algorithm solves the following problem:

Given are two sets M+ and M − of points in an n-dimensional space.
Find a (n−1)-dimensional hyperplane HP separating the sets.

The Solution: HP is specified by two vectors A+ and A− as the middle
perpendicular to the line segment (A+, A−). Let Dist(P) be the signed distance of the
point P to HP.

The Algorithm:

1. Set A+ equal to an arbitrary point from M+ and A− equal to an arbitrary point from
M −. Carry out a sequence of the following iterations.

2. During each iteration test all points P from M + and M − as follows:
If the point P∈M + lies on the wrong side of HP which means Dist(P)<0, then set:
 A+:= Foot of the perpendicular from A− to the segment (A+, P).
If P∈M − and Dist(P)>0, then set:

 A−:= Foot of the perpendicular from A+ to the segment (A−, P).
3. If there is no point on the wrong side of HP stop the Algorithm. The separating

hyperplane is the middle perpendicular to the line segment (A+, A−).
4. If the distance between A+ and A− is less than a predefined threshold then there

exists no separating hyperplane; the convex hulls of M + and M − intersect.

Fig. 6.1 shows an example of separating two point sets in a 2D space. The point
sets are represented by “+” and “−“ signs, the vectors A+ and A− by encircled signs;
the old and the new separation plane by a dashed and a solid line. The point P lies on
the wrong side of the old plane. It is connected with the old vector A+ and a
perpendicular has been dropped from A− onto the segment (A+, P). The foot of the
perpendicular is the new vector A+.

We have applied this method to recognize DPPs while using the set of the positive
voxels V + as M + and that of the negative voxels V − as M −.

Fig. 6.1. An example of the correction of the separating plane

 P A+

 A−

HP old

HP new

382 V. Kovalevsky

6.3 The Partial Problem of the “Choice”

There is no efficient method for the solution of the partial problem “Choice” known
until now. It should be mentioned that this problem is much more difficult in the case of
DPPs as in the case of DSSs. Really, in the latter case there are exactly two possibilities
to continue a partially recognized DSS: forward or backward along the digital curve.
But in the case of a DPP there are as many possibilities to continue as the number of
facets adjacent to a partially recognized DPP. There is no known criterion to decide
which of them should be preferred. When choosing the next facet arbitrarily then the
found DPPs look chaotic even for surfaces of regular polyhedrons (Fig. 6.2).

a b

Fig. 6.2. Examples of segmenting the boundary of a digital ball into DPPs by arbitrarily
choosing the next facet (a) and by computing its convex hull (b)

7 Tracing Surfaces in 3D

The algorithm [7] presented here traces a surface S of a three-dimensional body in a
way similar to that of peeling a potato: the facets of S are visited one after another
composing a continuous sequence. Each facet is encoded by one byte. If the genus of
S is zero then each facet is contained in the encoded sequence only once. The code of
a surface of a greater genus contains a small number of facets many times which
makes the code a little longer. In any case it is possible to reconstruct the surface and
the body from the code exactly.

To explain the algorithm we need the following notions from the theory of AC
complexes:

Definition OF: The open frontier Of(L, S) of a subcomplex L of a complex S relative
to S is the subcomplex of S containing all cells C of S whose closure Cl(C, S)
contains both cells of L as well as cells of the complement S−L.

Algorithms in Digital Geometry Based on Cellular Topology 383

Definition SI: A facet F of S is called simple relative to the subcomplex L if F∉L,
the intersection Cl(F, S)∩L is connected and Cl(F, S)∩(S−L)≠∅.

The algorithm works as follows: It chooses an arbitrary facet of the surface S as
the starting one and labels its closure. Then it traces the open frontier Of(L, S) of the
set L of labeled cells, encodes the facets of Of(L, S) (1 byte per facet), and labels the
closures of simple facets.

This ensures that L remains homeomorphic to a closed 2-ball (a disk).
The author has proved that if the surface S is homeomorphic to a sphere then the

traced sequence is a Hamilton path: each facet is visited exactly once. Otherwise there
remain a few non-simple facets which are visited at least twice. Their code elements
are attached to the end of the sequence of simple facets. Thus the code sequence is
always connected. A verbal description of the algorithm follows. A detailed
description and the related proofs may be found in [7].

Fig. 7.1. The moves at the beginning of the tracing

The Algorithm:

Notations: S is the surface to be traced. L⊂S is the subset of labeled cells; it is
homeomorphic to a closed 2-ball. The “rest sequence” is the set of non-simple facets
at the stage when all simple facets of S are already labeled. The rest sequence consists
of a single facet if the genus of S is zero.

1. Take any facet of S as the starting facet F0, label its closure and save its
coordinates as the starting coordinates of the code. This is the seed of L, i.e.
L={F0}. Denote any one crack of the boundary Fr(F0,S) as Cold and find the facet F
of S which is incident to Cold and adjacent to F0. Set Fold equal to F0 and the logical
variable REST to FALSE. REST indicates that the tracing of the rest sequence is
running.

2. (Start of the main loop) Find the crack Cnew as the first unlabeled crack of Fr(F,S)
encountered during the scanning of Fr(F,S) clockwise while starting with the end
point of Cold, which is in Fr(L,S). If there is no such crack and F is labeled stop the
Algorithm: the encoding of S is finished.

3. If F is simple label its closure.

384 V. Kovalevsky

4. Put the direction of the movement from Fold to Cold and that of the movement from
Cold to F into the next byte of the code. If the facet F is non-simple set the
corresponding bit in the code (to recognize codes of non simple facets in the
ultimate sequence).

5. If REST is TRUE check, whether F is equal to Fstop and Cnew is equal to Cstop. (These
variables were defined in item 6 of the previous loop). If this is the case stop the
Algorithm and analyze the rest sequence to specify the genus of S as explained in
[7]. Delete multiple occurrences of facets from the rest sequence.

6. If F is simple set REST equal to FALSE; else set Fstop equal to F, Cstop equal to Cnew
and REST equal to TRUE.

7. Set Fold equal to F. Find the facet Fnew of S incident to Cnew and adjacent to F.
Set F equal to Fnew and Cold equal to Cnew. Go to item 2.

End of the Algorithm

The algorithm was successfully tested by the author for surfaces of genus up to 5.
The bodies were exactly reconstructed. A graduate student of the University of
Applied Sciences Berlin [16] has also programmed the algorithm and has made a lot
of successful experiments with very complicated bodies of high genus.

8 Filling the Interiors of Surfaces in Multi-dimensional Images

To test whether an n-cell P of an n-space lies in the interior of a given closed hyper-
surface S it is sufficient to count the intersections of S with a ray from P to any point
outside the space: iff the count is odd then P is within S. However, it is difficult to
distinguish between intersection and tangency (Fig. 8.1 a and b).

The solution becomes easy if the surface is given as one or many (n−1)-
dimensional manifolds in an n-dimensional Cartesian AC complex and the “ray” is
a sequence of alternating n- and (n−1)-cells all lying in one row of the raster
(Fig. 8.1c).

Fig. 8.1. Intersection (a) and tangency (b) are difficult to distinguish in “thick” boundaries; this
is easy at boundaries in complexes (c)

In a 2D image the “surface” must be a closed sequence of cracks and points (Fig.
8.1c). Then intersections are only possible at vertical cracks and the problem of
distinguishing between intersections and points of tangency does not occur. If one
knows which n-cells are within S then one can fill the interior of S by labeling these
cells. The method has been successfully implemented for dimensions n=2, 3, 4.

 a b c

Algorithms in Digital Geometry Based on Cellular Topology 385

The Pseudo-Code:

Denote by F the current n-cell of the n-dimensional standard raster. Choose a
coordinate axis A of the Cartesian space (e.g. A=X in the 2D case). Denote by C(F)
the (n−1)-cell incident to F, whose normal is parallel to A (e.g. the vertical crack
incident to F in the 2D case). Label all (n−1)-cells of S whose normal is parallel to A.
In the 2D case when A=X these are the vertical cracks of S.

for each row R parallel to A do
{ BOOLEAN fill=FALSE;
 for each n-cell F in the row R do
 { if C(F) is labeled then fill=NOT fill; // inverting fill
 if fill is TRUE then F=foreground;
 else F=background;
 }

}

9 Component Labeling in an n-Dimensional Space

We consider here the simplest case of a 2D binary image in a standard raster while the
algorithm is applicable also to multi-valued and multi-dimensional images in a
topological raster. In a standard raster a function must be given which specifies which
raster elements are adjacent to each other and thus are connected if they have the
same color. In our simple 2D example we use the well-known “(8,4)-adjacency”. In
the general case the adjacency of the n-cells of an n-dimensional complex must be
specified by rules specifying the membership of cells of lower dimensions [2] since
an (a, b)-adjacency is not applicable for multi-valued images [5].

In a topological raster the connectivity of two cells is defined by their incidence
which in turn is defined by their topological coordinates (Section 3.2).

The Algorithm:

It is expedient to consider a multi-dimensional image as a one-dimensional array
Image[N]. For example, in the 2D case the pixel with coordinates (x, y) may be
accessed as Image[y⋅NX+x] where NX is the number of pixels in a row. The value
y⋅NX+x is called the index of the pixel (x, y).

 first run second run

Fig. 9.1. Illustration to the algorithm of component labeling

1 2 3 2 4 1

5 1 6 2 7 2 8 1

9 1 10 2 11 2 12 1

131 14 1 15 1 16 1

1 2 2 1

1 2 2 1

1 2 2 1

1 1 1 1

386 V. Kovalevsky

Given is a binary array Image[] of N elements and two functions
NumberNeighb(color) and Neighb(i,k). The first function returns the
number of adjacent pixels depending on the color of a given pixel; the second one
returns the index of the kth neighbor of the ith pixel. As the result of the labeling
each pixel gets additionally (in another array Label[]) the label of the connected
component which it belongs to.

The Pseudo-Code:

Allocate the array Label[N] of the same size as Image[N]. Each element of
Label is initialized by its own index:

for (i=1; i<N; i++) Label[i]=i; // first loop
for (i=1; i < N; i++)
{ color=Image[i];
 for (j=0; j<NumberNeighb(color); j++)
 { k=Neighb(i, j); //the index of the jth neighbor of i
 if (Image[k]==color) SetEquivalent(i,k,Label);
 }
} // end of the first run
SecondRun(Label,N); // end of the Algorithm

Each element of Label[N] must have at least log 2 N bits N being the number of
elements in Image[N]. The subroutine SetEquivalent() makes the preparation
for labeling the pixels having the indices i and k as belonging to one and the same
component. For this purpose the subroutine find the “roots” of both pixels i and k,
and the greater root gets the smaller one as its label. The function Root() (see
below) returns the last value in the sequence of indices where the first index k is that
of the given pixel, the next one is the value of Label[k] etc. until Label[k]
becomes equal to k. The subroutine SecondRun() replaces the value of
Label[k] by the value of a component counter or by the root of k depending on
whether Label[k] is equal to k or not.

Pseudo-Codes of the Subroutines:

subroutine SetEquivalent(i,k,Label)
{ if (Root(i,Label)<Root(k,Label))
 Label[Root(k,Label)]=Root(i,Label);
 else Label[Root(i,Label)]=Root(k,Label);
} // end of SetEquivalent
int Root(k, Label)
{ do
 { if (Label[k]==k) return k;
 k=Label[k];
 } while(1);
} // end of Root
subroutine SecondRun(Label,N)
{ count=1;
 for (i=0; i<N; i++)

Algorithms in Digital Geometry Based on Cellular Topology 387

 { value=Label[i];
 if (value==i)
 { Label[i]=count; count=count+1;
 }
 else Label[i]=Label[value];
 }
} // end of SecondRun

10 Computing the Curvature of Digital Curves

The most of the algorithms for computing the curvature suggested during the last
decades have a common drawback: they have a very low precision. The reason is that
the precision of calculating the curvature of a curve depends dramatically on the
precision of estimating the coordinates of the points of the curve. Coordinates of
points in digital images are specified with a precision of about ±0.7 pixel. The author
has demonstrated [9] that estimating the curvature with a precision of for example
10% is impossible for digital curves with the curvature radius less than 270 pixels
because of not sufficient precision of the coordinates.

We suggest a method of using the gray values in a digital image to essentially
increase the precision of estimating the coordinates. The method is applicable for gray
value images of objects having an almost constant brightness against a homogeneous
background.

In this case the gray values at the boundary of the object contain information
about the subpixel position of the boundary.

The precision of estimating the coordinates is about 1/100 of a pixel. The
curvature may be calculated as the inverse of the radius of a circle through three
subpixel points. The optimal distance between the points must be calculated as a
function of a coarse estimate of the expected curvature [9].

Fig. 10.1. Dependence of the portion of a pixel covered by the object on the subpixel location
of its boundary (marked by a cross)

The precision of estimating the curvature is essentially higher than that of known
methods. Fig. 10.2 and 10.3 show an example.

Case 0 Case 1 Case 2

t t
t

388 V. Kovalevsky

The curvature radius of the left and right outer boundary of the object shown in
Fig. 10.2 is about 25 pixels. The curvature was estimated with a relative error of about
4% (see Fig. 10.3). When estimating the curvature starting with pixel coordinates
without using the gray values the relative error would be according to equation (13) of
[9] at least 33%.

Fig. 10.2. The gray value image of a link of a bicycle chain

Fig. 10.3 shows the curvature of the outer boundary of the object of Fig. 10.2
calculated by our method.

The relative error is of about 4%. We hope that Fig. 10.3 gives a general
impression of the accuracy of the method as applied to real objects.

11 Skeleton of a Subset in 2D and 3D Images

Definition SK: The skeleton of a given set T of an n-dimensional (n=2,3) image I is a
subset S ⊂ T with the following properties:

Fig. 10.3. The curvature of the outer boundary of the object of Fig. 10.2; the dashed lines show
the true values of the minimum and maximum curvature

Curvature

Algorithms in Digital Geometry Based on Cellular Topology 389

a) S has the same number of connected components as T;
b) The number of connected components of I−S is the same as that of I−T;
c) Certain singularities of T are retained in S;
d) S is the smallest subset of T having the properties a) to c).

Singularities may be defined e.g. as the “end points” in a 2D image or “borders of
layers” in a 3D image etc.

When considering an n-dimensional image (n=2,3) as an AC complex I the
problem of the skeletonization consists in finding the condition under which a cell of
the foreground T may be reassigned to the background B=I−T without changing the
number of the components of both T and B. To derive the condition we need the
following notion:

Definition IS: The complex IS(C, I)=SON(C, I)∪Cl(C, I)−{C} is called the incidence
structure of the cell C relative to the space I. It is the complex consisting of all cell
incident to the cell C excluding C itself [10].

The author has proved that the membership of a cell C of any dimension may be
changed between T and B without changing the number of the components of both T
and B iff each of the intersections IS(C, I)∩T and IS(C, I)∩B are not empty and
connected. We shall call such cells IS-simple relative to the set T. In the rest of this
Section we call them “simple”.

Thus to calculate the skeleton of a set T one must remove all IS-simple cells of T
while reassigning them to B and regarding the singularities.

A well-known difficulty in calculating skeletons is that it is impossible to remove all
simple pixels simultaneously without violating the skeleton conditions. However,
representing an image as a complex C makes it possible to calculate the skeleton by a
procedure which may be either sequential or parallel. It is based on the notion of the
open frontier (s. Section 7 above). The procedure consist in removing IS-simple non-
singular cells of T alternatively from the frontier Fr(T, C) and from the open frontier
Of(T, C). We present below a simple version of the algorithm for the 2D topological
raster.

 a b c d e f

Fig. 11.1. a) a given 2D subcomplex T; b) its frontier Fr; c) the set T−Fr: the simple cells of the
frontier deleted; d) the open frontier Of of the set T−Fr; e) the set T−Fr−Of: the simple cells of
the open frontier deleted; f) the skeleton

The Algorithm:

Let I[NX, NY] be a 2D array with topological coordinates. The subset T is given by
labeling cells of all dimensions of T: I[x, y] >0 iff the cell (x, y)∈T. To delete a cell

390 V. Kovalevsky

means to set its label I[x, y] to zero. A cell C is singular iff it is incident to exactly one
labeled cell other than C.

To calculate the skeleton of T run the following loop:

 do { Scan I and delete all simple and non-singular cells of T∩Fr(T, I);
 CountClose = number of cells deleted during this scan;
 Scan I and delete all simple and non-singular cells of T∩Of(T, I);
 CountOpen = number of cells deleted during this scan;
 } while (CountClose+CountOpen > 0);
 // end of Algorithm

Fig. 11.1 above shows an example. The result may be, if desired, easily
transformed either to a sequence of pixels or to a one-dimensional complex
containing only points and cracks.

In the case of 3D images the algorithm can produce either 1D or 2D skeletons
depending upon the choice of the kind of the singularities.

References

(most of the publications by the author are available at “www.kovalevsky.de”)

[1] Andres, E.: Le Plan Discret, Colloque “Geometrie Discrete en Imagerie”, University of
Strasbourg, pp. 45-61, 1993.

[2] Kovalevsky, V.: Finite Topology as Applied to Image Analysis. Computer Vision,
Graphics and Image Processing 45 (1989) 141-161

[3] New Definition and Fast Recognition of Digital Straight Segments and Arcs, 10th
International Conference on Pattern Recognition, Atlantic City, June 17-21, IEEE Press,
vol. II, pp. 31-34, 1990.

[4] Kovalevsky, V.: Finite Topology and Image Analysis. In: Hawkes, P. (ed.): Advances in
Electronics and Electron Physics, Vol. 84. Academic Press (1992) 197-259

[5] Kovalevsky, V.: Digital Geometry Based on the Topology of Abstract Cell Complexes”,
Proceedings of the Third International Colloquium “Discrete Geometry for Computer
Imagery”, University of Strasbourg, September 20-21, pp. 259-284, 1993.

[6] Kovalevsky, V.: Applications of Digital Straight Segments to Economical Image
Encoding, In: Ahronovitz, E., Fiorio, Ch. (eds), Discrete Geometry for Computer
Imagery, Lecture Notes in Computer Science, Vol. 1347, Springer-Verlag, Berlin
Heidelberg New York (1997), pp. 51-62

[7] Kovalevsky, V.: A Topological Method of Surface Representation. In: Bertrand, G.,
Couprie, M., Perroton, L. (eds.): Discrete Geometry for Computer Imagery. Lecture
Notes in Computer Science, Vol. 1568. Springer-Verlag, Berlin Heidelberg New York
(1999), 118-135

[8] Kovalevsky, V,: Algorithms and Data Structures for Computer Topology. In: Bertrand, G.
et all (eds.), Lecture Notes in Computer Science, Vol. 2243: Special issue on Digital and
Image Geometry, Springer-Verlag, Berlin Heidelberg New York (2001), pp. 37-58.

[9] Kovalevsky, V,: Curvature in Digital 2D Images, International Journal of Pattern
Recognition and Artificial Intelligence, Vol. 15, No. 7, (2001) pp. 1183 - 1200

[10] Kovalevsky, V,: Multidimensional Cell Lists for Investigating 3-Manifolds. Discrete
Applied Mathematics, Vol. 125, Issue 1, (2002) pp. 25-43.

[11] Kovalevsky, V.: Axiomatic Digital Topology, to be published, 2004.

Algorithms in Digital Geometry Based on Cellular Topology 391

[12] Kovalevsky, V.: Recognition of Digital Straight Segments in Cell Complexes, to be
published, 2004.

[13] Kozinets, B.N.: An Iteration-Algorithm for Separating the Convex Hulls of two Sets. In
Vapnik, V.N. (ed): Lerning Algorithms for Pattern Recognition (in Russian language),
Publishing house “Sovetskoe Radio”, Moscow, 1973.

[14] Reveillès, J.P.: Structure des Droit Discretes. Journée mathématique et informatique,
(1989).

[15] Reveillès, J.P.: Combinatorial Pieces in Digital Lines and Planes. In: Vision geometry III.
Proceedings of SPIE, Vol. 2573 (1995) pp. 23-34.

[16] C. Urbanek: Computer Graphics Tutorials - Visualizing of the Kovalevsky Algorithm for
Surface Presentation, Graduation Thesis, University of Applied Sciences, Berlin, 2003.

Appendix: The Topology of Abstract Cell Complexes

An abstract cell complex (AC complex) is a locally finite topological space (LFS).
Elements of this space are called cells. As we have seen in Introduction, in a space
satisfying the Axioms 1 to 4 which are equivalent to the classical Axioms C1 to C4,
neighborhoods must be defined by means of an antisymmetric binary relation. It is
usual to use in the topology of cell complexes the so called bounding relation which
is antisymmetric, irreflexive and transitive. Thus it is a partial order.

It is possible either to consider the cells as subsets of an Euclidean space or as
some abstract objects having certain properties and relations to each other. In the first
case the complex is called Euclidean complex, in the second case it is an abstract cell
complex, or AC complex. The author is successfully working with AC complexes and
is convinced that considering besides the complex itself also the Euclidean space in
which the complex is embedded brings no advantages. The concept of AC complexes
opens the exiting possibility to develop digital topology and digital geometry
independently of the general topology and of Euclidean geometry.

The most important notions are surely acquainted to the reader from earlier
publications (e.g. [2, 5, 8]. Therefore we shall repeat here only the definitions which
are necessary to follow the presentation. Other definitions, necessary for certain
algorithms are given at the corresponding place.

Definition AC: An abstract cell complex (AC complex) C=(E, B, dim) is a set E of
abstract elements (cells) provided with an antisymmetric, irreflexive, and transitive
binary relation B ⊂ E × E called the bounding relation, and with a dimension function
dim: E → I from E into the set I of non-negative integers such that dim(e') < dim(e")
for all pairs (e',e")∈B.

The maximum dimension of the cells of an AC complex is called its dimen-
sion. We shall mainly consider complexes of dimensions 2 and 3. Their cells with
dimension 0 (0-cells) are called points, cells of dimension 1 (1-cells) are called cracks
(edges), cells of dimension 2 (2-cells) are called pixels (or facets) and that of
dimension 3 are the voxels.

If (e', e")∈B then it is usual to write e'<e" or to say that the cell e' bounds the cell
e". Two cells e' and e" of an AC complex C are called incident to each other in C iff
either e'=e", or e' bounds e", or e" bounds e'. In AC complexes no cell is a subset of

392 V. Kovalevsky

another cell, as it is the case in simplicial and Euclidean complexes. Exactly this
property of AC complexes makes it possible to define a topology on the set of abstract
cells independently from any Hausdorff space.

The topology of AC complexes with applications to computer imagery has been
described in [2]. We recall now a few most important definitions. In what follows we
say “complex” for “AC complex”.

Definition SC: A subcomplex S = (E', B', dim') of a given complex C = (E, B, dim) is
a complex whose set E' is a subset of E and the relation B' is an intersection of B with
E' × E'. The dimension dim' is equal to dim for all cells of E'.

Since a subcomplex is uniquely defined by the subset E' it is possible to apply set
operations as union, intersection and complement to complexes. We will often say
“subset” while meaning “subcomplex”.

The connectivity in complexes is the transitive hull of the incidence relation. It can
be shown that the connectivity thus defined corresponds to classical connectivity.

Definition OP: A subset OS of cells of a subcomplex S of a complex C is called open
in S if it contains all cells of S bounded by cells of OS. An n-cell cn of an n-
dimensional complex C n is an open subset of C n since cn bounds no cells of C n.

Definition SON: The smallest subset of a set S which contains a given cell c of S and
is open in S is called the smallest (open) neighborhood of c relative to S and is
denoted by SON(c, S).

The word “open” in “smallest open neighborhood” may be dropped since the
smallest neighborhood is always open, however, we prefer to retain the notation
“SON” since it has been used in many publications by the author.

Definition CL: The smallest subset of a set S which contains a given cell c of S and is
closed in S is called the closure of c relative to S and is denoted by Cl(c, S).

Definition FR: The frontier Fr(S, C) of a subcomplex S of a complex C relative to C
is the subcomplex of C containing all cells c of C whose SON(c, C) contains both
cells of S as well as cells of the complement C−S.

Illustrations to AC complexes, SONs and closures of cells of different dimensions
may be found in [2, 4, 10].

Definition OF: The open frontier Of(S, C) of a subcomplex S of a complex C relative
to C is the subcomplex of C containing all cells c of C whose closure Cl(c, C)
contains both cells of S as well as cells of the complement C−S.

Definition BD: The (combinatorial) boundary ∂S of an n-dimensional subcomplex S
of a complex C is the union of the closures of all (n−1)-cells of C each of which
bounds exactly one n-cell of S.

Definition HN: An n-dimensional subcomplex S of a complex C is called
homogeneously n-dimensional iff each cell of S bounds at least one n-cell of S.

Definition RG: An n-dimensional subcomplex S of a complex C is called a region of
C iff it is homogeneously n-dimensional and C−S−∂C is also homogeneously n-
dimensional.

Algorithms in Digital Geometry Based on Cellular Topology 393

Definition TL: A connected one-dimensional complex whose each cell, except two
of them, is incident to exactly two other cells, is called a topological line.

It is easily seen that it is possible to assign integer numbers to the cells of a
topological line in such a way that a cell incident to the cell having the number k has
the number k−1 or k+1. These numbers are called the topological coordinates of the
cells [8].

Definition CR: A Cartesian (direct) product C n of n topological lines is called an n-
dimensional Cartesian complex [8].

The set of cells of C n is the Cartesian product of n sets of cells of the topological
lines which are the coordinate axes of the n-dimensional space C n. They are denoted
by Ai, i=1,2,...,n. A cell of C n is an n-tuple (a1, a2,..., an) of cells ai of the
corresponding axes: ai∈Ai. The bounding relation of C n is defined as follows: the n-
tuple (a1, a2,..., an) is bounding another distinct n-tuple (b1, b2,..., bn) iff for all
i=1,2,...n the cell ai is incident to bi in Ai and dim(ai) ≤ dim(bi) in Ai.

The dimension of a product cell is defined as the sum of dimensions of the factor
cells in their one-dimensional spaces. Topological coordinates of a product cell are
defined by the vector whose components are the coordinates of the factor cells in their
axes.

Fig. A.1. Example of a two-dimensional Cartesian (a) and non-Cartesian (b) complexes

Fig. A.1a shows four cells in a two-dimensional Cartesian complex: P is a 0-cell
(point), C1 and C2 are 1-cells (a horizontal and a vertical crack), F is a 2-cell (pixel).

If we assign even numbers to the 0-cells and odd ones to the 1-cells of the axes
then the dimension of a cell in a Cartesian complex is equal to the number of its odd
coordinates.

 Y

C1=(7,6)

C2=(6,3)

 X

 0 1 2 3 4 5 6 7

8

7

6

5

4

3

2

1

0

P=(4,6)

F=(3,5)

 a b

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 394–408, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Efficient Euclidean Distance Transform

Donald G Bailey

Institute of Information Sciences and Technology,
Massey University, Palmerston North, New Zealand

D.G.Bailey@massey.ac.nz

Abstract. Within image analysis the distance transform has many applications.
The distance transform measures the distance of each object point from the
nearest boundary. For ease of computation, a commonly used approximate al-
gorithm is the chamfer distance transform. This paper presents an efficient lin-
ear-time algorithm for calculating the true Euclidean distance-squared of each
point from the nearest boundary. It works by performing a 1D distance trans-
form on each row of the image, and then combines the results in each column.
It is shown that the Euclidean distance squared transform requires fewer com-
putations than the commonly used 5x5 chamfer transform.

1 Introduction

Many image analysis applications require the measurement of objects, the compo-
nents of objects or the relationship between objects. One technique that may be used
in a wide variety of applications is the distance transform or Euclidean distance map
[1,2]. Let the pixels within a two-dimensional digital image),(yxI be divided into
two classes – object pixels and background pixels.

{ }BgObyxI ,),(∈ (1)

The distance transform of this image,),(yxId then labels each object pixel of this
binary image with the distance between that pixel and the nearest background pixel.
Mathematically,

{ }
() { }∈∈∀−−

∈
=

ObyxIBgyxIyyxx
BgyxI

yxId),(),(,,min
),(0

),(
0000

 (2)

where yx, is some two-dimensional distance metric. Different distance metrics re-
sult in different distance transformations. From a measurement perspective, the
Euclidean distance is the most useful because it corresponds to the way objects are
measured in the real world. The Euclidean distance metric uses the L2 norm and is de-
fined as

22

2

, yxyx
L

+= (3)

An Efficient Euclidean Distance Transform 395

This metric is isotropic in that distances measured are independent of object orienta-
tion, subject of course to the limitation that the object boundary is digital, and therefore
in discrete locations. The major limitation of the Euclidean metric, however is that it is
not easy to calculate efficiently for complex shapes. Therefore several approximations
have been developed that are simpler to calculate for two-dimensional digital images us-
ing a rectangular coordinate system. The first of these is the city block, or Manhattan
metric, which uses the L1 norm

yxyx
L

+=
1

, (4)

where the distance is measured by the number of horizontal and vertical steps required
to traverse (x,y). If each pixel is considered a node on a graph with each node connected
to its 4 nearest neighbours, the city block metric therefore measures the distance as the
minimum number of 4-connected nodes that must be passed through. Diagonal dis-
tances are over-estimated by this metric because a diagonal connection counts as 2
steps, rather than 2 .

Another measure commonly used is the chessboard metric, using the L norm

()yxyx
L

,max, =
∞

 (5)

which measures the number of steps required by a king on a chess board to traverse
(x,y). The chessboard metric considers each pixel to be connected to its 8 nearest
neighbours, and measures the distance as the minimum number of 8-connected nodes
that must be passed through. Diagonal distances are under-estimated by this metric as a
diagonal connection counts as only 1 step.

A wide range of other metrics have been proposed that aim to approximate the
Euclidean distance while retaining the simplicity of calculation of the city block and
chessboard metrics. Perhaps the simplest of these is to simply average the city block and
chessboard distance maps:

()()
() ()yxyx

yxyxyx
Hybrid

,min,max

,max,

2
1

2
1

+=
++=

 (6)

Fig. 1 graphically compares these different metrics in measuring the distance from a
point in the centre of an image. The anisotropy of the non-Euclidean distance measures
is clearly visible.

1.1 Morphological Approach – Grassfire Transform

Calculation of the distance transform directly using Eq. (2) is impractical because it in-
volves measuring the distance between every object pixel and every background pixel.
The time required would be proportional to the number of pixels in the image squared.
Therefore more efficient algorithms have been developed to reduce the computational
complexity.

396 D.G. Bailey

Intuitively, the simplest approach to calculate the distance transform is to iteratively
label each pixel starting from the edges of the object. The so-called grassfire transform
imagines that a fire is started at each of the edge pixels which burns with constant veloc-
ity. An object pixel’s distance from the boundary is therefore given by the time it takes
the fire to reach that pixel. The grassfire transform is initialised by labelling all of the
background pixels as 0. In iteration i, each unlabelled object pixel that is adjacent to (us-
ing 4-connections for the city block metric or 8-connections for the chessboard metric) a
pixel labelled i-1 is labelled i. The iterations continue until all of the pixels have been
labelled.

Fig. 1. Four commonly used distance metrics – measuring the distance from the centre of the im-
age: (a) Euclidean metric, Eq. (3); (b) city block metric, Eq. (4); (c) chessboard metric, Eq. (5); (d)
a hybrid metric, Eq. (6)

This iterative approach is like peeling the layers of an onion. This may be achieved
by using a morphological filter to erode the object by one layer at each iteration. The
shape of the structuring element (see Fig. 2) determines which distance metric is being
applied. Each pixel is then labelled by the iteration number at which it was eroded from
the original image. The hybrid distance metric of Eq. (6) may be achieved by alternating
the cross and square structure elements at successive iterations [2].

(a) (b)

(c) (d)

An Efficient Euclidean Distance Transform 397

The major limitation of using such small structuring elements is that many iterations
are required to label large objects. Also, the hybrid metric provides only a crude ap-
proximation of the Euclidean distance. Both of these limitations may be overcome by
greyscale morphology with a conical structuring element. In general, larger structuring
elements require fewer iterations and the final result more closely approximates the
Euclidean distance. However, the cost is that larger structuring elements are more com-
putationally intensive at each iteration. For this reason, much research has gone into
ways of decomposing the conical structuring element to reduce the computational bur-
den (see for example [3-5]).

Fig. 2. Structure elements for: (a) city block erosion; and (b) chessboard erosion

1.2 Two Pass Algorithms – Chamfer Distance Transform

The iterations required by successive use of morphological filters may be removed by
making the observation that successive layers will be adjacent. Therefore the distance
may be calculated by propagating the distances from adjacent pixels. This approach re-
quires only two passes through the image, one from the top left corner to the bottom
right corner and the second from the bottom right back through the image to the top left
corner. These two passes propagate the distances from the top and left edges of the ob-
ject, and from the bottom and right edges of the object respectively. Each pass uses only
values that have already been calculated.

If using a 3x3 window, the first pass propagates the distance from the 3 pixels above,
and the one pixel to the left of the current pixel, adding an increment that depends on
whether the pixel is 4- or 8-connected. Background pixels are assigned a distance of 0.

+−
+−++−+−−

=
ayxI

byxIayxIbyxI
yxI

d

ddd
d),1(

,)1,1(,)1,(,)1,1(
min),((7)

The second pass propagates the distance from the 3 pixels below and the one pixel to
the right of the current pixel. The second pass only replaces the distance calculated in
the first pass if it is smaller, which will be the case if the pixel is closer to the bottom or
right edges of the object.

+++++++−
++

=
byxIayxIbyxI

ayxIyxI
yxI

ddd

dd
d)1,1(,)1,(,)1,1(

,),1(),,(
min),((8)

Different increments, a and b, will result in different distance metrics. The city
block distance is given with a=1 and b=2; the chessboard distance with a=b=1; and
the hybrid distance of Eq. (6) is given with a=1 and b=1.5, or equivalently with a=2
and b=3 (to maintain integer arithmetic), and dividing the result by 2. A better ap-

(a) (b)

398 D.G. Bailey

proximation to the Euclidean distance may be obtained by using the integer weights
a=3 and b=4, and dividing the result by 4, although this still results in an octagonal
pattern similar to that seen in (d).

A more accurate distance measure may be obtained by optimising the increments, or
by using a larger window size [6]. A larger window size compares more terms (4 for a
3x3 window, 8 for a 5x5 window, and 16 for a 7x7 window - see Fig. 3), and provides a
more accurate estimate of distances that are off-diagonal. A 5x5 window provides a rea-
sonable compromise between computational complexity and approximation accuracy,
and is commonly used when a closer approximation to the true Euclidean distance is re-
quired. As the number of operations is fixed for each pixel, the time required to execute
the chamfer distance algorithms is proportional to the number of pixels in the image.

Fig. 3. The location of increments within 3x3, 5x5 and 7x7 windows. The blank spaces do not
need to be tested because they are multiples of smaller increments

1.3 Vector Propagation

The two-pass chamfer distance algorithm may be adapted to measure the Euclidean dis-
tance by propagating vectors instead of the scalar distance [7-9]. The basic approach
remains the same – as the window is scanned through the image, the distance is calcu-
lated by minimising an incremental distance from its neighbours. Measuring the Euclid-
ean distance requires a square-root operation. However, if the minimum distance is se-
lected, then the distance squared will also be minimised. This reduces the number of
expensive square root operations that are actually needed. In many applications, the dis-
tance squared transform is suitable, avoiding square roots altogether.

Whereas the chamfer distance only requires an image of scalars, measurement of the
Euclidean distance requires an intermediate image of vectors with x and y offsets. Back-
ground pixels are assigned a vector of (0,0). The minimum distance is calculated by
propagating the vector components of each of the neighbours that have already been
calculated. A similar operation is performed for the second pass, from the bottom right
back up the image to the top left.

Consider an isolated background pixel (a single pixel hole in an “infinite” object).
The first pass will propagate the correct distances downwards in the image as illustrated
in Fig. 4. The pixels in the lower right quadrant have 3 redundant paths from adjacent
pixels. The redundancy is less in the lower left octant because the pixel immediately to
the right of the current pixel has not been processed yet, so has an unknown distance
from the background.

The second pass is more revealing. The top left quadrant is fully redundant. In the top
right quadrant, there are no direct right propagations because the pixel immediately to

a a
a b b

a b b
a a

c c e e

c c e e

a b b d c d c

a b b d c d c

d d e e

d d e e

a a

c c

c c

a b b c c

a b b c c

An Efficient Euclidean Distance Transform 399

the left of the current pixel has not yet been processed. The bottom left octant has no
redundancy. The propagation path to any pixels in this region follows the bottom left
diagonal in the first pass, and then left from that in the second pass.

This lack of redundancy means that every pixel on the propagation path must be
closer to the original background point than any other background pixel. If not, for
example if any of the diagonal pixels is closer to another background pixel, then the
pixels within this region will have the incorrect minimum distance. Fig. 5 shows a
construction where this will be the case, and there is an error in the derived distance.

Fig. 4. Propagation of distances from a single background pixel within the two passes of the al-
gorithm. Arrows show where the minimum comes from. Where there are multiple arrows enter-
ing a pixel, all of the paths equal the minimum

Fig. 5. Construction illustrating regions which will have an incorrect distance calculated. A and D
are background pixels. Line CE is the perpendicular bisector of line AD, and consists of the points
which are equidistant from A and D; points above this line are closer to A and points below this
line are closer to D. The propagation of minimum distance from A to B follows the lower-left di-
agonal from A to C, then left to B (see Fig. 4). Pixels below BC that are above CE (shaded re-
gion) will be using diagonal pixels that have been labeled as being closer to D and so will have in-
correct distances

These errors may be corrected by allowing a more direct path between point A and
B. This requires a third pass through the image to provide the missing diagonal connec-
tions in this octant. It is also necessary to include the right to left propagation to correct

First pass Second pass

A

B C

D

E

400 D.G. Bailey

any errors resulting from the propagation of incorrect distances in this direction. To ac-
commodate both these propagations, it is necessary for the third pass to proceed from
the top right corner to the bottom left corner, traversing right to left along each row of
pixels. The redundancy added by this pass will enable the correct distances to be ob-
tained when there are two background points. (This source of errors is overlooked in
Shih and Fu [9]).

Fig. 6. Construction where there are three background pixels. The correct distances will be meas-
ured as long as there is a propagation path completely within the region associated with each
background pixel. In continuous images, this will always be the case. With digital images, how-
ever, the boundaries are not straight lines, but jagged digital lines. This is illustrated in the exam-
ple on the right, where there is an isolated pixel failing this criterion

Now consider the case where there are three background points, as illustrated in Fig.
6. The perpendicular bisectors between each pair of points govern the boundaries be-
tween the regions made up of points closest to each of the three background pixels.
Consider pixel A, the central point of the three, and its associated region, RA. If there is
a connected propagation path completely within the region associated with that point,
then each pixel will have the correct distance. This is because each pixel along the path
will be propagating the correct distance.

In the general case, when there are many background pixels within an image, the re-
gion RA consisting of all of the point closest to a given background pixel, A, may be
constructed as follows. The perpendicular bisector of the line between A and another
background pixel B consists of all points that are equidistant to both A and B. All points
on the A side of the bisector are closer to A. A point is in region RA only if it is on the A
side of all such bisectors. Therefore, RA consists of the intersection of all such regions:

{ }BABPBPAPPA ≠∈∈∀−≤−= ,,, BgObR (9)

The division of an image into regions in this manner is called the Voronoi diagram.
The Voronoi diagram effectively associates each point within an image with the nearest
feature (or background) point. Therefore obtaining the distance transform from the Vo-
ronoi diagram is a relatively simple matter [10,11].

From a vector propagation standpoint, since the Voronoi region RA is convex, the line
segment between A and any point within RA will lie completely within RA. As a result,
provided distances may propagate along this line segment, the correct distance will be
obtained for every point in RA and by generalization, any object point.

A

B

C

P
RA

?

A

B

C

An Efficient Euclidean Distance Transform 401

For continuous images, this will always be the case. However, for digital images, the
boundaries of RA are not continuous lines, but are digital lines, and are distorted by the
pixel grid. When two digital bisectors approach at an acute angle, as shown in the ex-
ample in Fig. 6, there may be an isolated pixel, or short string of pixels that are not 8-
connected with the rest of the region [12]. Consequently, there will not be a continuous
8-connected path between such groups and the nearest background pixel for the dis-
tances to propagate along. These groups will therefore not have the correct minimum
distances assigned to them. It can be shown that using a small local window cannot pre-
vent such errors [12].

1.4 Boundary Propagation

Another class of techniques combines the idea of the grassfire transform with the
propagation approach described in the previous section. These methods maintain a list
of boundary pixels, and propagate these in a non-raster fashion [12-14]. Redundant
comparisons may be avoided by only testing based on the direction of the nearest
boundary pixel [14]. Errors such as that shown in Fig. 6 may be avoided by propagating
vectors past the maximum until the difference exceeds 1 pixel [13]. While this extended
propagation overcomes these errors, if care is not taken these additional propagations
can result in large numbers of unnecessary comparisons [12].

1.5 Independent Scanning of x and y

The definition of Euclidean distance in Eq. (3) leads to a different class of algorithms.
From Pythagoras’ theorem, the distance squared to a background pixel can be deter-
mined by considering the x and y components separately. Therefore it is possible to in-
dependently consider the rows and columns. The first step looks along each row to de-
termine the distance of each object point from the nearest boundary point on that row.
This requires two scans, from left to right and right to left to measure the distances from
the left and right edges of the object respectively. The second step then considers each
column, and for each pixel in that column determines the closest background point by
examining only the row distances in that column:

()222)(),(min),(nn
n

d yyyxIyxI −+= (10)

Thus the search has been reduced from two dimensions in Eq. (2) to one dimension.
The search can be accomplished with a scan down and up the column propagating the
row distances and selecting the global minima at each pixel [15]. Unfortunately, as ap-
plied, this algorithm requires that multiple row points be propagated simultaneously.
The effect is that in the worst case the algorithm as described is not linear in the num-
ber of pixels (as are the chamfer and vector propagation algorithms).

2 Linear Time Independent Scanning

The key to making an independent scanning algorithm operate in linear time is to
determine in advance exactly which pixels in a column that a particular row will in-

402 D.G. Bailey

fluence. This information may be obtained by constructing a partial Voronoi dia-
gram for each column.

2.1 Row Scanning

The first step operates on each row independently. It consists of two passes – from left
to right and then right to left. The left to right pass determines the distance to the left
boundary of an object

∈
∈+−=

BgyxI
ObyxIyxI

yxI
),(0
),(1),1(

),((11)

If the pixel on the edge of the image is an object pixel, its distance is set to . The
right to left pass replaces this with the distance to the right boundary if it is shorter:

∈
∈++=

BgyxI
ObyxIyxIyxI

yxI
),(0
),()1),1(),,(min(

),((12)

Fig. 7. The distance squared along a column, showing the regions of influence of two background
points

2.2 Column Scanning

Consider an image with two background pixels at I(x1,y1) and I(x2,y2), with y1<y2. Let I1
and I2 be the corresponding minimum row distances in column x. The distance squared
function in column x is illustrated in Fig. 7. The column is split into two with part of the
column coming under the influence of (x1,y1) and part coming under the influence of
(x2,y2). The boundary between the two regions is given from the intersection of the two
parabola:

2
2

2
2

2
1

2
1)()(yyIyyI −′+=−′+ (13)

Solving this for the position of the intersection gives:

)(2
)(

12

2
12

2
1

2
2

2 yy

yyII
yy

−
−−−+=′

(14)

y1y 2yy ′

2
2I

2
1I

An Efficient Euclidean Distance Transform 403

Note that there will always be exactly 1 intersection point, corresponding to where
the perpendicular bisector between I(x1,y1) and I(x2,y2) intersects column x, although the
bisector may not necessarily be between y1 and y2. As the distance is only evaluated for
integer values of y, it is not necessary to know the precise location of the intersection,
only which two pixels it falls between. This means that integer division may be used,
and the remainder or fractional part discarded. If the numerator is positive, the number
calculated is the last pixel under the influence of y1. If negative, it is the first pixel under
the influence of y2.

Assume that the image is being scanned in the increasing y direction. Now consider
adding a third background point I(x3,y3), where y2<y3 with intersection between parabo-
las 2 and 3 at y ′′ . If yy ′′<′ then there are three regions of influence, corresponding to
the sets of points nearest to each of the background pixel. However if yy ′<′′ then
background point 2 has no influence in column x because its parabola will be greater
than the minimum of parabolas 1 and 3 at every point. The boundary between parabolas
1 and 3 may then be found from Eq. (14).

Extending this search to N points would require N2 tests in the worst case. However,
by making use of the fact that the points are ordered, and scanning in only one direction
at a time, the number of tests may be reduced to N.

The basic data structure used to maintain the information is a stack. Each stack item
of contains a pair of values (y,yI) representing respectively a row number, y, and the
maximum row which that row influences, yI. The stack is initialized as (0,N). This is
saying that in the absence of further information, the first row will influence the whole
image.

For each successive row, Eq. (14) is evaluated with y1 as the row number from the
top of stack, and y2 the new row. There are three cases of interest:

1. Ny >′ . The boundary of influence between y1 and y2 is past the end of the image,
so the new row will have no influence.

2. Iyy 0>′ , where Iy0 is the influence from the previous stack entry, and corre-
sponds to the start of the influence of row y1. In this case row y1 has a range of in-
fluence, and Iy1 is set to y′ . The new row, y2 is added to the stack, with Iy2 set to
N.

3. Iyy 0≤′ . In this case, row y1 has no influence on the distance transform in this col-
umn. Row y1 is therefore popped off the top of the stack, and Eq. (14) is re-
evaluated with the new top of stack. This process is repeated until either the stack
is empty (the new row will influence all previous rows) or case 2 is met (the start
of the influence of the new row has been found).

After processing all of the rows, the boundary points between each of the key influ-
encing rows is known. Since the row that will provide the minimum distance for each
row is known, it is simply a matter of using the stack as a queue for a second pass down
the column to evaluate the distances.

Since Eq. (14) may be evaluated multiple times for each row, it is necessary to dem-
onstrate that this algorithm actually executes in linear time. Observe that in cases 1 and
2, Eq. (14) is evaluated once as the new row is added (or discarded). If case 3 is se-
lected, one existing row will always be eliminated from the stack for each additional
time Eq. (14) is evaluated. These subsequent evaluations may therefore be may be asso-
ciated with the row being eliminated rather than the row being added. As a row may
only be eliminated once at most, the total number of times that Eq. (14) is evaluated will

404 D.G. Bailey

be between N and 2N. Therefore the total number of operations is proportional to N and
the above algorithm executes with time proportional to the number of pixels in the im-
age.

3 Efficient Implementation

First note that both Eq. (10) and (14) involve squaring operations. Rather than calculate
this each time using multiplications, a lookup table can be precalculated and used. The
maximum size of this lookup table is the maximum of the number of rows or columns
in the image. Rather than use multiplications to populate the lookup table, it may be
filled as follows:

>−+−
==

012)1(
00

2
2

xxx
x

x (15)

3.1 Row Scan

The minimum operation of Eq. (12) may be eliminated if the width of the object on row
y is known. So as the row is scanned, the distance from the left edge of the object is de-
termined, as in Eq. (11). However, when the next background pixel is encountered, the
width of the object is known from the distance of the last pixel filled. Therefore as the
line is filled back, it only needs to be filled back half of the width. This right-to-left fill
is performed immediately rather than waiting for a second pass since the position of the
right edge is now known.

Rather than store the distance, storing the distance squared is more useful since it
needs to be squared for in Eq. (14).

3.2 Column Scan – Pass 1

The most expensive operation within the column scanning is the division in Eq. (14).
Therefore the speed may be increased by reducing the number of times Eq. (14) is
evaluated. Since, in general, many of the rows are eliminated, if those rows may be
eliminated beforehand this can save time. Separating the scan into two passes, first
down the column and then up the column, and propagating the distances while scanning
can achieve this.

Referring to Eq. (14), observe that if 12 II ≤ then 2yy <′ . This implies that if the
image is being scanned in the positive direction, the intersection point has already been
passed, and as far as the rest of the scan is concerned, y1 may be eliminated. For a typi-
cal image, this implies that approximately half of the initial scans in the first pass may
be eliminated by a simple comparison.

Secondly, in assigning the distances during the first pass, if the distance on any row
is decreased, that row will have no influence in the second pass. This is because any
background pixel that causes such a reduction must be closer to that object pixel (for the
reduction to occur) and also be in a row above it (to have influence in the first pass). In
the second pass, back up the column, if Eq. (14) was applied to those two rows, the
boundary would be below the row that was modified. This implies that it will have no

An Efficient Euclidean Distance Transform 405

influence in the upward pass. Therefore all such rows may be ignored in the second
pass. This may be accomplished by setting the minimum row distance of that pixel to .

Taking these into account, the first column pass may be implemented as follows:

1. Skip over background pixels – they will have zero distance. Reset the stack and
push the row number of the last background pixel onto the stack. To avoid scan-
ning through these pixels in the second pass, the location of the first background
pixel may be recorded in a list.

2. If),(2 yxI is infinite (there are no background pixels in this row), skip to step 10
to update the distance map.

3. If the stack is empty, skip to step 5. Otherwise calculate the new distance that
would be propagated to the current row from the bottom of the stack, yc:

222)(),(),(ccnew yyyxIyxI −+= (16)

4. If),(),(22 yxIyxInew < then the previous rows have no influence over the current
row. Therefore the complete stack is reset, and the current row number is pushed
onto the stack. Proceed with processing the next pixel (step 11).

 Steps 5 to 9 consist of a loop that updates the stack.

5. If the stack is empty, push the current row onto the stack, and go to step 10.
6. If the current distance is less than that on the row pointed to by the top of stack,

(),(),(22 yxIyxI tos<) then the current top of stack will no longer have any influ-
ence. Pop the entry from the top of the stack, and loop back to step 5.

7. Calculate the influence boundary between the top of stack and the current row us-
ing Eq. (14). If this boundary is past the end of the image, the current row will
have no influence. Set),(2 yxI to and skip to step 10.

8. If the boundary is greater than that of the previous stack entry (top-of-stack – 1, if
it exists) then adjust the boundary on the top of stack to the value just calculated.
Push the current row onto the stack and skip to step 10.

9. Otherwise the current top of stack has no influence, so pop the top entry from the
stack and loop back to step 5.

10. If the new value was not calculated in step 3, then calculate it now (if the stack is
empty, skip to step 11). This value is written to the output image,),(2 yxId . If

),(),(22 yxIyxInew < then set),(2 yxI to because this row will not have any in-
fluence on the second pass. If the boundary of influence of the entry on the bottom
of the stack ends at the current row, then the entry may be pulled from the bottom
of the stack (that entry will have no further influence on the rest of the column).

11. Move to the next pixel in the current row, and repeat.

At this stage, all of the distances that need to be propagated down the image will
have been propagated. Most of the rows that are unlikely to influence the propagation
back up the image have also been eliminated.

3.3 Column Scan – Pass 2

The second column scan, from the bottom of the image to the top proceeds in the much
the same manner as the first scan. The exceptions are:

406 D.G. Bailey

Step 1: Rather than scanning through the background pixels a second time, use the
previously recorded top of the run.

Step 4: Also check if),(),(22 yxIyxI dnew > . In this case, the distance being propa-
gated up will no longer have any influence (the pixels have already been set with a
lower distance). Therefore clear the stack, and continue scanning with the next pixel
(step 11).

Steps 7 and 10:),(2 yxI does not need to updated, as this is not used any more.

3.4 Analysis of Complexity

Scanning through the image requires 1 increment and 1 comparison for every pixel vis-
ited. During the row pass, the whole image is scanned once in the left to right direction.
Half of the object pixels are scanned a second time from right to left to update the dis-
tance from the right edge. Testing to see if a pixel is object or background requires 1
comparison. While the object pixels are being updated, a separate counter is maintained
to keep track of the distance, requiring 1 addition, and a squaring operation (via table
lookup).

For the column scanning, the exact complexity of the algorithm is made more diffi-
cult to calculate by the loop in steps 5 to 9 of the column pass. However, it was argued
that Eq. (14) would be evaluated somewhere between 1 and 2 times per object pixel on
average. The worst case is actually be less than 2 because that would imply that no row
had any influence! The average gains made by splitting the column analysis into two
passes will not necessarily result in gains in the worst case.

The whole image is scanned during the first pass of column scanning This results in
1 increment and 1 comparison per pixel, plus a test for a background pixel at each pixel.
In the second pass, only the object pixels are processed.

The tests in steps 2-4 require 1 comparison each, and are executed during both passes
through the object rows. Eq. (16) is evaluated either on step 3 or 10, and requires 2 addi-
tions, 1 squaring operation and 1 stack access to obtain the row to be propagated. It will
be evaluated at most twice per object pixel (once in each pass). The test of step 4 en-
sures that the loop (steps 5-9) will only be entered in only one of the passes. Therefore
the operations in the loop may be executed up to 2 times per object pixel. Accessing the
top of stack (an array lookup) is performed in steps 6 and 8 (with a subtraction in 8 to
access the previous entry). Evaluation of Eq. (14) requires 3 additions, one squaring,
one division, and one stack access. The tests in steps 5-8 require 1 comparison each. As
a result of the tests, a value is either pushed onto the stack (an addition to adjust the
stack pointer, and a stack access) or popped off the stack (adjusting the stack pointer
only). As these are also associated with the looping, they will be executed once each per
object pixel in the worst case. Finally, in step 10, there are 2 comparisons, a stack ac-
cess, and an addition to adjust the stack if the bottom entry has no further influence.

These results are sumarised in Table 1, and compared with the number of operations
required to implement 3x3 and 5x5 chamfer distance transforms. It should be empha-
sized that the results for the new algorithm are worst case, and for more typical data,
many of the comparisons made in steps 2-4 would result in the loop (steps 5-9) being
bypassed, reducing the average number of operations per object pixel to ~45.

The number of operations per pixel is the same as that for the chamfer algorithms be-
cause only two full passes are made through the image. Although the independent scan-
ning algorithm makes two passes along both rows and columns, after the first pass the

An Efficient Euclidean Distance Transform 407

object boundaries are knows so the second pass only needs to scan the object pixels.
While the algorithmic complexity of independent scanning is considerably greater than
that of the simpler chamfer algorithms, the worst case computational complexity is
similar to that of the 5x5 chamfer transform. For a more typical image, the computation
complexity is expected to be between that of the 3x3 and 5x5 chamfer transforms. In
many applications the distance-squared transform produced by this algorithm is suit-
able, although if necessary a square root operation may be applied during the second
column pass.

Table 1. Summary of the number operations required to implemnent Euclidean distance
transformation in the worst case. Key: + additions or subtractions; < comparisons; [] array
indexing, including accessing the image, the stack, and the squaring lookup table; / divisions.
Scanning includes checking for background pixels. The total is the total only per object pixel,
assuming all operations are of equal complexity. It is acknowledged that division will take longer
than the other operations. For comparison, the totals from the 3x3 and 5x5 chamfer algorithms are
also given

 Per image pixel Per object pixel
 + < [] + < [] / Total
Row scanning 1 2 1 ½ ½
Distance calculation 1½ 1½
Column Scanning 1 2 1 1 1 1
Steps 2-4 4 6 4
Steps 5-9 10 8 9 2
Step 10 2 4 3
TOTAL 2 4 2 19 19½ 18½ 2 59
3x3 Chamfer 2 4 2 15 7 11 33
5x5 Chamfer 2 4 2 28 15 19 62

4 Summary

This paper has demonstrated that a linear-time Euclidean distance-squared transform
may be implemented efficiently in terms of computation using only integer arithmetic.
If the actual distance map is required, then a square root will be necessary. It is shown
that in the worst case, the computational complexity of the proposed distance transform
is similar to that of the commonly used 5x5 chamfer distance unless a square root is re-
quired. On more typical images, the complexity is expected to be between the 3x3 and
5x5 chamfer distance transforms, while providing exact results.

The algorithm is implemented by first forming a distance map along each of the
rows, and then combining these distances in the columns. Since each row and column
are operated on independently, such an implementation may be efficiently parallelised.
This approach is also readily extended to higher dimensions or anisotropic sampling,
where the different axes may have different sample spacing. The independent scanning
approach inherently avoids the distance errors that are associated with the simpler vec-
tor propagation algorithms (using either raster or contour propagation).

408 D.G. Bailey

The implementation described is also efficient in terms of its memory utilisation. If
the transformation is performed in place (the same image array is used for both input
and output) then modest additional scratch memory is required. A lookup table is used
for performing squaring operations – this needs to be the larger of the number of rows
or columns in the image. Memory is also required for the stack. It can be shown that the
maximum number of stack entries is half of the height of each column. Temporary stor-
age is also required to hold the results of the first column pass. This also needs to be the
height of the image. While this is not as good as the chamfer algorithms (which need no
additional storage), it is a significant savings over the vector propagation approaches
which require a scratch image of vectors.

References

1. A. Rosenfeld and J. Pfaltz, “Sequential Operations in Digital Picture Processing”, Journal of
the ACM, 13:4, pp 471-494 (1966).

2. J.C. Russ, “Image Processing Handbook”, 2nd edition, CRC Press, Boca Raton, Florida
(1995).

3. C.T. Huang and O.R. Mitchell, “A Euclidean Distance Transform Using Grayscale Morphol-
ogy Decomposition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16:4,
pp 443-448 (1994).

4. F.M. Waltz and H.H. Garnaoui, “Fast Computation of the Grassfire Transform Using
SKIPSM”, SPIE Conf on Machine Vision Applications, Architectures and System Integra-
tion III, Vol 2347, pp 396-407 (1994).

5. R. Creutzburg and J. Takala, “Optimising Euclidean Distance Transform Values by Number
Theoretic Methods”, IEEE Nordic Signal Processing Symposium, pp 199-203 (2000).

6. M.A. Butt and P. Maragos, “Optimal Design of Chamfer Distance Transforms”, IEEE Trans-
actions on Image Processing, 7:10, pp 1477-1484 (1998).

7. P.E. Danielsson, “Euclidean Distance Mapping”, Computer Graphics and Image Processing
14, pp 227-248 (1980).

8. I. Rangelmam, “The Euclidean Distance Transformation in Arbitrary Dimensions”, Pattern
Recognition Letters, 14, pp 883-888 (1993).

9. F.Y. Shih and Y.T. Wu, “Fast Euclidean Distance Transformation in 2 Scans Using a 3x3
Neighborhood”, Computer Vision and Image Understanding, 93, pp 109-205 (2004).

10. H. Breu, J. Gil, D. Kirkatrick, and M. Werman, “Linear Time Euclidean Distance Transform
Algorithm”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:5 pp 529-
533 (1995).

11. W. Guan and S. Ma, “A List-Processing Approach to Compute Voronoi Diagrams and the
Euclidean Distance Transform”, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20:7: pp 757-761 (1998).

12. O. Cuisenaire and B. Macq, “Fast Euclidean Distance Transformation by Propagation using
Multiple Neighbourhoods”, Computer Vision and Image Understanding, 76, pp 163-172
(1999).

13. L. Vincent, “Exact Euclidean distance function by chain propagations”, IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, pp 520-525 (1991).

14. H. Eggers, “Two Fast Euclidean Distance Transformations in Z2 Based on Sufficient Propa-
gation”, Computer Vision and Image Understanding, 69, pp 106-116 (1998).

15. T. Saito and J.I. Toriwaki, “New Algorithms for Euclidean Distance Transformations of an
N-dimensional Digitised Picture with Applications”, Pattern Recognition, 27, pp 1551-1565
(1994).

Two-Dimensional Discrete Morphing�

Isameddine Boukhriss, Serge Miguet, and Laure Tougne

Université Lyon 2, Laboratoire LIRIS,
Bâtiment C, 5 av. Pierre Mendès-France,

69 676 Bron Cedex, France
{iboukhri, smiguet, ltougne}@liris.univ-lyon2.fr

http://liris.cnrs.fr

Abstract. In this article we present an algorithm for discrete object de-
formation. This algorithm is a first step for computing an average shape
between two discrete objects and may be used for building a statistical
atlas of shapes. The method we develop is based on discrete operators and
works only on digital data. We do not compute continuous approxima-
tions of objects so that we have neither approximations nor interpolation
errors. The first step of our method performs a rigid transformation that
aligns the shapes as best as possible and decreases geometrical differ-
ences between them. The next step consists in searching the progressive
transformations of one object toward the other one, that iteratively adds
or suppresses pixels. These operations are based on geodesic distance
transformation and lead to an optimal (linear) algorithm.

1 Introduction

Many medical images are produced every day and their interpretation is a very
challenging task. 3D atlases can be of great interest since they allow to help
this interpretation by very precise models. Most of the time, these atlases are
built manually and represent a considerable amount of work for specialists of the
domain. Moreover, they only contain static information corresponding to a single
patient or potientially an average shape corresponding to a small set of patients.
It would be very useful to compute these atlases in an automated way from a
set of images: it would allow to compute not only an average shape between all
input data but also statistical measures indicating the interindividual variability
of these shapes. This is the basic idea of the statistical atlas [FLD02].

In this paper, our goal is to study the progressive deformation from one object
to another one which is the first step for the computation of an average object.
For sake of simplicity, we focus on 2D binary images but the proposed approach
could easily be generalized to 3D. Our method is decomposed into two steps:
the first one consists in making a rigid registration of the two objects and the
second one in computing the deformation.

� This work was supported by the RAGTIME project of the Rhône-Alpes region.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 409–420, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

410 I. Boukriss, S. Miguet, and L. Tougne

2 State of the Art

Concerning the rigid registration, many algorithms exist in the literature. Some
of them are based on intensity and they use similarity measures such as correla-
tion coefficients, correlation ratios [RMP+98] and mutual information [WV96].
These algorithms do not need segmentation of the images and are based on
the statistic dependences between the images to be registered. Other algorithms
are based on geometrical properties such as surfaces, curvatures [MMF98] and
skeletons [LB98]. These methods are generally faster than the previous ones,
nevertheless less precise. As a matter of fact, the extraction of the surface and
the computation of the curvature are noise sensitive and they may induce im-
precision in the registration. A discrete method has been proposed by Borge-
fors [Bor88] which uses distance transforms. In this method, for one of the im-
ages the associated distance card is computed. The object of interest in the
second image is approximated by a polygon which is superimposed on the pre-
vious distance card. Then, the squared values of the pixels of the distance card
in which the polygon is superimposed are averaged to obtain a contour distance.
The author searches for the rigid transformation of the polygon that minimizes
this distance. However, it is difficult to estimate the number of necessary itera-
tions.

We can also find lots of methods in the literature that make the morphing
of two shapes. An important part of them is based on the interpolation of the
positions and/or the colours of the pixels in the two images [Iwa02]. In our case,
we consider the morphing as generation of intermediate images.

A recent study [BTSG00] computes the average shape between two continu-
ous shapes. First, it makes the registration of the two images and it computes the
skeleton of the difference between the two shapes. Using an elimination process,
it only keeps the points of the skeleton that are equidistant of two borders of
two different objects. This method preserves the topology and the initial shape
of the objects. However, it only allows to generate the median shape and not a
continuous deformation of one shape to the other one. The method we present
in this paper is a generalized discrete version of the previous one. The gener-
alization we propose allows to compute not only a median shape but also the
different intermediate shapes.

In the following section we recall some notions necessary for the comprehen-
sion of the remainder of the text. Section 4 is the heart of the article and describes
the proposed method. In section 5, we present some examples in which we have
applied our method. Finally, we conclude and present some future works.

3 Preliminaries

Let us give the formal context of our study and recall some basic notions con-
cerning the inertia moments.

Two-Dimensional Discrete Morphing 411

3.1 Neighborhood, Connectivity and Distance

We consider 2D shapes in the Z2 space. The pixels of the shape have the value
1 and the pixels that belong to the background have the value 0. The object
is considered as 8-connected and background is considered as 4-connected. We
work in 3 × 3 neighborhood. Let a and b denote two binary shapes, we denote
the symmetric difference by aΔb = {a ∪ b}\{a ∩ b}.

In the following we will use the distance transform. This is a classical tool
[RP68] which associates to each point of the object the distance of the nearest
pixel of the background. In our study, we will use the chamfer distance 3-4
which is a good approximation of the Euclidean distance. The figure 3.1 gives
an example of a distance transform obtained in this way.

3 3 3
3

3 3 3 3
3

3
3

3 3
3

3
3

3 3
3

3
3

3
3

3 3
3

3
3

3 3
3

3
3

3 3 3 3
3
4

4 4

4
4

44
4
4

4
4

4
4
4

44
4

6

6

6 6

6 6
7

77
7 7

7
77

7

7
7

7

8

8

9
10

10

Fig. 1. An example of distance transform using the chamfer 3-4 distance

3.2 Inertia Moments

In order to make the registration, we will use the moments associated to the
shapes. Such descriptors are especially interesting in order to determine the
position, the orientation and scale of an object. Moreover, one of their main
advantages is their small sensitivity to noise.

Let us consider a two-dimensional image I. The general form of the discrete
moments is:

Mpq =
∑

x

∑
y

(x−Xc)p(y − Yc)qI(x, y)

with 0 ≤ p, q ≤ 2.
Xc and Yc are the coordinates of the barycentre of the shape :

Xc =
1
N

∑
i

Xi Yc =
1
N

∑
i

Yi

From these moments we can compute the principal inertia axis of the shape.
Such a computation is made with the help of the inertia matrix:

MI =
(

M20 −M11
−M11 M02

)

412 I. Boukriss, S. Miguet, and L. Tougne

This matrix is normalized and diagonalized in order to obtain the eigenvectors
V1 and V2 and the associated eigenvalues λ1 and λ2. Let us suppose λ1 > λ2. V1
represents the maximal elongation axis of the object.

In the following section, we describe the proposed method to obtain all the
intermediary images between two given images.

4 Methodology

The method is based on an operation that consists in aligning the two figures.
This operation is described in subsection 4.1. When the two shapes are super-
imposed, in the same referential, we can start the morphing step. The morphing
operation is described in subsection 4.2.

4.1 Rigid Registration

The rigid transformation consists in a sequence of global operations applied
on the shapes in order to superimpose the shapes in the same lattice. We can
decompose such a sequence into two parts: the first one is the rigid registration
itself and the second one deals with scaling and re-sampling.

In order to show the different steps, we have chosen two shapes, presented in
the figure 4.1, representing fishes we want to align.

Fig. 2. Two shapes we want to align

The first step is directly deduced from the computation of the inertia mo-
ments presented in subsection 3.2 and consists in a translation and a rotation.
Simply, it consists in computing the inertia moments of order one and two for
each shape. It is then followed by the application of Backward Mapping [Wol90]
to make the transformation. Figure 3 gives the resulting image.

The scaling and re-sampling operations are very important because we cannot
compare two shapes that are not digitalized on the same grid. Our goal is to
make homothetic scaling in order to preserve the global aspect of the shapes. An
intuitive method would be to decrease the size of the biggest shape or to increase
the size of the smallest one. In fact, it would be equivalent in a continuous
domain. But, in the discrete space the objects can have different samplings and
if we reduce the size we may lose important information; on the contrary, if

Two-Dimensional Discrete Morphing 413

Fig. 3. Rigid registration: translation and rotation

we zoom a digital object we may generate aliasing artefacts. We have chosen a
compromise which aligns the principal vectors on a new system of coordinates
and which chooses an intermediate scale between the two shapes (it reduces the
biggest and increases the smallest). Moreover, as we have mentioned previously,
the two shapes may not have the same sampling resolution: the pixel size along
the x axis may not be the same as along the y axis and, they also may be different
between the two images. This is an other reason why we do not re-sample only
one of the shapes using the grid of the other one but prefer to use a third lattice
that is good adapted to the re-sampling of the two shapes. Figure 4 shows the
resulting image after the scaling and re-sampling operations in our example.

Fig. 4. The two shapes after registration, scaling and re-sampling

Note however that we have shown here the different steps in order the make
it more easily understandable, but in fact all the corresponding transformation
matrices are combined together to obtain only one transformation matrix T
that is applied at once. For classical reasons linked to discrete transformations
using different lattices, we have chosen to use the backward mapping technique
to apply the transformation. Using bounding boxes of the input shapes, we
determine the limits of the output space and for each pixel of the output space we
compute its predecessor using T−1. Even if this technique may generate aliasing

414 I. Boukriss, S. Miguet, and L. Tougne

we will see in the final results that it will be negligible for the conservation of
the global aspect of shapes.

The principal axis is a direction of the maximal elongation of a shape. The
alignment of the principal axis we have described in this section might be sub-
ject to orientation errors. Among the two possible orientations we have for di-
rect transformations, we select the one that maximizes the Hamming distance
between the two shapes.

4.2 Discrete Morphing

The two shapes are now discretized in the same lattice. We want to define a
transformation that progressively deforms one of them into the second. Just
remark here that the transformation we propose is symmetrical: we can choose as
first image indifferently one of the two images. In order to obtain the intermediate
shapes, we iteratively add pixels to shape a (those belonging to b\a) and delete
other pixels from shape a (those belonging to a\b) until the object converges to
shape b. The decision concerning the adding or deleting is determined by the
distance information. As a matter of fact, the first step consists in assigning to
the symmetric difference of the two shapes a distance information. In a second
step, we make a dilation or an erosion of the difference according to this distance
information. However the propagation speed cannot be the same in all directions:
the longer the contour of a has to progress toward the contour of b, the faster has
to be the propagation speed. We have thus to compute the different 4-connected
components of aΔb (see figure 5) and to set up the propagation speed in each
component proportional to the largest distance information in this component
(see details below).

Fig. 5. Connected components labelling

Geodesic Propagation. Using the distance cards described in subsection 3.1, we
construct two kinds of geodesic waves: the first one is initialized by the intersec-
tion of the two shapes and propagates in the difference of the two shapes toward
the background. The second one is initialized by the background and propagates
in the difference toward the intersection. We denote by d1 the 3-4 distance from

Two-Dimensional Discrete Morphing 415

a∩ b to aΔb, and d2 the 3-4 distance from the complement of a∪ b to aΔb. The
figure 6 shows the two geodesic waves in our example.

Fig. 6. The two geodesic waves: d1 (left) and d2(right)

Consequently, to each pixel of the difference we associate two distances d1
and d2 that are the basis of the morphing.

Erosion and Dilation. Let us denote by β a parameter, varying between 0 to
1, that gives the degree of progression of the morphing. The value β = 0 gives
shape a, β = 1 gives shape b and any other value between 0 and 1 gives an
intermediate shape between a and b. To obtain exactly the median image, the
parameter β must be equal to 1

2 .
The erosion and dilation process is applied to each connected component

of the difference. Some parts will grow and other will thin. In order to make
proportional growing and thinning on all the connected components, we compute
for the connected component labelled i its maximal distance d1i and d2i.

Then the decision of erosion or dilation is taken as follows. We start with a
shape c initialized with pixels of shape a. A pixel of a\b in the ith component of
aΔb is removed from c if it is labeled with distances d1 and d2 verifying:

d1 ≥ d1i(1− β) or d2 ≤ d2iβ

A pixel of b\a in the ith component of aΔb is added to c if it is labeled with
distances d1 and d2 verifying:

d1 ≤ d1iβ and d2 ≥ d2i(1− β)

Figure 7 shows the different intermediate images for our example correspond-
ing to β equals to 1

2 , 1
3 , 1

4 and 1
5 .

The dilation and erosion step is the final step to generate the average shape.
It can also be used to generate arbitrary intermediate shapes between any two
shapes.

416 I. Boukriss, S. Miguet, and L. Tougne

Fig. 7. Examples of intermediate images with β = 1
2 , β = 1

3 , β = 1
4 and β = 1

5

Table 1. Pseudo-code of the morphing algorithm

a=Data file(1)
b=Data File(2)
a and b are the two input objects
(a,b)=Registration(a,b)
Component labeling(aΔb)
/* each 4-component of aΔb has its own label i */
Geodesic distance transform(aΔb, background)
Geodesic distance transform(aΔb, a ∩ b)
β=morphing parameter
c = a
For each connected component i of (aΔb)

d1i=compute maximum(d1 in i)
d2i=compute maximum(d2 in i)
for each pixel p in component i
if(p ∈ a\b) /* Erosion */

if(d1[p] ≥ d1i(1 − β) or d2[p] ≤ d2iβ)
c = c\{p}

else /* (p ∈ b\a): Dilation */
if(d1[p] ≤ d1iβ and d2[p] ≥ d2i(1 − β))
c = c ∪ {p}

return c

Two-Dimensional Discrete Morphing 417

4.3 Pseudo-Code and Complexity

Table 1 is a pseudo-code Summarizing all the steps needed to deform one dis-
crete object to another one: the complexity of our method is O(n) where n is the
number of pixels of the images (assumed to be of the same order of magnitude
in the input and the output images). The distance information we manipulate
cannot be computed with the traditional distance transform algorithms [Blu67]
that are not adapted for geodesic distance transformations since we work on non-
convex domains. We use an adapted version of Dijkstra Graphsearch algorithm
using a priority queue indexed by the distance. Since the maximal possible dis-
tance value is at worst proportional to the size of the input, we can use a bucket
data structure [CLRS01] with all points at distance i stored in a chained list of
index i.

Thus, each new pixel will be stored in a chained list of index i witch is its
distance value. As we can update pixels with other distance values due to new
waves of geodesic propagation, it is logical to follow a rule:

– If the new distance value is bigger than the original one: we do nothing
– If it is smaller, we update the pixel distance value by deleting it from his

original list and adding it in the appropriate chained list, indexed with the
new distance value, at the last position.

– If for a given distance value there are no elements, we move to the next
chained list indexed with the next distance value.

So, at each step we are not obliged to sort values (find the pixels with
smallest values), we can obtain them by selecting elements from first chained
list associated to the smallest distance value.

This structure allows us to insert a new element and to select the smallest
element in constant time. A given pixel can be inserted in the bucket a constant
number of times only, leading to a total coast proportional to the number of pixels
of the images. In the following section we give some examples that illustrates
the flexibility of our approach.

5 Results

In order to validate our method, we have made tests between discrete objects
of different natures. This indicates that the approach can be very adaptable to
various shapes. In figure 8 we try to find an average shape between a circular
object and a fish. Another example is in figure 9 and computes an average shape
between a rectangular object and a fish.

It can be noted that it is equivalent to transform the object a into object b
using β = β0 than to transform object b into object a using β = 1 − β0. The
extension to 3D is straightforward and does not need any additional operation.
We use the 3x3x3 neighborhood and the 3-4-5 chamfer distance.

418 I. Boukriss, S. Miguet, and L. Tougne

Fig. 8. Deformation of various shapes with β=1/2

6 Conclusion and Future Works

We have presented a linear algorithm for computing an intermediate shape be-
tween two arbitrary input binary shapes. A progression parameter β ranging
from 0 to 1 allows to control the influence of each input shape. A generalization
of this problem to n shapes could be achieved by recursively computing an aver-
age between the first (n− 1) ones then computing an intermediate between this
new shape and the nth one, using β = 1

n . It would be interesting to study the
influence, on the final shape, of the order in which these shapes are processed.

In this paper we have used the chamfer distance as a good integer approx-
imation of Euclidian distance. An improvement in precision could be the use
of the Euclidian distance itself which can also be computed in linear time as
shown in [CMT04] at least for 2D domains. To our knowledge, there exist no
linear algorithm for computing Euclidian geodesic distance transformation in
3D. The chamfer distance is thus probably a good choice in 3D if performance
is important.

In all the examples we have shown in this paper, the topology of intermedi-
ate shapes is preserved if the two input objects have the same topology. In some
cases, however, if the objects are too different it can happen that the topology of
intermediate objects is not preserved (holes or disconnected components might
temporarily appear). If the two objects have the same topology and their inter-
section after the registration step also has the same topology, we could expect to

Two-Dimensional Discrete Morphing 419

Fig. 9. Deformation of various shapes with β=1/2

find a transformation whose intermediate shapes also have the same properties.
A heuristic for reaching this goal could be to use thinning or thickening opera-
tors, allowing to ensure that the removal or adding of a point [Ber96] does not
change the topology of intermediate objects. These topics should be the subject
of further studies.

References

[Ber96] G. Bertrand. A Boolean Characterization of Three-dimensional Simple
Points. Pattern Recognition Letters, 17:115–124, 1996.

[Blu67] Blum. A Transformation for Extracting new Descriptors of Shape. In
models for perception of speech and visual form, pages 362–380, 1967.

[Bor88] G. Borgefors. Hierarchical Chamfer Matching: a Parametric Edge Match-
ing Algorithm . IEEE transactions on pattern analysis and machine intel-
ligence, 1988.

[BTSG00] R. Blanding, G. Turkiyyah, D. Storti, and M. Ganter. Skeleton-based Three
Dimensional Geometric Morphing. Computational Geometry, 15:129–148,
2000.

[CLRS01] Thomas H. Cormen, Charles H. Leiserson, Ronald L. Rivest, and C. Stein.
Inroduction à l’Algorithmique. xDunod, Paris, 2001.

420 I. Boukriss, S. Miguet, and L. Tougne

[CMT04] D. Coeurjolly, S. Miguet, and L. Tougne. 2D and 3D Visibility in Discrete
Geometry: An Application to Discrete Geodesic Paths. Pattern Recognition
Letters, 25:561–570, 2004.

[FLD02] M. Fleute, S. Lavallé, and L. Desbat. Integrated approach for matching
statistical shape models with intra-operative 2D and 3D data. In MICCAI
2002, volume part II, pages 364–372, Springer 2002.

[Iwa02] M. Iwanowski. Image Morphing Based on Morphological Inter-
polation Combined with Linear Filtering, 2002. Available at:
http://wscg.zcu.cz/wscg2002/Papers_2002/A23.pdf.

[LB98] A. Liu and E. Bullitt. 3D/2D Registration via Skeletal near Projective
Invariance in Tubular Objectives. In MICCAI, pages 952–963, 1998.

[MMF98] C.R. Maurer, R.J. Maciunas, and J.M. Fitzpatrick. Registration of Head
CT Images to Physical Space Using Multiple Geometrical Features. In
Proc. SPIE Medical Imaging 98, volume 3338, pages 72–80, San diego CA,
February 1998.

[RMP+98] A. Roche, G. Malandain, X. Pennec, P. Cathier, and N. Ayache.
Multimodal Image Registration by Maximisation of the Correlation
Ratio. Technical Report 3378, INRIA, 1998. Available at :
http://www.inria.fr/rrrt/rr-3378.html.

[RP68] A. Rosenfeld and J.L. Pfaltz. Distance functions on digital pictures. Pattern
Recognition, 1:33–61, 1968.

[Wol90] G. Wolberg. Digital Image Warping. IEEE Computer Society Press, Los
Alamitos, CA, 1990.

[WV96] A. Wells and P. Viola. Multimodal Volume Registration by Maximization
of Mutual Information. Medical Image Analysis, 1:32–52, 1996.

A Comparison of Property Estimators in
Stereology and Digital Geometry

Yuman Huang and Reinhard Klette

CITR, University of Auckland, Tamaki Campus, Building 731,
Auckland, New Zealand

Abstract. We consider selected geometric properties of 2D or 3D sets,
given in form of binary digital pictures, and discuss their estimation.
The properties examined are perimeter and area in 2D, and surface area
and volume in 3D. We evaluate common estimators in stereology and
digital geometry according to their multiprobe or multigrid convergence
properties, and precision and efficiency of estimations.

1 Introduction

Both stereology as well as digital geometry are mainly oriented towards property
estimations. Stereologists estimate geometric properties based on stochastic ge-
ometry and probability theory [8]. Key intentions are to ensure isotropic, uniform
and random (IUR) object-probe interactions to ensure the unbias of estimations.
The statistical behavior of property estimators is also a subject in digital geom-
etry. But it seems that issues of algorithmic efficiency and multigrid convergence
became more dominant in digital geometry.

Both disciplines attempt to solve the same problem, and sometimes they fol-
low the same principles, and in other cases they apply totally different methods.
In this paper, a few property estimators of stereology and digital geometry are
comparatively evaluated, especially according to their multiprobe or multigrid
convergence behavior, precision and efficiency of estimations.

From the theoretical point of view, one opportunity for comparison is to study
how testing probe and resolution affect the accuracy of estimations. We define
multiprobe convergence in stereology analogously to multigrid convergence in
digital geometry. Both definitions can be generalized to cover not only the es-
timation of a single property such as length, but also of arbitrary geometric
properties, including area in 2D, and surface area and volume in 3D. Measure-
ments follow stereological formulas, which connect the measurements obtained
using different probes with the sought properties. We define multiprobe conver-
gence in stereology analogously to multigrid convergence in digital geometry.

Definition 1. Let Q be the object of interest for estimation, and assume we
have a way of obtaining discrete testing probes about Q. Consider an estimation
method E which takes testing probes as input and estimates a geometric property
X(Q) of Q. Let XE(Tn) be the value estimated by E with input Tn, where Tn

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 421–431, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

422 Y. Huang and R. Klette

contains exactly n > 0 testing probes. The method E is said to be multiprobe
convergent iff it converges as the number n of testing probes tends to infinity
(i.e., limn→∞ XE(Tn) = c, c ∈ R2), and it converges to the true value (i.e.,
c = X(Q)).

Testing probes are measured at, along or within points, lines, planes, dis-
ectors and so forth. The geometric property X(Q) might be the length (e.g.,
perimeter), area, surface area, or volume, and we write L, A, S, or V for these,
respectively. (Note that the true value X(Q) is typically unknown in applica-
tions.) The method E can be defined by one of the stereological formulas.

The grid resolution h of a digital picture is an integer specifying the number of
grid points per unit. There are different models of digitizing sets Q for analyzing
them based on digital pictures. Grid squares in 2D or grid cubes in 3D have
grid points as their centers. The Gauss digitization G(Q) is the union of the grid
squares (or grid cubes) whose center points are in Q. The study of multigrid
convergence is a common approach in digital geometry [5]. However, we recall
the definition:

Definition 2. Let Q be the object of interest for estimation, and assume we have
a way of digitizing Q into a 2D or 3D picture Ph using grid resolution h. Consider
an estimation method E which takes digital pictures as input and estimates a
geometric property X(Q) of Q. Let XE(Ph) be the value estimated by E with
input Ph. The method E is said to be multigrid convergent iff it converges as the
number h of grid resolution tends to infinity (i.e., limn→∞ XE(Ph) = c, c ∈ R2),
and it converges to the true value (i.e., c = X(Q)).

For simplicity we assume that our 2D digital pictures Ph are of size h × h,
digitizing always the same unit square of the real plane. Analogously, we have
h× h× h in the 3D case. An estimation method in digital geometry is typically
defined by calculating approximative geometric elements (e.g. straight segments,
surface patches, surface normals) which can be used for subsequent property
calculations.

2 Estimators

Perimeter and surface area estimators in stereology and in digital geometry are
totally different by applied method. In stereology, for example a line testing probe
(a set of parallel straight lines in 2D or 3D space) is used, and the perimeter
or surface area of an object is approximated by applying stereological formulas
with the count of object-line intersections.

In digital geometry, estimators for measuring perimeter or surface area can be
classified as being either local or global (see, e.g., [1, 4, 5]). [10] suggested using
a fuzzy approach for perimeter and area estimations in gray level pictures. The
chosen perimeter estimator for our evaluation (for binary pictures) is global and
based on border approximations by subsequent digital straight segments (DSS)
of maximum length.

A Comparison of Property Estimators in Stereology and Digital Geometry 423

The surface area can be estimated for “reasonable small” 3D objects by us-
ing time-efficient local polyhedrizations such as weighted local configurations [7].
For higher picture resolutions it is recommended to apply multigrid convergent
techniques. For example, [5] illustrates that local polyhedrizations such as based
on marching cubes are not multigrid convergent. Global polyhedrization tech-
niques (e.g., using digital planar segments) or surface-normal based methods
can be applied to ensure multigrid convergence. Because of the space constraint,
none of these surface area estimators are covered in this paper. The 2D area and
volume estimators of stereology and those of digital geometry follow the same
point-count principle. In stereology, a point probe (a set of systematic or random
points) is placed in 2D or 3D space, the points within the object are counted,
and the stereology formulas are applied to estimate the area or volume of an
object of interest.

In digital geometry, a common estimator of area is pixel counting, whereas
that of volume is voxel counting. These two estimators are also a special case
of point counting in stereology where a set of pixel or voxel centers is used
as the point probe. Because the resolution directly relates to the number of
pixels or voxels in the digital picture, it will consequently affect the precision of
estimations if the stereological formulas are applied.

2.1 Perimeter and Surface Area

Line intersection count method (LICM) is a common stereology estimator for 2D
perimeter and 3D surface area. This estimator involves four steps: generate a line
probe, find object border in a digital picture, count object-probe intersections,
and apply stereological formulas to obtain an estimation of the property.

The line probes in 2D or 3D may be a set of straight or circular lines (see,
e.g., [3, 8, 9]), or made up of cycloid arcs. We use a set of straight lines as the
testing probe of both perimeter and surface area estimations.

There are many possible ways of defining a digital line (see, e.g., [5]). In this
paper, a 2D or 3D straight line in digital pictures is represented as a sequence of
pixels or voxels whose coordinates are the closest integer values to the real ones.
There exist different options for defining borders of objects in 2D or 3D pictures.
In this paper, in 2D the 8-border of Q is used to observe intersections between
Q and the line probe, whereas in 3D the 26-border of Q is used (for definitions
of 8-border or 26-border see, for example, [5]). Isotropic, uniform, and random
(IUR) object-probe intersections are required for obtaining unbiased estimation
results. Note that any digital line (which is an 8-curve) intersects an 8-border
(which is a 4-curve) if it “passes through”.

Definition 3. A pixel (voxel) visited along a digital line is an intersection iff it
is an 8-border pixel (26-border voxel) of the object Q and successor (along the
line) is a non-border pixel (voxel).

Since the objects of interest are general (not specified as a certain type), they
may not be IUR in 2D or 3D space. To ensure IUR object-probe intersections,
either the object or the probe must be IUR, or the combination of both must

424 Y. Huang and R. Klette

Fig. 1. Screen shots of pivot lines of the LICM estimator using line probes of 16 (left)
and 32 (right) directions

be isotropic [8]. In the experiments we attempt to generate an IUR straight
line probe for the stereology estimator (LICM) to produce unbiased results for
perimeter and surface area measurements.

Perimeter. The perimeter estimators examined are the stereology estimator
(LICM) and the digital geometry estimator based on maximum length digital
straight segments (DSS).

The stereology estimator corresponds to the stereological formula

LA =
π

2
· PL =

π

2
· P

LT

which is basically the calculation of perimeter density (length per unit area) of
a 2D object. P is the number of intersections between line probe and (border
of the) object Q. LT is the total length of the testing line probe, and PL is the
point count density (intersections per unit length). As a corollary of this, the
perimeter of an object can be estimated by multiplying LA by the total area AT

that the line probe occupies:

L̂ = LA ·AL =
π

2
· P

LT
·AT

At the beginning of our experiments we consider how the estimation precision
is influenced by an increase in the number of directions n of line probes. The
direction of line probes are selected by dividing 180◦ equally by n. For instance,
if there are 4 directions required, then lines of slopes 0◦, 45◦, 90◦, and 135◦ are
generated. Figure 1 illustrates the lines for 16 or 32 directions. Note that only
one “pivot line” per direction is shown in this figure.

To avoid errors or a bias caused by direction or position of line probes, every
pivot line of one direction is shifted along the x and y axes by just one pixel.
Assume that the pivot line which is incident with (0, 0) (i.e., the left lower corner
of a picture) intersects the frontier of the unit square [0, 1]× [0, 1] again at point
p, with an Euclidean distance L between (0, 0) and p. The total length of a line
probe in direction 0◦, 45◦ or 90◦ is hL, and equal to

A Comparison of Property Estimators in Stereology and Digital Geometry 425

3h− h tanα

2
L

where α is the smaller angle between 0◦ and 45◦ defined by the pivot line in our
unit square.

However, a stereological bias [8] can not be avoided in this case due to the
preselection of start position and direction of line probes for perimeter estima-
tion of non-IUR objects. Therefore, we also include an estimator which uses lines
at random directions, generated using a system function rand() (which is sup-
posed to generate uniformly distributed numbers in a given interval). Although
a random number generator is used, the generated line probes are not necessarily
isotropic in 2D space. (An improved IUR direction generator is left for future
research.) For the digital geometry estimator DSS, we start at the clockwise
lower-leftmost object pixel and segment a path of pixels into subsequent DSSs
of maximum length. Debled-Rennesson and Reveillès suggested an algorithm in
[2] for 8-curves, and earlier Kovalevsky suggested one in [6] for 4-curves. In our
evaluation, both methods have been used, but we only report on the use of the
second algorithm (as implemented for the experiments reported in [4]) in this
paper.

The DSS estimator is multigrid convergent, whereas the multiprobe conver-
gent behavior of the LICM estimator depends on the used line probe. The digital
geometry estimator DSS is time-efficient because it traces only borders of ob-
jects, and used one of the linear on-line DSS algorithms.

The time-efficiency of the stereology estimator LICM depends on the number
of line pixels involved, since it checks every pixel in a line probe to see whether
there is an intersection. In both implementations of LICM (i.e., n directions by
equally dividing 180◦, and random directions generated by the system function
rand()), every pivot line into one direction is translated along x- and y-axes at
pixel distance (in horizontal or vertical direction we have a total of h lines; in any
other direction we have a total of 2h− 1 lines), which results into multiple tests
(intersection?) at all pixels just by considering them along different lines. In case
of pictures of “simple objects” we can improve the efficiency by checking along
borders only instead of along all lines. However, normally we can not assume
that for pictures in applications.

Surface Area. We tested speed and multiprobe convergence of the stereology
estimator LICM for surface area measurements, using the stereological formula

SV = 2 · IL = 2 · PL

LT

where IL is the density of intersections of objects with the line probe, and this is
equal to the result of the line intersection count PL divided by the total length
LT of the line probe.

Consequently, the surface area of Q can be estimated by multiplying its
surface density (obtained from the previous relationship) by the total volume of
the testing space VT (i.e., h3, which is the occupied volume of a 3D picture),
Ŝ = SV · VT .

426 Y. Huang and R. Klette

Similar to the stereology estimator of perimeter measurement, a way of cre-
ating an IUR straight line probe in 3D is required for unbiased surface area
estimations. The LICM estimator may not be multiprobe convergent because of
the used line probes. The efficiency of the estimator depends on the total number
of line voxels.

2.2 Area and Volume

The stereology estimator for both 2D area (3D volume) measurements counts
2D (3D) points which are within the object of interest. When the point probes
used are the centers of all pixels (voxels) of a given picture, then this estimator
coincides with the method used in digital geometry.

Basic stereological formulas (see, e.g., [3]) such as

Â = AP · P =
AT

PT
· P = Δx ·Δy · P

are applied for 2D area estimation. The area of an object A can be estimated
by multiplying the number of incident points P by the area AP per point. In
other words, the area occupied by all incident points approximates the area of
the measured object. The area AP per point is the total area AT of the picture
(i.e., width Δx times height Δy) divided by the total number PT of points of
probe T .

The principle of Bonaventura Cavalieri (1598-1647) is suggested for estimat-
ing the volume of an object Q in 3D space in stereology books such as [3, 8, 9].
[8] combines the Cavalieri principle with the point count method. A series of
parallel 2D planes is used as test probe, where a set of points is placed into
each plane to obtain the intersected area of the plane with the object. If there
are m planes used in the process, the volume of the object V can be estimated
by multiplying the distance θ between the planes by the sum of the intersected
areas A1, A2, A3, . . . , Am of all planes, V̂ = θ · (A1 + A2 + A3 + · · · Am).

Russ and Dehoff use a set of 3D points as the test probe in [9] to estimate the
volume fraction VV from calculating a point fraction PP , the ratio of incident
points P (with the object) to the population of points PT , VV = PP = P

PT
. As

a corollary of this, the volume V of the object is equal to the product of the
volume fraction and the total volume occupied by the testing probe VT (i.e., h3

in an h× h× h picture), which can be calculated by multiplying the number of
incident points by the volume per point VP ,

V̂ = VV · VT =
P

PT
· h3 = P · VP

The results of both methods are identical when all the 2D planes are coplanar
at equal distances, the set of points chosen in every plane is uniform, and the
interspacing between these 2D points equals to the distance between planes.

For area and volume estimations, since the estimators in both fields follow the
same point count principles, the choice of point probes will definitely influence
the performance of the algorithm. If a point probe is randomly picked from

A Comparison of Property Estimators in Stereology and Digital Geometry 427

Fig. 2. Six pictures suggested as test data in [4]

regular 2D or 3D grid points, and the chosen number of points is less than the
total number of pixels or voxels in the picture, then the method is (trivially)
more time-efficient than the digital geometry approach.

Area and volume estimators are “very precise”, suggesting a fast multiprobe
convergence (see experiments in Section 3); they have been widely used in re-
search and commercial fields. The digital geometry estimators (i.e., considering
all pixels or voxels) are known [5] to be multigrid convergent (e.g., for particular
types of convex sets).

3 Evaluation

We tested 2D perimeter and area estimators by using six objects shown in Fig-
ure 2. For the area of the lunula we used the formula b · r − a(r − h) for the
area of the “removed” segment of the disk, with arc length b = 2πr · α/360 (us-
ing integral part α = 139 of the estimate α = 139.0253698 . . .), segment height
h = 0.26, and a = 2 ·

√
0.1404. In case of 3D objects, we used a cylinder, sphere,

cube, and an ellipsoid for volume estimation, and the first three objects are also
used for surface area estimation.

The relative error Er of experiments is a percentage, it is equal to the absolute
value of the estimated value Ve minus the true value Vt, divided by the true value,
then multiplied by 100, Er = |Ve−Vt|

Vt
· 100.

Perimeter and Surface Area. We compare results of the DSS estimator, the
LICM estimator with four preselected directions (which are 0◦, 45◦, 90◦, and
135◦), and the LICM estimator with four random directions (called LICM R;
generated using the system function rand()), see Figure 3.

428 Y. Huang and R. Klette

Circle

0

5

10

15

20

25

Resolution

R
el

at
iv

e
E

rr
o

r

DSS

LICM

LICM_R

DSS 1.442 1.528 0.755 0.569 0.079 0.018 0.023 0.015

LICM 22.33 9.391 2.919 1.301 1.301 0.896 0.289 0.087

LICM_R 19.59 2.366 2.358 4.204 3.562 4.071 4.634 4.793

8 16 32 64 128 256 512 1024

Lunula

0

10

20

30

40

50

60

70

Resolution

R
el

at
iv

e
E

rr
o

r

DSS

LICM

LICM_R

DSS 16.57 12.36 4.602 1.632 1.062 0.46 0.168 0.036

LICM 61.17 32.04 10.2 5.346 3.93 1.907 0.846 0.34

LICM_R 58.36 22.18 2.883 1.765 2.169 3.984 5.199 5.619

8 16 32 64 128 256 512 1024

Sinc

0

10

20

30

40

50

60

70

80

Resolution

R
el

at
iv

e
E

rr
o

r

DSS

LICM

LICM_R

DSS 39.94 14.69 7.525 1.34 1.917 0.396 0.086 0.009

LICM 67.97 30.11 18.09 5.898 3.895 2.212 1.347 1.074

LICM_R 63.82 24.23 14.17 1.831 0.378 0.899 1.913 2.122

8 16 32 64 128 256 512 1024

Square rotated 22.5 degrees

0

5

10

15

20

25

30

35

Resolution

R
el

at
iv

e
E

rr
o

r

DSS

LICM

LICM_R

DSS 6.943 0.843 3.143 0.733 0.088 0.113 0.246 0.005

LICM 32.22 18.67 5.114 1.725 0.031 1.24 2.087 2.405

LICM_R 29.33 14.8 0.86 2.736 4.44 5.749 6.75 7.03

8 16 32 64 128 256 512 1024

Square rotated 45 degrees

0

5

10

15

20

25

30

35

40

45

Resolution

R
el

at
iv

e
E

rr
o

r

DSS

LICM

LICM_R

DSS 6.831 10.39 3.963 0.495 0.546 0.559 0.102 0.102

LICM 39 28.84 16.97 11.04 9.774 9.138 8.397 8.238

LICM_R 33.84 26.65 18.05 11.32 10.23 9.781 8.936 8.822

8 16 32 64 128 256 512 1024

Yinyang

0

10

20

30

40

50

60

Resolution

R
el

at
iv

e
E

rr
o

r

DSS

LICM

LICM_R

DSS 7.022 8.684 10.51 5.987 5.433 3.061 2.466 1.616

LICM 51.46 28.81 16.67 12.22 8.481 6.104 3.829 2.59

LICM_R 48.31 22.18 10.22 7.645 4.967 2.105 0.895 2.652

8 16 32 64 128 256 512 1024

Fig. 3. Comparison of DSS, LICM (4 directions) and LICM R (LICM with 4 random
directions) on six test objects

The obtained results show that the precision of the DSS estimator is the best
of these three estimators, whereas the precision of the LICM estimator with
four preselected directions is better than that of LICM R. Multiprobe or multi-
grid convergence is apparent in most of the diagrams. Obviously, four random
numbers are not “able” to define an IUR direction generator. (The figure shows
results for directions 151.23◦, 70.99◦, 140.96◦ and 143.72◦; LICM R appears to
be not multiprobe convergent on the circle, lunula, and square rotated 22.5◦

for these values.) Figure 4 (left) illustrates the relative errors averaged over all
six test objects. The obtained LICM R errors are slightly increasing between
resolution 256 and 1024.

We also tested the multiprobe behavior for an increase in numbers of direc-
tions (up to 128 different directions in experiments). Surprisingly, results did not

Fig. 4. Left: comparison of average relative errors over all the six test objects, for
DSS, LICM and LICM R. Right: LICM-estimation of the perimeter for the disk using
different numbers of directions

A Comparison of Property Estimators in Stereology and Digital Geometry 429

Fig. 5. LICM R-estimation of surface area for the cube, cylinder, and sphere. Left:
using a 128 × 128 picture with different number of directions. Right: using 100 lines at
different picture resolutions

steadily improve by increasing the number of directions for LICM or LICM R,
and in some cases the error even increased for larger numbers of directions. See
Figure 4 (right) for the example of a disk, where the error is smallest in general
for just 4 directions! A possible explanation is that more directions increase the
number of lines which do not intersect the circle at all.

The surface area of 3D objects is estimated using the LICM R estimator with
digital rays in 3D space starting at random positions, and into random directions
(generated by the system function rand()). (We tested up to a picture resolution
of 128. Rays are only traced within the space of the picture.) Now, in 3D space
we generated every ray individually (i.e., not shifting pivot lines or rays anymore
as in 2D). So, the number of rays is now reduced to be equal to the number of
directions!

Figure 5 (left) shows results for a constant resolution (h = 128) and increases
in numbers of directions (i.e., numbers of rays). Figure 5 (right) shows results
for a constant number of directions (100), and an increase in picture resolution.
The results indicate relatively large errors. (Obviously, this is certainly related
to the smaller number of rays compared to the number of lines in 2D.) However,
it can be seen that the results for the sphere are better than those for the cube
and cylinder in both Figures.

Area and Volume. The results shown on the left of Figure 6 are using the
pixel count estimator which checks all 2D grid points of the picture. They are
very precise on all six test objects, always with less than 0.1 percent error from
the true area when the picture resolution is 1024.

Trends for circle and yinyang are similar due to the yinyang shape being
formed by circular curves. The estimation for the square rotated 22.5◦ converges
fastest, with an error of a bit more than 0.0001 percent at resolution 1024.

We also estimated volumes of 3D objects using the voxel count method with
regular (grid-point) point probes, which is equivalent to applying the Cavalieri
principle for a very special case (see discussion above).

The results on the right of Figure 6 indicate reasonably small errors, which
are all below 0.1 percent at picture resolution 1024. They all reflect multigrid

430 Y. Huang and R. Klette

Fig. 6. Left: area estimation for the six test objects using the point count method with
regular (grid-point) point probes. Right: volume estimation for sphere, cube, ellipsoid,
and cylinder using the Cavalieri principle in a special form (probes at all grid points
in the 3D picture)

and multiprobe convergent behavior (both are theoretically known) of the voxel
count estimator on ellipsoid, cylinder, sphere and cube.

4 Conclusions

The point count estimators in stereology and digital geometry are different by
motivation. Because a point is zero-dimensional, estimations using randomly
chosen 2D or 3D points, or all pixels or voxels of the picture are unbiased and
precise. Because estimators which use all pixel or voxel centers are very pre-
cise, there is no need to apply a random point generator for area and volume
estimations.

If using the LICM for estimating perimeter or surface area, the IUR object-
probe interaction must be guaranteed in order to make an unbiased observation
of the object structure. Position or direction of the line probe cannot be pre-
selected in this case to avoid bias. However, in our experiments a bias could not
be totally removed even if lines of random directions are used (using a uniform
number generator). It might be worth to spend more efforts on building an IUR
line generator for the unbiased estimation of perimeter or surface area. Without
such an ideal IUR line generator, the DSS-estimator appears to be the more
time-efficient and faster converging method for perimeter estimations instead of
the stereology estimator LICM.

The pixel and voxel count estimators for 2D area and volume are theoretically
known to be multiprobe or multigrid convergent. Results for the DSS-estimator
for length also corresponded to its known multigrid convergence, whereas the
multiprobe convergence of the LICM estimator for length depends on the chosen
line probes.

In practice, when the segmented objects are “complicated and irregular by
shape”, such as biological tissues and material microstructure, the stereology

A Comparison of Property Estimators in Stereology and Digital Geometry 431

estimator LICM may be more efficient than the digital geometry estimator DSS
as we do not need to trace all borders in the picture. In future experiments, more
shapes generated randomly in size and position should be used and the average
over all results of shapes should be considered.

References

1. D. Coeurjolly and R. Klette. A comparative evaluation of length estimators. In
Proc. ICPR, IV: 330–334, 2002.

2. I. Debled-Rennesson and J. Reveillès. A linear algorithm for segmentation of digital
curves. Int. J. Pattern Recognition and Artificial Intelligence, 9: 635-662, 1995.

3. C.V. Howard and M.G. Reed. Unbiased Stereology: Three-Dimensional Measure-
ment in Microscopy. BIOS Scientific Publishers, Oxford, 1998.

4. R. Klette, V. Kovalevsky, and B. Yip. On the length estimation of digital curves.
Vision Geometry VIII, in Proc. of SPIE: 117-128, July 1999.

5. R. Klette and A. Rosenfeld. Digital Geometry: Geometric Methods for Digital Pic-
ture Analysis. Morgan Kaufmann, San Francisco, 2004.

6. V.A. Kovalevsky. New definition and fast recognition of digital straight segments
and arcs. In Proc. 10th Intl. Conf. on Pattern Recognition, pages 31-34, 1990.

7. J. Lindblad. Surface area estimation of digitized planes using weighted local con-
figurations. DGCI 2003, LNCS,2886: 348-357, 2003.

8. P.R. Mouton. Principles and Practices of Unbiased Stereology: An Introduction for
Bioscientists. The Johns Hopkins University Press, Baltimore, 2002.

9. J.C. Russ and R.T. Dehoff. Practical Stereology, 2nd edition. Plenum, New York,
2000.

10. N. Sladoje, I. Nyström and P.K. Saha. Measuring perimeter and area in low reso-
lution images using a fuzzy approach. SCIA 2003, LNCS, 2749: 853-860, 2003.

Thinning by Curvature Flow

Atusihi Imiya1, Masahiko Saito2, and Kiwamu Nakamura2

1 IMIT, Chiba University
2 School of Science and Technology, Chiba University,

Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
imiya@faculty.chiba-u.jp

Abstract. In this paper, we define digital curvature flow for spatial
digital objects. We define the principal normal vectors for points on the
digital boundary of a binary spatial object. We apply the discrete curva-
ture flow for the skeletonisation of binary objects in a space, and develop
a transform which yields the curve-skeletons of binary objects in a space.

1 Introduction

In this paper, we introduce a new transform for the discrete binary set, which
we call “digital curvature flow.” Digital curvature flow is discrete curvature flow
for the boundary of a digital object, that is, digital curvature flow describes the
motion of a boundary which is controlled by the curvature of the boundary of
binary digital images in a space. As applications of digital curvature flow, we
develop thinning. The thinning algorithm preserves the geometry of junctions.

The skeletons of a binary object in a plane and in a space are a tree-form curve
[1–6] and the collection of part of the curved surface [7–11], respectively. These
skeletons are called the medial axis and surface, or more generally, the medial set
of an object [7–9]. The skeleton of an object is a fundamental geometric feature
for image and shape analysis. Therefore, skeletonisation has been studied in the
field of pattern recognition and computer vision for a long time.

Classical thinning for planar objects based on the discrete transform usually
transforms T- and V-shape junctions to Y-shape junctions. These changes of
junctions affect the final form of thinning process yielding unexpected needles
and branches which are not in the original forms. Hilditch’s thinning is an algo-
rithm that does not produce unexpected needles and branches [12]. The method
contains processes based on the configurations in the neighbourhood of each
point.

Our method based on curvature flow in a space is defined using configurations
of vertices on an isotetic polyhedron derived from the 6-connected boundary.
This is an advantage of our algorithm compared to distance-transform-based
thinning, since the evolution of shape for thinning in each step is based on the
configurations of vertices.

A unified treatment of shape deformation is required for intelligent editing
of image contents for multimedia technology. Curvature flow and the diffusion

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 432–442, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Thinning by Curvature Flow 433

process on surfaces provide mathematical foundations for a unified treatment of
the deformation of surfaces [13]. These deformation operations for boundaries
are discussed in the framework of the free boundary problem in the theory of
partial differential equations. For the construction of solutions of the partial
differential equation representing deformed surfaces, the numerical computation
is achieved using an appropriate discretisation scheme. Bruckstein et al. derived
a discrete version of this problem for planar shapes [14]. Furthermore, Imiya and
Eckhardt [15] proposed a spatial version of Bruckstein et al.’s discrete treatment
of curvature flow. Then, in this paper, we apply the discrete curvature flow for
the skeletonisation of binary objects in a space, and develop a transform which
yields curve-skeletons of binary objects in a space.

2 Connectivity and Neighbourhood

Setting R2 and R3 to be two- and three-dimensional Euclidean spaces, we ex-
press vectors in R2 and R3 as x = (x, y)� and x = (x, y, z)�, respectively,
where * is the transpose of the vector. Setting Z to be the set of all integers,
the two- and three-dimensional discrete spaces Z2 and Z3 are sets of points such
that both x and y are integers and all x, y, and z are integers, respectively. For
n = 2, 3 we define the dual set for the set lattice points Zn as

Zn = {x +
1
2
e|x ∈ Zn}, (1)

where e = (1, 1)� and e = (1, 1, 1)� for n = 2 and n = 3, respectively. We call
Zn and Zn the lattice and the dual lattice, respectively.

On Z2 and in Z3,

N4((m,n)�) = {(m± 1, n)�, (m,n± 1)�} (2)

and

N6((k,m, n)�) = {(k ± 1,m, n)�, (k,m± 1, n)�, (k,m, n± 1)�} (3)

are the planar 4-neighbourhood of point (m,n)� and the spatial 6-neighbourhood
of point (k,m, n)�, respectively. In this paper, we assume the 4-connectivity on
Z2 and the 6-connectivity in Z3.

For integers k, m, and n, the collection of integer-triplets (k′,m′, n′) which
satisfies the equation

(k − k′)2 + (m−m′)2 + (n− n′)2 = 1 (4)

define points in the 6-neighbourhood of point (k,m, n)�. If we substitute k = k′,
m = m′, and n = n′ to eq. (4), we obtain the equations,

(m−m′)2 + (n− n′)2 = 1, (5)

(k − k′)2 + (n− n′)2 = 1, (6)

434 A. Imiya, M. Saito, and K. Nakamura

and
(m−m′)2 + (n− n′)2 = 1, (7)

respectively. These equations define points in the planar 4-neighbourhoods.
Therefore, setting one of x, y, and z to be a fixed integer, we obtain two-
dimensional sets of lattice points such that

Z2
1((k,m, n)�) = {(k,m, n)�|∃k,∀m,∀n ∈ Z}, (8)

Z2
2((k,m, n)�) = {(k,m, n)�|∀k,∃m,∀n ∈ Z}, (9)

and
Z2

3((k,m, n)�) = {(k,m, n)�|∀k,∀m,∃n ∈ Z}. (10)

These two dimensional discrete spaces are mutually orthogonal. Denoting

N4
1((k,m, n)�) = {(k,m± 1, n)�, (k,m, n± 1)�}, (11)

N4
2((k,m, n)�) = {(k ± 1,m, n)�, (k,m, n± 1)�}, (12)

and
N4

3((k,m, n)�) = {(k ± 1,m, n)�, (k,m± 1, n)�}, (13)

the relationship

N6((k,m, n)�) = N4
1((k,m, n)�) ∪N4

2((k,m, n)�) ∪N4
3((k,m, n)�) (14)

holds, since N4
i ((k,m, n)�) is the 4-neighbourhood on plane Z2

i ((k,m, n)�) for
i = 1, 2, 3 [16]. Equation (14) implies that the 6-neighbourhood is decomposed
into three mutually orthogonal 4-neighbourhoods.

A pair of points (k,m, n)� and x ∈ N6((k,m, n)�) is a unit line segment in
Z3; furthermore, four 6-connected points which form a circle define a unit plane
segment in Z3 with respect to the 6-connectivity. Therefore, we assume that our
object is a complex of 2 × 2 × 2 cubes which share at least one face with each
other [18]. Thus, the surface of an object is a collection of unit squares which
are parallel to planes x = 0, y = 0, and z = 0.

Assuming the 4-connectivity and 6-connectivity for planar objects and spatial
objects, respectively, an object is a complex of discrete simplexes.

Definition 1. A discrete object is a collection of n-simplexes which are con-
nected by (n− 1)-simplexes in Zn for n = 2, 3.

This definition agrees with that of Kovalevsky [19] for planar objects. Since
in Rn there exist k-simplexes for k = 1, 2, · · · , n, we define the collection of
these simplexes. Since an object is a complex, n-simplexes of an object share
(n − 1)-simplexes. However, some (n − 1)-simplices are not shared by a pair of
simplexes.

Definition 2. The boundary of an object is a collection of (n − 1)-simplexes
which are not shared by a pair of n-simplexes of an object.

Thinning by Curvature Flow 435

In Figure 1, we show simplexes, objects and the boundaries of objects in Zn

for n = 2, 3. On the top column of Figure 2, we show a 1-simplex (a), a 2-simplex
(b), an object (c), and the boundary of this object on a plane. Furthermore, in
the bottom column of the same figure, we show a 2-simplex (a), a 3-simplex (b),
an object (c), and the boundary of this object (d) in a space. In the following,
we deal with the thinning procedures for 6-connected discrete objects.

Since we are concerned with a binary discrete object, we affix values of 0 and
1 to points in the background and in objects, respectively. On Z2, three types
of point configurations are illustrated in Figure 2, exist in the neighbourhood of
a point × on the boundary. In Figure 2, •, and ◦, are points on the boundary
and in the background, respectively. Setting fi ∈ {0, 1} to be the value of point
xi such that

x3 = (m,n + 1)�,
x5 = (m− 1, n)�, x0 = (m,n)�, x1 = (m + 1, n)�,

x7 = (m,n− 1)�,
(15)

the curvature of point x0 is defined by

r(x0) = 1− 1
2

∑
k∈N

fk +
1
4

∑
k∈N

fkfk+1fk+2, (16)

where N = {1, 3, 5, 7} and k + 8 = k. The curvature indices of configurations
(a), (b) and (c) are positive, zero, and negative, respectively. Therefore, we call
these configurations of (a), (b), and (c) convex, flat, and concave, respectively,
and affix the indices +, 0, and −, respectively.

Using combinations of planar curvature indices on three mutually orthogonal
planes which pass through a point x0, we define the curvature index of a point
x0 in Z3 since the 6-neighbourhood is decomposed into three 4-neighbourhoods.
Setting αi to be the planar curvature index on plane Z2

i (x0) for i = 1, 2, 3, the
curvature index of a point in Z3 is a triplet of two-dimensional curvature indices
(α1, α2, α3) such that αi ∈ {+,−, 0, ∅}. Here, if αi = ∅, the curvature index of a
point on plane Z2

i (x0) is not defined. Therefore, for the boundary points, seven
configurations

(+,+,+), (+,+,−), (+, 0, 0),
(0, 0, ∅),

(−,−,−), (+,−,−), (−, 0, 0)
(17)

and their permutations are possible.
Since a triplet of mutually orthogonal planes separates a space into eight

parts, we call one eighth of the space an octspace. The number of octspaces
determines the configurations of points in a 3 × 3 × 3 cube. There exist nine
configurations in the 3× 3× 3 neighbourhood of a point on the boundary since
these configurations separate Z3 into two parts which do not share any com-
mon points. These configurations have also been the same things introduced by
Françon [20] for the analysis of discrete planes. The curvature analysis of discrete
surfaces also yields these configurations. In Figure 4, we show 9 configurations
on the 6-connected boundary.

436 A. Imiya, M. Saito, and K. Nakamura

�� ��

�� �� ��

��
��

��

�� �� ��

��

��

��
��

����

(a) (b) (c) (d)

Fig. 1. In the top column, the 1-simplex (a), the 2-simplex (b), an object (c), and the
boundary of this object (d) on a plane, and in the bottom column, the 2-simplex (a),
the 3-simplex (b), an object (c), and the boundary of this object in a space

3 Thinning by Curvature Flow

Using the two-dimensional curvature code γ(xj) of each point xj , we classify
points on slices of boundary C into types N+ and N−, such that

C = N+

⋃
N, N+

⋂
N− = ∅, (18)

where
N− =

⋃
j

N−(j), N+ = C \N− (19)

for

N−(j) = {xβ |γ(xβ) = 0, j < β < j + m, γ(xj) = −, γ(xj+m) = −}. (20)

Each N−(j) is a sequence of flat points whose two endpoints are concave
points. Furthermore, N− is the union of these sequences on the boundary. In
Figure 4, we show the motions of boundary edges of this rule.

Using the outward normal vector for each point on the boundary, we define
a transform from point set C on Z2 to point set C on Z2. Setting C = N+, we
derive the rule which moves all edges in the inward direction.

xj =
{

xj − nj , if γ(xj) �= 0,
xj − nj ± 1

2nj , if γ(xj) = 0, xj ∈ N+. (21)

Although this transformation transforms a point on a corner to a point, a flat
point is transformed to a pair of points. Therefore, for a corner, transformation

Thinning by Curvature Flow 437

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Angles and configurations on the boundary of three-dimensional 6-connected
objects

acts as curvature flow, though for flat points this transformation acts as diffusion
on the boundary curve.

Using the curvature on slices we define the motion of boundary points as

xj = xj +
1
2
(ε1n1 + ε2n2 + ε3n3) (22)

from the point x to the point y on the dual lattice, where

εα =
{

+1, r(x) ≤ 0,
−1, r(x) ≥ 0. (23)

This is the three-dimensional version of the two-dimensional motion on slices
of the boundary.

For the construction of the one-voxel-thick curve, we add the following rules
for the evolution of flow.

1. During the evolution of the thinning by curvature flow, once the thickness of
parts becomes one, stop the evolution for these parts and mark these voxels.

438 A. Imiya, M. Saito, and K. Nakamura

��� ���

N+

(a)

+ +

��� ���

N+

(b)

+ − ��� ���

N−

(c)

− −

Fig. 3. Motions of the positive and negative lines on the boundary

2. Apply evolution for voxels without marks.
3. At each step of the evolution, for the preservation of the topology of the

skeleton, connect marked voxels and unmarked voxels by a voxel.

The first rule guarantees the condition that the surface evolution by eq. (22)
stops after yielding a one-voxel-thick object from the original object.

(a) (b) (c) (d)

Fig. 4. Evolution of thinning process with marking to a voxel. Once a part of an
object becomes one-voxel thick as shown in (a), the algorithm affixes the label on the
voxel on the end of a one-thick part which connects ton non-one-thick parts as shown
in (b). Then, the algorithm applies thinning process to non-one-thick parts and does
not apply thinning process to the one-thick part as shown in (c). Furthermore, the
algorithm connects the non-thick part with the results of thinning as shown in (d).
The algorithm iterates this process for the thinning

Figure 5 expresses this process. In Figure 5, marks are illustrated as flags
on voxels. The process shows that once a part of an object becomes one-voxel
thick as shown in (a), the algorithm affixes the label on the voxel on the end
of a one-thick part which connects ton non-one-thick parts as shown in (b).
Then, the algorithm applies thinning process to non-one-thick parts and does
not apply thinning process to the one-thick part as shown in (c). Furthermore,
the algorithm connects the non-thick part with the results of thinning as shown
in (d). The algorithm iterates this process for the thinning.

We call the motion of boundary points caused by the successive application
of this transformation digital curvature flow. Therefore, odd and even steps of
digital curvature flow transform points on the lattice to points on the dual lattice
and points on the dual lattice to points on the lattice, respectively.

Thinning by Curvature Flow 439

(a) (b)

(c) (d)

Fig. 5. Results 1: (a), (b), and (c) show the original objects, results of the distance-
transform, and the results of the new thinning method, respectively. (d) shows inter-
mediate shape extracted by our method

4 Examples

In Figure 6, (a), (b), and (c) show the original objects, results of the distance-
transform, and the results of the new thinning method, respectively. Further-
more, in Figure 6, (d) shows an intermediate shape for skeletonisationb extracted
by our method. This result shows that it is possible to control the thickness of the
curve skeleton using our method preserving topology of the result in each step
of iterations. In Figure 7, the curve-skeletons of (c) and (d) are extracted from
a pair of objects which are mutually congruent as shown in Figures 7 (a) and
(b), respectively. These figures show that the marking process of the algorithm
is effective for the preservation of the topology.

In Figure 9, for comparison, we show the results of the distance-transform
and our algorithm for a planar object. These results show that our algorithm
yields one-voxel-thickness skeletons and that the algorithm preserves topology
of the original objects.

440 A. Imiya, M. Saito, and K. Nakamura

(a) (b)

(c) (d)

Fig. 6. Results 3: The curve-skeletons of (c) and (d) are extracted from a pair of objects
which are mutually congruent in (a) and (c). These figures show that the marking
process of the algorithm is effective for the preservation of the topology

These results show that our method preserves the topology and the geometry
of junctions, although the distance-transform-based thinning does not preserve
these properties. Furthermore, our method yields curve-skeletons of objects.
5 Connection Conversion

In reference [17], we introduced Gauss-Bonnet theorem for 8-connectivity bound-
ary. Using this theory, the 8-connected boundary is converted to 4-connected
boundary preserving topology of the boundary. After conversion of the connec-
tivity, the boundary curve is deformed for the extraction of the skeleton.

In reference [16], we have introduced the rules for the conversion of 18- and-
26 connected local configurations to 6-connected ones for 3-dimensional bound-
ary elements. These rules eliminate edges whose lengths are

√
2 and

√
3, and

convert parts with these edges to collections of edges whose lengths are 1. After
converting the connectivity, it is possible to apply our thinning algorithm for
the skeletonisation of discrete 18- and 26- connected objects. The conversion
rules often yield needles and walls, which are 1- and 2-dimensional simplexes,
respectively.

Thinning by Curvature Flow 441

(a) (b) (c)

Fig. 7. Results of two-dimensional skeletonisation: (a), (b), and (c) show the original
objects, results of the distance-transform, and the results of the new thinning method,
respectively

A point on a unit-height wall is a point on a unit-length needle in each
slice plane. In each slice, if we consider the four connectivity, there exist three
configurations in Figure 1 and unit-length needles for the boundary of the quasi
object yielded from a 18- and 26-connected object. For the concave, flat, convex,
and needle point, the number of points in the four neighbourhood is 0, 1, 2,
and 3, respectively. Therefore, after rewriting the boundary configurations from
18- and 26-connectivity to 6-connectivity, eliminating points which satisfy the
relation |Nα(x)| = 3 for

Nα(x) = {y|y ∈ N4
α(x),y ∈ Fc}, (24)

where Fc is the compliment of point set F, and |A| is the number of elements
in point set A.

6 Conclusions

In this paper, we introduced a new transform for the binary digital set, which we
call digital curvature flow. Digital curvature flow is a digital version of curvature
flow. As applications of discrete curvature flow, we developed thinning. The
thinning algorithm preserves the geometry of junctions. Our method based on
curvature flow is defined using configurations of vertices of an isotetic polyhedron
derived from the 6-connected boundary.

In the previous paper [16], we introduced the rewriting rules for the connec-
tion conversion from 18- and 26- connectivities to 6-connectivities. After con-
verting the connectivity, it is possible to apply our thinning algorithm for the
skeletonisation of discrete 18- and 26- connected objects.

References

1. Blum, H., Biological shape and visual science, J. Theoretical Biology, 38, 205-285,
1963.

442 A. Imiya, M. Saito, and K. Nakamura

2. Rosenfeld, A., Axial representations of shapes, CVGIP, 33, 156-173, 1986.
3. Bookstein, F. L., The line-skeleton, CVGIP, 11, 1233-137, 1979.
4. Amenta, N., Bern, M., Eppstein, D., The crust and the β-skeleton: Combinatorial

curve reconstruction, Graphical Models and Image Processing, 60, 125-135, 1998.
5. Attali, D. and Montanvert, A., Computing and simplifying 2D and 3D continuous

skeletons, CVIU, 67, 261-273, 1997.
6. Giblin, P. J. and Kimia, B. B., On the local form and transitions of symmetry sets

and medial axes, and shocks in 2D, Proceedings of ICCV, 385-391, 1999.
7. Nystrom, I., Sanniti di Baja, G., Svensson, S., Curve skeletonization by junction

detection Lecture Notes in Computer Science, 2059, 229-238, 2001.
8. Svensson, S., Nystrom, I., Sanniti di Baja, G., Curve skeletonization of surface-like

objects in 3D images guided by voxel classification, Pattern Recognition Letters,
23, 1419-1426, 2002.

9. Sanniti di Baja, G., Svensson, S., Surface skeletons detected on the D6 distance
transform. Lecture Notes in Computer Science 1876, 387-396, 2000.

10. Svensson, S., Borgefors, G., Nystrom, I., On reversible skeletonization using anchor-
points from distance transforms Journal on Visual Communication and Image Rep-
resentation, 10, 379-397, 1999.

11. Svensson, S., Sanniti di Baja, G., Using distance transforms to decompose 3D
discrete objects, Image and Vision Computing, 20, 529-540, 2002.

12. Hilditch, J. C., Linear skeletons from square cupboards, in Meltzer, B., and Michie,
D. eds., Machine Intelligence 4, 403-422, Edinburgh University Press: Edinburgh,
1969.

13. Sethian, J. A.,Level Set Methods: Evolving Interfaces in Geometry Fluid Mechanics,
Computer Vision, and Material Science. Cambridge University Press, Cambridge,
1996.

14. Bruckstein, A.M., Shapiro, G., Shaked, D., Evolution of planar polygons, Journal
of Pattern Recognition and Artificial Intelligence, 9, 991-1014, 1995.

15. Imiya, A. and Eckhardt, U., Discrete curvature flow, Lecture Notes in Computer
Science, 1682, 477-483, 1999.

16. Imiya, A. and Eckhardt, U., The Euler characteristics of discrete objects and dis-
crete quasi-objects, CVIU, 75, 307-318, 1999.

17. Imiya, A., Saito., M., Tatara, K., Nakamura, K., Digital curvature flow and its
application to skeletonization, Journal of Mathematical Imaging and Vision, 18,
55-68, 2003.

18. Imiya, A. and Eckhardt, U., Discrete curvature flow, Lecture Notes in Computer
Science, 1682, 477-483, 1999.

19. Kovalevsky, V.A., Finite topology as applied to image analysis, Computer Vision,
Graphics and Image Processing, 46, 141-161, 1989.

20. Françon, J., Sur la topologie d’un plan arithmétique, Theoretical Computer Sci-
ences, 156, 159-176, 1996.

21. Toriwak, J.-I., Digital Image Processing for Computer Vision, Vols. 1 and 2,
Sokodo: Tokyo, 1988.

Convex Functions on Discrete Sets

Christer O. Kiselman

Uppsala University, P. O. Box 480, SE-751 06 Uppsala, Sweden
kiselman@math.uu.se

http://www.math.uu.se/~kiselman

Abstract. We propose definitions of digital convex sets and digital con-
vex functions and relate them to a refined definition of digital hyper-
planes.

Keywords: Digital convex set, digital convex function, naive digital line,
digital hyperplane, Fenchel transformation.

1 Introduction

Digital geometry is a branch of geometry which is inspired by the use of com-
puters in creating images and of importance for the proper understanding and
creation of many algorithms in image processing. In Euclidean geometry con-
vex sets play an important role, and convex functions of real variables are of
importance in several branches of mathematics, especially in optimization.

All this forms the background of the present paper, where we will propose
definitions of convex sets (Definition 3.1) and convex functions (Definition 4.1)
in a digital setting, definitions that have many desirable properties. They are in
fact very simple—some may call them naive—but it seems to be necessary to
investigate them first before one can go on to more sophisticated definitions. We
shall show that functions which are both convex and concave have interesting
relations to a refined definition of digital hyperplanes.

The notion of a digital straight line received a satisfying definition in Rosen-
feld’s seminal paper (1974), where he explained how to digitize a real straight line
segment. Since then, variants of this digitization have been introduced, among
them digitizations which respect the Khalimsky topology; see Melin (2003). Here
we shall not consider the Khalimsky topology, however. Instead, we shall look
at definitions of digital hyperplanes, in particular that of Reveillès (1991), and
compare them with the notion of digitally convex and concave functions.

We cannot mention here all the work done on convex sets and digital planes;
we refer the reader to the surveys by Eckhardt (2001) and Rosenfeld & Klette
(2001) and the many papers referred to there. Eckhardt studies no less than five
different notions of convexity; one of them he calls H-convexity (2001:218)—this
is the notion studied in the present paper.

We write Z for the ring of integers and R for the field of real numbers.
When defining functions with integer values, we shall often use the floor and
ceiling functions R + t �→ #t$, 	t
 ∈ Z. They are uniquely determined by the

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 443–457, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

444 C. O. Kiselman

requirement that #t$ and 	t
 be integers for every real number t and by the
inequalities

t− 1 < #t$ � t < #t$+ 1; 	t
 − 1 < t � 	t
 < t + 1, t ∈ R. (1.1)

2 The Real Case

Let E be a vector space over the field of real numbers. A subset A of E is said
to be convex if the segment [a, b] = {(1 − t)a + tb; 0 � t � 1} is contained in
A for every choice of a, b ∈ A; in other words if {a, b} ⊂ A implies [a, b] ⊂ A.
And convex functions are most conveniently defined in terms of convex sets: a
function u:E → [−∞,+∞] = R∪{+∞,−∞} is said to be convex if its epigraph

epi u = {(x, t) ∈ E ×R;u(x) � t}

is a convex set in E ×R. For functions f :P → [−∞,+∞]Z = Z ∪ {+∞,−∞},
where P is a subset of E, we define the epigraph as a subset of P × Z:

epi f = {(p, q) ∈ P × Z; f(p) � q}.

We shall also need the strict epigraph of u, which is the set

episu = {(x, t) ∈ E ×R;u(x) < t}.

It is convex if and only if u is convex.
Related to these notions are the graph and hypograph of a function, defined by

graphu = {(x, t) ∈ E ×R;u(x) = t} and hypou = {(x, t) ∈ E ×R;u(x) � t},

respectively.
It is also possible to go in the other direction and define convex sets in terms

of convex functions: a set A in E is convex if and only if its indicator function
iA is convex, where we define iA(x) = 0 if x ∈ A and iA(x) = +∞ otherwise.
Naturally we would like to keep these equivalences in the digital case.

Important properties of the family of convex sets in a vector space are the
following.

Proposition 2.1. If Cj, j ∈ J , are convex sets, then the intersection
⋂

Cj is
convex. If the index set J is ordered and filtering to the right, and if (Cj)j∈J is
an increasing family of convex sets, then its union

⋃
Cj is convex.

Because of this result, the intersection

cvxA =
⋂(

C ∈P(E);C is convex and C ⊃ A
)
, A ∈P(E),

of all convex sets containing a given subset A of E is itself convex; it is called
the convex hull of A.

Proposition 2.2. If uj, j ∈ J , are convex functions on a vector space, then
supuj is convex. If the index set J is ordered and filtering to the right, and if

Convex Functions on Discrete Sets 445

(uj)j∈J is a decreasing family of convex functions, then its infimum inf uj is
convex.

To a given function u:E → [−∞,+∞] we associate two convex functions,
viz. the supremum v of all convex minorants of u and the supremum w of all
affine minorants of u. According to Proposition 2.2 these functions are them-
selves convex, and of course w � v � u. We shall denote v by cvxu, and w

by ˜̃u, a notation which will become clear when we have introduced the Fenchel
transformation below. The function v = cvxu will be called the convex hull of u.
For functions f :P → [−∞,+∞], P being a subset of E, we shall use the same
notation. Such a function can be extended to a function u defined in all of E
simply by taking u = +∞ in the complement of P (then u and f have the same
epigraph), and we define cvx f = cvxu.

In many cases, but not always, ˜̃u is equal to cvxu (see Examples 2.3 and 2.4
below). To understand this, we note that ˜̃u has two extra properties in addition
to being convex, properties that are not always shared by cvxu. The first is that˜̃u is lower semicontinuous for any topology for which the affine functions are
continuous. The second is that if u takes the value −∞ at a point, then ˜̃u must
be identically equal to −∞ (there are no affine minorants), whereas cvxu may
take also finite values or +∞.

Example 2.3. Let P ⊂ R2 be the set of all points (p1, 1/(1+ p2
1)), p1 ∈ Z. Define

a function f :P → [0,+∞] by f(p) = 0 for p ∈ P . Then cvx f takes the value

0 when 0 < x2 < 1 or x = (0, 1). On the other hand ˜̃
f takes the value 0 in the

closed strip 0 � x2 � 1 and +∞ elsewhere, so the two functions differ when
x2 = 0 or x2 = 1, x1 �= 0.

Example 2.4. Let α be an irrational number and define f :Z2 → [0,+∞] by
f(p) = 0 if p2 = 	αp1
, p1 �= 0; f(0) = 3; and f(p) = +∞ otherwise. Then
(cvx f)(x) = 0 if x is in the open strip αx1 < x2 < αx1 + 1; (cvx f)(0) = 3;

and (cvx f)(x) = +∞ elsewhere. On the other hand ˜̃
f(x) = 0 when αx1 � x2 �

αx1 + 1 and +∞ outside this closed strip.

We thus have
w = ˜̃u � v = cvxu � u. (2.1)

However, in our research it will not be enough to study these functions: it is
necessary to look at their epigraphs.

The epigraph epiu of u is a subset of E×R and its convex hull C = cvx (epi u)
is easily seen to have the property

(x, s) ∈ C, s � t implies (x, t) ∈ C. (2.2)

The function VC(x) = inf
(
t; (x, t) ∈ C

)
satisfies

episVC ⊂ cvx (epiu) ⊂ epi VC . (2.3)

It is clear that VC is convex and equal to the largest convex minorant v = cvxu
of u already introduced. Thus cvxu can be retrieved from cvx (epi u) but not

446 C. O. Kiselman

conversely. The inequality (2.1) and the inclusion relation (2.3) can be com-
bined to

episu ⊂ epis(cvxu) ⊂ epis(cvxu) ∪ epi u ⊂ cvx (epiu) ⊂ epi (cvxu) ⊂ epi ˜̃u,
(2.4)

and in general we cannot claim that cvx (epiu) is an epigraph (see Examples 4.2
and 4.3).

In this paper, convex sets which are squeezed in between the epigraph and
the strict epigraph of a function will play an important role. Such sets C satisfy
episu ⊂ C ⊂ epi u for some function u. This means that C is obtained from the
strict epigraph by adding some points in the graph:

C = episu ∪ {(x, u(x));x ∈ A} ⊂ episu ∪ graphu = epi u.

Extreme examples are the following. If u is strictly convex, like u(x) = ‖x‖p2,
x ∈ Rn, with 1 < p < +∞, then any such set is convex, even though A may be
very irregular. If on the other hand u = 0, then such a set is convex if and only
if A itself is convex.

Definition 2.5. Let E be a real vector space and denote by E� its algebraic dual
(the set of all real-valued linear forms on E). For any function u:E → [−∞,+∞]
we define its Fenchel transform ũ by

ũ(ξ) = sup
x∈E

(
ξ(x)− u(x)

)
, ξ ∈ E�.

For any function v:F → [−∞,+∞] defined on a vector subspace F of E� we
define its Fenchel transform by

ṽ(x) = sup
ξ∈F

(
ξ(x)− v(ξ)

)
, x ∈ E.

The second Fenchel transform ˜̃u of u is well-defined if we fix a subspace F of
E�. This subspace can be anything between {0} and all of E�, in particular we
can take F as the topological dual E′ of E if E is equipped with a vector space
topology.

The restriction ũ
∣∣
F

of the Fenchel transform to a subspace F of E� describes
all affine minorants of u with linear part in F : a pair (ξ, β) ∈ F ×R belongs to
epi ũ if and only if x �→ ξ(x) − β is a minorant of u. This implies that ˜̃u is the
supremum of all affine minorants of u with linear part in F . This function is a
convex minorant of u, but it has the additional properties that it cannot take
the value −∞ unless it is the constant −∞, and it is lower semicontinuous with
respect to the topology σ(E,F), the weakest topology on E for which all linear
forms in F are continuous. One can prove that ˜̃u is the largest convex minorant
of u with these properties. General references for the Fenchel transformation are
Hörmander (1994), Singer (1997) and Hiriart-Urruty & Lemaréchal (2001).

Convex Functions on Discrete Sets 447

3 Convex Sets

Definition 3.1. Let E be a real vector space and fix a subset P of E. A subset
A of P is said to be P -convex if there exists a convex set C in E such that
A = C ∩ P .

We are mostly interested in the case E = Rn, P = Zn.
For digitizations of convex sets the mapping C �→ C ∩ Zn is not always

satisfactory, because it yields the empty set for some long and narrow convex
sets C. One might then want to replace it by a mapping like C �→ (C +B)∩Zn,
where B is some fixed set which guarantees that the image is nonempty when
C is nonempty, e.g., B = B�(0, r), where r = 1/2 if we use the l∞ norm in Rn,
r =

√
n/2 if we use the l2 norm, or r = n/2 if we use the l1 norm. However,

for our purpose, when we apply this operation to the epigraph of a function,
this phenomenon will not appear: the epigraph of a function with finite values
always intersects Zn × Z in a nonempty set.

Lemma 3.2. Given a vector space E and a subset P of E, the following prop-
erties are equivalent for any subset A of P .

1. A is P -convex;
2. A = (cvxA) ∩ P ;
3. A ⊃ (cvxA) ∩ P .
4. For all n, all a0, . . . , an ∈ A, and for all nonnegative numbers λ0, . . . , λn with∑n

0 λj = 1, if
∑n

0 λjaj ∈ P , then
∑n

0 λjaj ∈ A.

Proof. This is easy. As far as property 4 is concerned, we can, in view of Cara-
théodory’s theorem, let n be the dimension of E if the space is finite dimensional;
otherwise we must use all n.

Definition 3.3. Fix two subsets P and Q of a vector space E and define an
operator γ = γP,Q:P(E) → P(P) by γ(A) = cvx (A ∩Q) ∩ P .

We can think of E = Rn, P = mZn, m = 1, 2, . . ., and Q = Zn. We note
that γ(C) is P -convex if C is convex in Rn.

Lemma 3.4. The mapping γ is increasing; it satisfies γ(γ(A)) ⊂ γ(A); and it
satisfies A ⊂ γ(A) if A ⊂ P ∩ Q. Thus γ

∣∣
P(P) is a closure operator in P(P)

if Q ⊃ P .

Proof. The mapping γ = jP ◦ cvx ◦ jQ is a composition of three increasing
mappings, viz. jQ (intersection with Q), cvx (taking the convex hull), and jP

(intersection with P), and as such itself increasing. The composition γ ◦ γ is
equal to jP ◦ cvx ◦ jQ ◦ jP ◦ cvx ◦ jQ, which is smaller than jP ◦ cvx ◦ cvx ◦ jQ =
jP ◦ cvx ◦ jQ = γ. Finally, it is clear that γ(A) contains A if A is contained in
P ∩Q. If Q ⊃ P , then γ is increasing, idempotent and extensive, thus a closure
operator in P(P).

448 C. O. Kiselman

Proposition 3.5. Let E be a real vector space and P any subset of E. Then A
is P -convex iff A = γ(A) for all Q ⊃ P iff A = γ(A) for some Q ⊃ P .

Proof. If A is P -convex, A = C∩P , then γ(A) = γ(C∩P) = cvx (C∩P∩Q)∩P =
C ∩ P = A for all Q ⊃ P .

If A = γ(A) for some choice of Q ⊃ P , then A = cvx (A ∩Q) ∩ P = C ∩ P if
we define C = cvx (A ∩Q), so that A is P -convex.

Corollary 3.6. If A = C ∩ P , then C ⊃ γ(A) for any Q.

Thus in the definition of P -convex sets we may always take C = γ(A) = cvxA
provided Q ⊃ P .

It is now easy to prove the following result.

Proposition 3.7. Let E be a vector space and P any subset of E. If Aj, j ∈ J ,
are P -convex sets, then the intersection

⋂
Aj is P -convex. If the index set J

is ordered and filtering to the right, and if (Aj)j∈J is an increasing family of
P -convex sets, then its union

⋃
Aj is also P -convex.

Proof. For each Aj we have Aj = Cj ∩ P , where Cj = cvxAj is a convex set in
E. Then

⋂
Aj =

⋂
(Cj ∩ P) =

(⋂
Cj

)
∩ P . The last set is P -convex in view of

Proposition 2.1.
For the union we have

⋃
Aj =

⋃
(Cj ∩ P) =

(⋃
Cj

)
∩ P , so Proposition 2.1

gives also the second statement—the family (Cj) = (cvxAj) is increasing since
(Aj) is.

While the intersection of two P -convex epigraphs gives a reasonable result,
the intersection of an epigraph and a hypograph may consist of two points quite
far from each other:

Example 3.8. Let A = {p ∈ Z2; p2 � p1/m} and B = {p ∈ Z2; p2 � p1/m},
where m ∈ N�{0}. Then A and B are Z2-convex and their intersection consists
of all points (mp2, p2), p2 ∈ Z. We can easily modify the example so that the
intersection consists of exactly two points, (0, 0) and (m, 1), where m is as large
as we please.

4 Convex Functions

Definition 4.1. Let E be a vector space and P any of its subsets. A function
f :P → [−∞,+∞]Z is said to be (P × Z)-convex if its epigraph

epi f = {(p, t) ∈ P × Z; f(p) � t}

is a (P × Z)-convex subset of E ×R.

We have mainly the case E = Rn and P = Zn in mind.
If f :P → [−∞,+∞]Z is a P -convex function, then there is a convex set C

in E×R such that C∩(P×Z) = epi f . In view of Corollary 3.6, the smallest such

Convex Functions on Discrete Sets 449

set C is the convex hull of epi f . However, a set C such that C ∩ (P ×Z) = epi f
does not necessarily have the property (2.2), so we introduce

C+ = {(x, t) ∈ E ×R;∃s � t with (x, s) ∈ C}.

There is a function VC+ :E → [−∞,+∞] such that

episVC+ ⊂ C+ ⊂ epi VC+ .

It would perhaps seem natural to require that C+ be closed or open so that one
could always take either the epigraph or the strict epigraph of VC+ , but simple
examples (see below) show that this is not possible. We note that when we take
C = cvx (epi f), then C+ = C.

Some care is needed, because even if epi f is closed, its convex hull need not
be closed:

Example 4.2. Let f0(p) = 	αp
, p ∈ Z, where α is irrational. We also define
f1(p) = f0(p) for p ∈ Z�{0} and f1(0) = 1. These functions are easily seen to be
(Z×Z)-convex. Indeed, cvx (epi f1) is the open half plane C1 = {(x, t); t > αx},
a strict epigraph, and cvx (epi f0) is the convex set C0 = C1 ∪ {(0, 0)}, which is
neither an epigraph nor a strict epigraph. (However, also the closed half plane
{(x, t); t � αx} intersects Z2 in epi f0.) We finally note that the functions −f0
and −f1 are (Z× Z)-convex as well.

A convex function need not be determined by its restriction to the comple-
ment of a point: in Example 4.2 above, f0 and f1 agree on Z � {0}. This kind
of ambiguity is, however, something we have to live with if we want results like
Proposition 2.2 to hold. In the example f0 is a supremum of convex functions
without this ambiguity, and f1 is the limit of a decreasing sequence of convex
functions without the ambiguity. To make this precise, define gs(p) = 	αp + s
,
p ∈ Z, where s is a real parameter. Then gs → f1 as s tends to zero through
positive values, and gs → f0 as s tends to zero through negative values. We have
gs(0) = 1 for 0 < s < 1, and we claim that gs(0) is determined by the restriction
of gs to the complement of the origin when 0 < s < 1. Indeed, let an extension
take the value c ∈ Z at the origin. Then c � 0 is impossible for s > 0, and
c � 2 is impossible for all s such that 0 < s < 1. Similarly gs with s negative is
determined from its restriction to Z � {0}. So the functions gs with s small and
nonzero do not have this kind of ambiguity, whereas their limits as s → 0± do.

Example 4.3. Let a set A of even integers be given and define gA(p) = 	 12p
 =
1
2p+ 1

2 , p ∈ Z, p odd, and gA(p) = 1
2p when p is even, p ∈ A, and gA(p) = 1

2p+1
when p is even and p /∈ A. This function is (Z×Z)-convex if and only if A is an
interval in 2Z. To see this, we note that cvx (epi gA) is the convex set

CI = {(x, t) ∈ R×R; t > 1
2x} ∪ {(x, 1

2x) ∈ I ×R},

where I is the convex hull of A. Then CI ∩(Z×Z) is equal to epi gA if and only if
A is an interval of even integers. We thus easily get examples of functions which

450 C. O. Kiselman

are (Z × Z)-convex as well as examples of functions which are not. The set CI

is in general neither an epigraph nor a strict epigraph.

Proposition 4.4. Let u:E → [−∞,+∞] be a convex function on a vector space
E. Let P be a subset of E. Then the restrictions #u$

∣∣
P

and 	u

∣∣
P

are (P × Z)-

convex. In particular 	cvx g

∣∣
P

and
⌈˜̃g⌉ ∣∣∣

P
are (P ×Z)-convex for any function

g:P → [−∞,+∞]Z.

Proof. Writing f = #u$
∣∣
P

and g = 	u

∣∣
P

we have (cf. (1.1))

u− 1 < f � u and u � g < u + 1 in P,

which implies that epis(u − 1) ∩ (P × Z) = epi f and epiu ∩ (P × Z) = epi g.
Hence the functions f and g are (P × Z)-convex.

Theorem 4.5. Let E be a vector space and P one of its subsets. For any (P×Z)-
convex function f :P → Z we have cvx f � 	cvx f
 � f � cvx f + 1 in P .

Proof. The inequality cvx f � f holds for any function. Hence cvx f � 	cvx f
 �
	f
 = f .

For the last inequality we argue as follows. Let C = cvx (epi f) and v = cvx f .
Then C ∩ (P × Z) = epi f and episv ⊂ C ⊂ epi v. If v(p) < q, then (p, q) ∈ C,
which implies that (p, q) ∈ epi f , i.e., f(p) � q. Take now q = 	v(p) + ε
, where
ε > 0. Then v(p) < q, so that f(p) � 	v(p) + ε
 < v(p) + 1 + ε. Letting ε tend
to zero we see that f(p) � v(p) + 1 = (cvx f)(p) + 1. This completes the proof
of the theorem.

We define

P j = {p ∈ P ; f(p) = 	(cvx f)(p)
+ j}, j = 0, 1.

In view of the last theorem we have P = P 0 ∪ P 1. We also define

Aj = {p ∈ P ; f(p) = (cvx f)(p) + j}, j = 0, 1.

Corollary 4.6. With f as in the theorem, P can be divided into three disjoint
sets: P 0 � A0, A0, and A1 = P 1. The first set is precisely the set of points p
such that (cvx f)(p) is not an integer.

Proof. It is clear that the three sets P 0 � A0, A0 and P1 are pairwise disjoint.
It is also easy to see that p ∈ A0 ∪ A1 if and only if (cvxf)(p) is an integer.
It follows that Aj ⊂ P j . Finally, we shall prove that P 1 ⊂ A1. If p ∈ P 1, then
	(cvx f)(p)
 is equal to f(p) − 1. But we always have (cvx f)(p) � f(p) − 1, so
that (cvx f)(p) = 	(cvx f)(p)
 and p belongs to A1.

Let us say that a function u:Rn → [−∞,+∞] is of fast growth if for any
constant c the set {x ∈ Rn;u(x) � c‖x‖2} is bounded. The same terminology
applies to a function defined in a subset P of Rn; we understand that it takes

Convex Functions on Discrete Sets 451

the value +∞ outside P . In particular, if f is equal to plus infinity outside a
bounded set, it is of fast growth.

Theorem 4.7. Let P be a discrete subset of Rn and let f :P → [−∞,+∞]Z be
a function of fast growth. Then f is (P × Z)-convex if and only if f = 	cvx f
,
in other words the set P 1 is empty, and we have

(cvx f)(p) � f(p) < (cvx f)(p) + 1, p ∈ P. (4.1)

It is equivalent to say that there exists a convex function u such that f = 	u
.

Proof. We already know from Proposition 4.4 that the condition is sufficient.
To prove necessity, assume that f is (P × Z)-convex. Then C = cvx (epi f)

is a convex subset of Rn ×R such that C ∩ (P × Z) = epi f . However, we now
know that C is closed, so that actually C = epi cvx f . We also know from the
previous theorem that cvx f � f � cvx f + 1 in P . A point (p, f(p) − 1) does
not belong to epi f and hence not to C. Since C is closed and its boundary is
defined by cvx f , we must have f(p)− 1 < (cvx f)(p), which was to be proved.

We can now take a look again at Examples 4.2 and 4.3.

Example 4.8. In Example 4.2 we find that

(cvx f0)(x) = ˜̃
f0(x) = (cvx f1)(x) = ˜̃

f1(x) = αx, x ∈ R.

Thus cvx f0 � f0 < cvx f0 + 1, but (cvx f0)(0) = 0 �= 1 = f1(0), so that
f1(0) = (cvx f1)(0) + 1. This shows that some condition is necessary in the
theorem.

Example 4.9. In Example 4.3 we also have that ˜̃gA = cvx gA. We find that
(cvx gA)(x) = 1

2x for all x ∈ R when A is nonempty. Therefore 	cvx gA
 �= gA if
A is nonempty but not equal to all of 2Z. In fact, we then have 	(cvx gA)(p)
 =
1
2p < gA(p) = 1

2p + 1 when p ∈ 2Z � A. Still gA is convex if A is an interval of
2Z. When A is empty we have (cvx gØ)(x) = 1

2x + 1
2 .

Given u:Rn → [−∞,+∞] we define ur(x) = u(x) if ‖x‖2 � r and ur(x) =
+∞ otherwise. We also define u[r](x) = max(u(x), ‖x‖22−r). Then ur and u[r] are
of fast growth, and we note that u is convex if and only if all the ur are convex,
or, equivalently, all the u[r] are convex. The functions ur and u[r] decrease to u
as r tends to plus infinity. The same applies to functions f :P → [−∞,+∞] or
f :P → [−∞,+∞]Z.

Corollary 4.10. Let P be a discrete subset of Rn and let a function f :P →
[−∞,+∞]Z be given. Then f is (Zn×Z)-convex if and only if fr = 	cvx fr
 for
all r ∈]0,+∞[, equivalently if and only if f[r] = 	cvx f[r]
 for all r ∈ N, where
fr and f[r] are defined as before the statement of the corollary.

Proposition 4.11. Let E be a vector space and P any of its subsets. If fj,
j ∈ J , are (P ×Z)-convex functions, then sup fj is (P ×Z)-convex. If the index

452 C. O. Kiselman

set J is ordered and filtering to the right, and if (fj)j∈J is a decreasing family
of (P × Z)-convex functions, then its infimum inf fj is (P × Z)-convex as well.

Proof. We note that epi (supj fj) =
⋂

j epi fj . The latter set is (P × Z)-convex
according to Proposition 3.7. Hence supj fj is (P × Z)-convex.

For the second part we note that epis(infj fj) =
⋃

j episfj . Now episu and
epi u are convex at the same time, so it follows from Proposition 3.7 that the
latter set is (P × Z)-convex. Hence epis(infj fj) is (P × Z)-convex.

5 Functions Which Are Both Convex and Concave

A function u such that −u is convex is called concave. A real-valued function
on Rn which is both convex and concave is necessarily affine, i.e., of the form
u(x) = α ·x+β for some α ∈ Rn and β ∈ R. In this section we shall investigate
such functions in the discrete case.

Proposition 5.1. Let P be a nonempty subset of a vector space E and f :P → R
a real-valued function. Given a linear form α ∈ E� and a real number β we let
hα,β be the smallest constant h ∈ [0,+∞] such that

0 � α(p) + β � f(p) � α(p) + β + h, p ∈ P. (5.1)

We let hα = infβ∈R hα,β be the smallest constant h such that (5.1) holds for
some β ∈ R. Then hα = f̃(α) + g̃(−α), where for ease in notation we have
written g for −f . Moreover, hα = hα,β for a unique β, viz. β = −f̃(α).

Proof. The inequality α(p) + β � f(p) for all p ∈ P is equivalent to f̃(α) � −β,
and the inequality f(p) = −g(p) � α(p) + β + h for all p ∈ P is equivalent to
g̃(−α) � β + h. Therefore (5.1) implies that f̃(α) + g̃(−α) � −β + (β + h) = h.

Conversely, if h is a real number and f̃(α) + g̃(−α) � h, then f̃(α) is a real
number: f̃(α) = −∞ would imply that f is identically equal to +∞, which is
excluded by hypothesis, and g̃(−α) = −∞ would imply that f is identically −∞,
which is also excluded by hypothesis; finally, the inequality excludes that f̃(α)
is equal to +∞. Therefore β = −f̃(α) (obviously the best choice of β) yields
f̃(α) � −β and g̃(−α) � β + h, which, as already noted, is equivalent to (5.1).
The infimum of all real h satisfying (5.1) is equal to the infimum of all real h

satisfying f̃(α) + g̃(−α) � h, which completes the proof.

Proposition 5.2. Let E be a vector space and P a subset such that cvxP = E.
Let a real-valued function f :P → R be given, and let h∗ = infα∈E� hα be the
smallest constant such that (5.1) holds for some α ∈ E� and some β ∈ R.
Assume that h∗ is finite. Then −cvx f − cvx (−f) is constant and equal to h∗.

Convex Functions on Discrete Sets 453

Proof. Let h be a number such that α+β � f � α+β +h in P for some α ∈ E�

and some β ∈ R. Then

α + β � u � f � −v � α + β + h in P,

where u = cvx f and v = cvx (−f). Adding v to all members we obtain

α + β + v � u + v � f + v � 0 � α + β + h + v in P. (5.2)

We see that u + v is a convex function which is nonpositive in all of P , thus
also in cvxP , which by hypothesis is equal to E. But such a function must be
constant; let us define ω = −(u + v) � 0. By the same argument, v + α is a
constant γ. We now have γ + β � −ω � 0 � γ + β + h, which shows that h � ω,
and, by taking the infimum over all such h, that h∗ � ω.

Conversely, we note that −ω � f + γ − α � 0, thus α− γ − ω � f � α− γ,
which shows that ω � hα � h∗. We conclude that ω = h∗.

Theorem 5.3. Let E be a vector space and P a subset of E such that cvxP = E.
If both functions f :P → Z and −f are (P ×Z)-convex, then f deviates at most
by 1

2 from an affine function: there exist a linear form α ∈ E� and constants
β, ω ∈ R such that

0 � f(p)− α(p)− β � ω � 1, p ∈ P. (5.3)

The best constant ω is equal to the constant −cvx f−cvx (−f). Also (cvx f)(x) =
α(x)+β and cvx (−f)(x) = −α(x)−β−ω if ω is chosen as the smallest possible
constant.

Proof. We know from Theorem 4.5 that the two convex functions u = cvx f and
v = cvx (−f) satisfy

u � f � u + 1 and v � −f � v + 1 in P. (5.4)

The functions u and v are real-valued convex functions and possess affine mi-
norants. This implies that f satisfies (5.1) with some finite h. From Proposition
5.2 and (5.2) we know that u + v is a constant −ω and that h∗ = ω is the best
constant in (5.1) when we are allowed to vary both α and β.

It remains to be seen that ω � 1. The first inequality in (5.4) can be rewritten
in the notation of the previous proof as

−ω − γ � f − α � −ω − γ + 1,

which shows that h = 1 is an admissible choice; thus the infimum h∗ of all such
h cannot exceed 1.

The last statement follows from the inequality

α(p) + β � u � −v � α(p) + β + ω, p ∈ P,

where we now know that u + v = −ω, so that

454 C. O. Kiselman

α(p) + β + v � −ω � 0 � α(p) + β + ω + v,

which forces α(p) + β + ω + v to be equal to 0. The proof is complete.

We rewrite the theorem in the most common situation:

Corollary 5.4. If both f :Zn → Z and −f are (Zn×Z)-convex, then there exist
α ∈ Rn and β ∈ R such that

0 � f(p)− α · p− β � ω, p ∈ Zn, (5.5)

where ω is the constant −cvx f − cvx (−f) � 1.

Is it possible to take one of the inequalities in (5.5) strict, like in (4.1)? We
shall see that this is not always so.

Example 5.5. In Example 4.2 we see that αp � f0(p) < αp + 1, whereas αp <
f1(p) � αp + 1. In each case we have one strict inequality. Both inequalities are
optimal (ω = 1).

Example 5.6. In Example 4.3 we see that

1
2p � gA(p) � 1

2p + 1, p ∈ Z. (5.6)

If A is empty this can be improved to 1
2p + 1

2 � gØ(p) � 1
2p + 1. If A is equal

to all of 2Z, then we have 1
2p � g2Z(p) � 1

2p + 1
2 . Thus in these two cases the

graph of gA is contained in a strip of height ω = 1
2 . In all other cases we see

that none of the inequalities in (5.6) can be replaced by a strict inequality. We
already remarked above that gA is (Z×Z)-convex if and only if A is an interval
of even numbers. We note that both gA and −gA are (Z×Z)-convex if and only
if A = Ø or A = 2Z or A is a semi-infinite interval.

The example shows that there is a choice between the intervals [0, ω[and
]0, ω] in the inequality (5.3) for different values of p. This choice is made precise
in the following result.

Theorem 5.7. Let f :Zn → Z and −f be (Zn × Z)-convex and let α ∈ Rn and
β ∈ R be such that (5.3) holds with ω = h∗, i.e., with the smallest h possible.
Define

Dj = {(p, f(p)) ∈ Zn × Z; f(p) = α · p + β + jω}, j = 0, 1,

and

Aj = πn+1(Dj) = {p ∈ Zn; f(p) = α · p + β + jω}, j = 0, 1,

where πn+1:Zn×Z → Zn denotes the projection which forgets the last coordinate.
Assume that ω > 0. Then A0 and A1 are disjoint, and D0 and D1 are (Zn×Z)-
convex.

Convex Functions on Discrete Sets 455

Proof. That A0 and A1 are disjoint follows from the fact that f takes different
values in them: f(p) = α ·p+β when p ∈ A0 while f(p) = α ·p+β +ω if p ∈ A1.

The sets T j = {(p, q) ∈ Zn × Z; q = α · p + β + jω} are (Zn × Z)-convex,
as are epi f and hypo f . Therefore so are the intersections D0 = T 0 ∩ epi f and
D1 = T 1 ∩ hypo f .

6 Digital Hyperplanes

The concept of naive discrete line was introduced by Reveillès (1991:48). Such
a line is defined to be the set of all integer points p ∈ Z2 such that 0 �
α1p1 + α2p2 < max (|α1|, |α2|), where α1 and α2 are relatively prime integers.
Generalizing this slightly, we define a naive digital hyperplane as the set of all
points p ∈ Zn which satisfy the double inequality

0 � α · p + β < h,

for some α ∈ Rn � {0} and some β ∈ R, where h = ‖α‖∞. We remark that
one can always interchange the strict and the non-strict inequalities: the set just
defined can equally well be defined by

0 < (−α) · p− β − ω � h.

The precise size of h is important for the representation of the hyperplane as the
graph of a function of n− 1 variables as shown by the following result.

Theorem 6.1. Define

T = {p ∈ Zn; 0 � α · p + β � h} and Ts = {p ∈ Zn; 0 < α · p + β < h}, (6.1)

where α ∈ Rn � {0}, β ∈ R and h > 0, and let

T j = {p ∈ Zn;α · p + β = jh}, j = 0, 1. (6.2)

Let D be a subset of Zn which is contained in T and contains Ts and define
Ds = D ∩ Ts and Dj = D ∩ T j. Fix an integer k = 1, . . . , n and let πk:Zn →
Zn−1 be the projection which forgets the kth coordinate. Then πk

∣∣
D

is injective
if h < |αk|, and πk

∣∣
D

is surjective if h > |αk|. If h = |αk|, then πk

∣∣
D

is injective
if and only if πk(D0) and πk(D1) are disjoint, and πk

∣∣
D

is surjective if and only
if πk(D0 ∪D1) = πk(T 0 ∪ T 1).

Proof. For ease in notation we let k = n and write p′ = (p1, . . . , pn−1) and
similarly for α. Then p belongs to T if and only if

−α′ · p′ − β � αnpn � −α′ · p′ − β + h, (6.3)

and p belongs to Ts if and only if

−α′ · p′ − β < αnpn < −α′ · p′ − β + h. (6.4)

456 C. O. Kiselman

Clearly for every p′ there is at most one pn which satisfies the inequalities if
h < |αn| or if h = |αn| and (α′ · p′ + β)/h is not an integer. Also there is at least
one pn if h > |αn| or if h = |αn| and (α′ ·p′ +β)/h is not an integer. Here it does
not matter whether we use (6.3) or (6.4), so the conclusion holds also for D.

The case when h = |αn| and (α′ · p′ + β)/h is an integer remains to be
considered. Then we see that there are two values of pn which satisfy (6.3) and
none that satisfies (6.4). Hence there is at most one pn such that (p′, pn) belongs
to D = D0 ∪Ds ∪D1 if and only if πk(D0) and πk(D1) are disjoint. There is at
least one pn such that (p′, pn) belongs to D if and only if πk(D0 ∪D1) contains
every point in the projection of T 0 ∪ T 1. This completes the proof.

We do not suppose here that h = ‖α‖∞. However, this is the most natural
case: we then know that πk

∣∣
D

is a bijection for any k such that |αk| = ‖α‖∞
and the conditions on the Dj are satisfied, and that πj

∣∣
D

is surjective for all j
such that |αj | < ‖α‖∞.

In view of Theorems 5.7 and 6.1 it seems reasonable to propose the following
definition.

Definition 6.2. A refined digital hyperplane is a Zn-convex subset D of Zn

which is contained in T and contains Ts, where T and Ts are the slabs defined
by (6.1) for some α ∈ Rn � {0}, β ∈ R, and h > 0; and in addition is such
that, for at least one k such that |αk| = h, the sets Dj = D ∩ T j have disjoint
projections πk(Dj), and πk(D0 ∪D1) = πk(T 0 ∪ T 1).

The naive hyperplanes now appear as a special case, viz. when D0 = T 0, and
D1 is empty, or conversely, and |αk| = ‖α‖∞.

Example 6.3. Define D = (D0 × {0}) ∪ (D1 × {1}), where Dj , j = 0, 1, are
two subsets of Zn−1 such that D1 = Zn−1 � D0. Then D is a refined digital
hyperplane if and only if both D0 and D1 are Zn−1-convex.

Example 6.4. Define D = {(p1, p1) ∈ Z2; p1 � 0} ∪ {(p1, p1 + 1) ∈ Z2; p1 � 0}.
This is a refined digital hyperplane with |α1| = |α2| = ‖α‖∞ = 1. The projection
π1 satisfies the requirements in the definition, but π2 does not.

The following result motivates the definition just given and relates it to the
digitally convex functions we have introduced.

Theorem 6.5. A subset D of Zn is a refined digital hyperplane if and only if it
is the graph of a function f :Zn−1 → Z such that both f and −f are (Zn−1×Z)-
convex.

Proof. Let f be a (Zn−1 ×Z)-convex function such that also −f is (Zn−1 ×Z)-
convex. Then D = graph f is a refined digital hyperplane according to Theorem
5.7.

Conversely, if D is a refined digital hyperplane and h = |αn|, then the pro-
jection πn

∣∣
D

is bijective, and this allows us to define a function f :Zn−1 → Z,
f(p′) = −α′ · p′ − β + jh as in the proof of Theorem 6.1 with j = 0 or 1 be-
ing uniquely determined by the requirements on the Dj . This function as well

Convex Functions on Discrete Sets 457

as its negative are (Zn−1 × Z)-convex, since both its epigraph and its hypo-
graph are Zn-convex. To wit, assuming αn to be positive, its epigraph is equal
to D + ({0} ×N), and its hypograph is equal to D + ({0} × (−N)).

7 Conclusions

In this paper we have studied a simple definition of convex sets in Zn and of
convex functions defined on Zn and having integer values. The definitions are
actually given not only for functions defined on Zn but for other subsets of Rn

as well.
We have shown that the functions so defined share important properties of

convex functions defined on vector spaces, viz. concerning the relation between
convex sets and convex functions, and suprema and infima of families of func-
tions. We have also clarified how much a convex digital function can deviate
from a convex function of real variables.

From several points of view the definitions seem to be satisfying. They are
extremely simple and easy to grasp; nevertheless, there are nontrivial difficulties
in checking whether a given function is convex.

A kind of ambiguity in the values of a convex function is shown to be in-
evitable: in general a convex function is not determined by its restriction to the
complement of a point.

Functions that are both convex and concave are of interest as candidates for
defining digital hyperplanes; in fact we have shown that they define sets which
are precisely the sets satisfying a refined definition of digital hyperplanes.

Acknowledgment. I am grateful to Erik Melin for comments on earlier versions of
the manuscript, to Jean-Pierre Reveillès for clarifying the history of the notion
of a naive digital line, and to an anonymous referee for help with references.

References

Eckhardt, Ulrich 2001. Digital lines and digital convexity. Lecture Notes in Computer
Science 2243, pp. 209 228.

Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude 2001. Fundamentals of Convex
Analysis. Springer-Verlag. X + 259 pp.

Hörmander, Lars 1994. Notions of Convexity. Boston: Birkhäuser. viii + 414 pp.
Melin, Erik 2003. Digital straight lines in the Khalimsky plane. Uppsala University,

Department of Mathematics, Report 2003:30. Accepted for publication in Mathe-
matica Scandinavica.

Reveillès, J[ean]-P[ierre] 1991. Géométrie discrète, calcul en nombres entiers et algo-
rithmique. Strasbourg: Université Louis Pasteur. Thèse d’État, 251 pp.

Rosenfeld, Azriel 1974. Digital straight line segments. IEEE Transactions on Comput-
ers. c-32, No. 12, 1264 1269.

Rosenfeld, Azriel; Klette, Reinhard 2001. Digital straightness. Electronic Notes
in Theoretical Computer Science 46, 32 pp. http://www.elsevier.nl/
locate/entcs/volume46.html

Singer, Ivan 1997. Abstract Convex Analysis. John Wiley & Sons, Inc. xix + 491 pp.

Discrete Surfaces Segmentation into Discrete
Planes

Isabelle Sivignon1, Florent Dupont2, and Jean-Marc Chassery1

1 Laboratoire LIS - Institut National Polytechnique de Grenoble,
961, rue de la Houille Blanche - BP46,

38402 St Martin d’Hères Cedex
{sivignon, chassery}@lis.inpg.fr

2 Laboratoire LIRIS - Université Claude Bernard Lyon 1,
Bâtiment Nautibus - 8, boulevard Niels Bohr,

69622 Villeurbanne Cedex
fdupont@liris.cnrs.fr

Abstract. This paper is composed of two parts. In the first one, we
present an analysis of existing discrete surface segmentation algorithms.
We show that two classes of algorithms can actually be defined according
to discrete surface and plane definitions. In the second part, we prove
the link between the two classes presented. To do so, we propose a new
labelling of the surface elements which leads to a segmentation algorithm
of the first class that can be easily transformed into a segmentation
algorithm of the second class.

1 Introduction

The segmentation of a discrete object surface into pieces of discrete planes is
the first step of more global processes like polyhedrization of the surface [1]
or surface area estimation [2]. This problem can be stated as follows: given a
discrete object, a pair of connectivities used for the object and the background,
and a definition of the discrete surface, label all the surface elements of the object
such that the elements with the same label belong to the same piece of discrete
plane. Each set of surface elements with the same label is called a discrete face.

This statement raises the problem that both discrete surfaces and discrete
planes have to be defined before the segmentation process. In a general way,
there exist two families of discrete surfaces definition: either the voxels or the
surfels are the surface elements. In the same way, two types of discrete planes
are mainly used: the naive planes and the standard planes.

In the literature, those discrete surface and discrete plane definitions are
all used in segmentation algorithms, but most of the time, few arguments are
given to justify the use of one definition instead of another. Some authors even
propose several algorithms using different planes and surfaces definitions, but did
not explore the relation between the different algorithms [3]. Indeed, by now, no
work has been accomplished in order to study the link between, first, the discrete

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 458–473, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Discrete Surfaces Segmentation into Discrete Planes 459

surface and discrete plane definitions, and second, the segmentation processes
that use different kinds of discrete planes.

In Section 2, we define those discrete surfaces and point out the links between
the surfaces and the different types of discrete planes. Then, we propose a short
overview of existing segmentation algorithms, in relation with the surface and
plane definitions given previously. Next, in Section 3, we recall a segmentation
algorithm we proposed in a previous work. This algorithm uses naive planes over
the surface voxels and is quite different from existing algorithms since the voxels’
faces are labelled instead of the voxels themselves. We moreover show how the 6-
connectivity between the object voxels can be handled in this algorithm. Finally,
in Section 4, we propose a transformation from this segmentation algorithm
with naive planes into a segmentation algorithm with standard planes. This
transformation shows that the two segmentation processes are in fact equivalent.
Some image results are given before a few words of conclusion.

2 Different Discrete Planes for Different Kind of Surfaces

2.1 Two Types of Surfaces

The two existing approaches differ by the surface elements considered: the surface
elements are either voxels (dimension 3) or voxels’ faces (dimension 2).

In his PhD thesis, Perroton [4] calls those approaches homogeneous and het-
erogeneous respectively, since in the first one the surface elements are space
elements, whereas in the second one the dimension of the surface elements is
lower than the dimension of the discrete space.

Homogeneous Approach. In 1982, a definition of discrete surface in dimension n
is proposed by Udupa et al. [5], and a surface tracking algorithm is described.
Nevertheless, no Jordan’s theorem proving that this surface separates the object
voxels from the background voxels has been shown with this definition. The
year before, Morgenthaler et al. [6] gave a local definition of a discrete surface,
and a global Jordan’s theorem based on this definition is shown. Malgouyres
also proposed [7] a local definition for 26-connected discrete objects with a 6-
connected background. A Jordan’s theorem is also shown and the link between
Morgenthaler’s surfaces is stated [8, 7]. Another surface definition involving n-
dimensional surface elements has been recently proposed in [9], where separating
pairs of connectivity are studied according to this definition.

Nevertheless, this approach causes some problems [4]: first, the surface of an
object and the surface of the background are different, and second, for some
objects containing a cavity, the two surfaces expected (two surfaces should sepa-
rate the object from the two background components: the cavity, and the infinite
background) may have voxels in common.

Heterogeneous Approach. This approach is based on the abstract cellular com-
plex introduced by Kovalevsky [10] for discrete images topology. In dimension
3, the following cells are defined (see Figure 1(a)):

460 I. Sivignon, F. Dupont, and J.-M. Chassery

– voxel: cell of dimension 3
– surfel: cell of dimension 2
– linel: cell of dimension 1
– pointel: cell of dimension 0.

pointel

linel

surfel

voxel

(a)

v̄

s

v

(b)

Fig. 1. (a) Cellular decomposition of a voxel. (b) A surfel defined by two 6-connected
voxels

Surfels can also be defined as pairs of voxels:

Definition 1. A surfel is the common face of a couple of 6-connected voxels.
We denote s = {v, v̄} the surfel defined by the two 6-connected voxels v and v̄.

The surface of an object is directly derived from this definition:

Definition 2. Let O be a 3D discrete object. The surface of O is defined as the
set of surfels s = {v, v̄} such that v ∈ O and v̄ /∈ O.

In 1992, Herman [11] generalizes this definition to any dimension. This defi-
nition has moreover been used to write surface tracking algorithms: first, Artzy
et al. [12] proposed a tracking algorithm for 18-connected objects; then, Gordon
and Udupa [13] extend this algorithm for 6-connected objects improving it; in
1994, Udupa [14] adds a connectivity definition over surfels, and proposes a very
efficient tracking algorithm; in [15], Perroton describes a parallel surface tracking
algorithm for 26-connected objects.

In the following, we will see how this definition may be used in two different
ways in the context of surface segmentation.

2.2 Which Planes for Which Surfaces?

In a segmentation process, the discrete points of the object surface are labelled
according to the discrete face they belong to. In the literature, two main ap-
proaches have been developed: the discrete points are either the voxels or the
pointels of the object.

The definition of a discrete surface given in Definition 2 states that the surface
is composed of all the surfels s = {v, v̄} such that v ∈ O and v̄ /∈ O. From this
definition, we derive that the segmentation is done over the pointels of the object
surface. Nevertheless, another point of view is given by the definition of the inner
boundary of an object:

Discrete Surfaces Segmentation into Discrete Planes 461

Definition 3. Let O be a 3D discrete object. The inner boundary of O is defined
as:

II(O) = {v | {v, v̄} is a surfel of O’s surface}

The voxels of II(O) are the underlying voxels of the surface surfels. When
a segmentation is done over the object voxels, the voxels of II(O) are usually
labelled.

Let us recall the analytical definition of a discrete plane [16, 17]:

Definition 4. A discrete plane of parameters (a, b, c, μ) (a, b, c and μ belong
to Z and a, b and c are relatively prime) and thickness ω is the set of voxels
(x, y, z) verifying the following inequalities:

0 ≤ ax + by + cz + μ < ω

The thickness parameter ω defines many plane classes, but two types of dis-
crete planes are mainly used in the literature. When ω = max(|a|, |b|, |c|), the
discrete plane is called naive, and when ω = |a| + |b| + |c|, the plane is called
standard. Naive planes are the thinnest planes without 6-connected holes, and
standard planes are the thinnest planes without tunnels [17]. For further infor-
mation about digital planarity, see for instance [18].

Table 1 presents the links between discrete planes and discrete surfaces. On
one hand, if the discrete points are the voxels of the inner boundary, then naive
planes are used for the segmentation. Indeed, the voxels that are 18-connected
but not 6-connected with the background are needed for a segmentation with
standard planes, but do not belong to the inner boundary of the object. On the
first line of the table, a naive plane recognition has been done over the inner
boundary of the object: the voxels of II(O) are labelled.

On the other hand, the pointels belonging to the object’s surface are 6-
connected, which suits well to a segmentation with standard planes. On the
second line of the table, a standard plane recognition has been done over the
pointels of the surfel boundary of the object: a surfel is colored if and only if its
four adjacent pointels belong to the discrete face.

2.3 Short Overview of Existing Algorithms

The first segmentation algorithm was proposed by Debled-Rennesson [19]. She
applies the naive plane recognition algorithm she proposed on the inner boundary
of a discrete object. However, her algorithm works only for objects having known
symmetries. With a totally different idea, Vittone proposes in [20] a segmentation
algorithm based on the fact that any naive plane can be decomposed into basic
structures [21]. But only a few preliminary results are given and this method
has not been further extended by now. The following year, Vittone [22] wrote
another segmentation algorithm using the naive plane recognition algorithm she
proposed. This recognition algorithm is based on a dual transformation, which
we also use in our work. This will be detailed in the next section. In [3], Pa-
pier proposes another segmentation algorithm based on Debled-Rennesson naive

462 I. Sivignon, F. Dupont, and J.-M. Chassery

Table 1. Links between the discrete surfaces and the discrete planes used for the
segmentation process

Surface definition
Discrete
points

Discrete planes Example

Inner boundary Voxels Naive planes

Set of surfels Pointels Standard planes

plane recognition algorithm. However, his algorithm does not give satisfactory
results since many small discrete faces (with a few voxels) are recognized.

This observation led him to propose a segmentation algorithm of the surfel
boundary with standard planes [1]. The discrete faces recognized are forced to be
connected and homeomorphic to disks in order to be used in a polyhedrization
process. A Fourier-Motskin elimination algorithm is used to recognize the stan-
dard planes, which makes the overall algorithm complexity high. Moreover, many
small discrete faces are still recognized by this algorithm, and some tricks like
discrete face size limitations are proposed to better the results. Finally, Klette
and Sun proposed in [2] a segmentation algorithm close to the one of Papier in
order to estimate the object surface area. In this case, no particular constraint
over the shape of the discrete faces is required, except the connectivity, which is
implicitly obtained since a breadth-first tracking of the surfels is done.

For the algorithms of the first paragraph, a segmentation of the inner bound-
ary is done, and the voxels are labelled. The algorithms of the second paragraph
use a standard plane segmentation of the object pointels, and a surface surfel is
labelled by a discrete face when its four adjacent pointels belong to the face.

3 Surfel Labelling Using Naive Planes

In this section, we propose a segmentation algorithm of the inner boundary of
an object using naive planes. But instead of labelling the voxels of the inner
boundary, we label only some of the boundary’s surfels. Indeed, all the exist-
ing algorithms using naive planes label the voxels of the object inner boundary.
Nevertheless, the inner boundary definition is derived from the surfel surface def-

Discrete Surfaces Segmentation into Discrete Planes 463

inition. Thus the surface elements are the surfels, and it seems more appropriate
to label the surfels. In Section 4, we show how this segmentation of the inner
boundary can be easily transformed into a segmentation into standard planes,
which link the two segmentation approaches existing by now.

Since the final segmentation uses standard planes, we consider a 6-
connectivity relationship for the voxels of the object. Indeed, 18- and 26- con-
nectivities do not enable the description of the object surfel surface as a 2-
dimensional combinatorial manifold, which is inconsistent with the use of stan-
dard planes [23].

3.1 Algorithm Description

Part of this algorithm is presented in [24] and we first recall here the main points
of this method.

The general idea of this algorithm is to get the following labelling of the
surface surfels: if a surfel s = {v, v̄} of the surface (v belongs to the object and
v̄ does not) is labelled with the discrete face f , then there exists a Euclidean
plane p crossing the segment [vv̄[. In other words, the discretization of the plane
p with the OBQ discretization [25] scheme contains the voxels of f .

In the following, we denote by l one direction of the set {(1, 0, 0), (−1, 0, 0),
(0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}. Then for each voxel v of the inner bound-
ary of an object, there exist at least one direction l such that the voxel v + l
does not belong to the object. The naive plane recognition used is a directional
recognition algorithm:

Definition 5. Let V be a set of voxels. The directional recognition in direction
l computes the set of Euclidean planes crossing all the segments [vv̄[such that
v ∈ V and v̄ = v + l.

This recognition is achieved using Vittone’s naive plane recognition algorithm
[22]. This algorithm is based on a dual transformation. Consider for instance
the direction l = (0, 0, 1). Then the Euclidean planes of parameters (α0, β0, γ0)
which cross the segment [v, v+l[where v = (x, y, z) are those fulfilling the double
inequality 0 ≤ α0x + β0y + z + γ0 < 1. Then, in the parameter space (α, β, γ),
the set of Euclidean planes computed by the directional algorithm on a set V
is a convex polyhedron defined as the intersection of all the double inequalities
related to the voxels of V .

But this recognition algorithm enables to label only the surfels s = {v, v′}
where v′ = v+l if l is the direction of recognition (see Figure 2(a)). A second step
of the algorithm is to label the inner surfels of the plane, which are the surfels
sharing two edges with surfels already labelled by the directional algorithm (see
Figure 2(b) and (c)). It is easy to prove that the Euclidean planes that cut the
segments related to the two surfels defining an inner surfel also cut the segment
related to this inner surfel.

After this short presentation of the recognition process used, let us see how
this algorithm is applied on a surface. Since the quality of the segmentation is
not the main point of this paper, and for the sake of clarity of the rest of this

464 I. Sivignon, F. Dupont, and J.-M. Chassery

x
y

z

(a)

v+l

v v’=v+l’

v’−l

inner surfel

(b) (c)

Fig. 2. Labelling of the surfels of a piece of plane of parameters (1, 3, −5, 0) using
the directional algorithm in direction (0, 0, 1) (from [24]): (a) just after the directional
algorithm; (b) illustration of an inner surfel; (c) after the labelling of inner surfels

work, we do not present the algorithm described in [24], but quickly explain a
simple method. A seed voxel v0 is chosen for the discrete face to recognize in
direction l. Neighbour voxels are added one by one if they belong to the same
naive plane as the voxels of f and if they fulfill the condition presented in the
next paragraph. This process starts over with a new seed voxel until all the
surfels are labelled.

3.2 6-Connected Objects

Since 6-connectivity is considered for the discrete object, a discrete face recog-
nized on the object surface should not be split over two different 6-connected
components. Since naive planes are 18-connected, we have to define the cases
where two voxels are 18-connected in a 6-connected object.

Definition 6. Let v and v′ be two voxels of a 6-connected object O. Then v and
v′ are 18-neighbours in O if and only if one of the following two conditions is
fulfilled (see Figure 3):

– v and v′ are 6-connected (they share a surfel)
– v and v′ share a linel, and one out of the other two voxels sharing this linel

belongs to O.

Now consider a directional recognition in direction l.

Definition 7. Two voxels v and v′ are l-neighbours in a 6-connected object O
if only if they fulfill the following three conditions:

– v and v′ belong to the inner boundary of O and the voxels v + l and v′ + l
do not belong to O

– the projection of v and v′ along direction l are 4-connected
– v and v′ are 18-neighbours in O (see Definition 6).

Figure 4 presents some examples of voxels that are or are not l-neighbours.
Finally, during the segmentation process, a new voxel can be added to a discrete
face f recognized in direction l if and only if it is l-neighbour with a voxel of f .

Discrete Surfaces Segmentation into Discrete Planes 465

v v′

(a)

v

v1

v2

v′

(b)

Fig. 3. The voxels v and v′ are 18-connected in a 6-connected object if and only if they
are in configuration (a) or if v1 or v2 belongs to the object in configuration (b)

l

v

v′

(a)

v

v′

(b)

v

v′

(c)

v

v′

(d)

v

v′

(e)

Fig. 4. The two voxels v and v′ are l-neighbours (see l on the left) only in configuration
(a) : in (b), the first condition of Definition 7 is not fulfilled since the surfel {v, v + l}
does not belong to the surface; in (c), the second condition is not fulfilled since the
projections of v and v′ along direction l are not 4-connected; in (d), the two voxels dot
not fulfill the conditions of Definition 6; in (e), the two last conditions are fulfilled, but
like in (b), the first one is not

Examples of segmentation results using 6-connectivity are proposed in Figure
5. The recognition in direction (0, 0, 1) only has been computed on those exam-
ples. In (a), one unique plane is recognized; in (b), two planes are recognized
since the object is composed of two 6-connected components; in (c), three planes
are recognized, one for each 6-connected component.

3.3 Results

Some results of the algorithm proposed in [24] with the 6-connectivity constraint
are presented in Figure 6. The results obtained with the simple algorithm pre-
sented in this paper simply contain more small faces. The first image (a) is an
ellipsoid of parameters (20, 16, 10) which is composed of 4190 surface surfels. 131
discrete faces are recognized on this surface, and 15 among them are composed of
less than 5 surfels. The image in (b) is a microscopic scale view of part of a bone.
Its surface is composed of 5298 surfels, and 201 discrete faces are recognized by
the algorithm. 65 discrete faces are composed of less than 5 surfels.

466 I. Sivignon, F. Dupont, and J.-M. Chassery

(a) (b) (c)

Fig. 5. Influence of the 6-connectivity on the segmentation computed

(a) (b)

Fig. 6. Results of the segmentation algorithm of the inner boundary with naive planes:
(a) an ellipsoid of parameters (20, 16, 12) and (b) a piece of bone

4 Segmentation Using Standard Planes

In this section, we show that the segmentation using naive planes over the inner
boundary voxels presented in the previous section can be very easily transformed
into a segmentation of the surface pointels into standard planes.

4.1 Transformation

Let us consider an infinite 3D discrete object defined as a half-space bounded by
a naive plane of parameters (a, b, c, μ). Let us moreover suppose that the normal
vector of this plane is directed towards the discrete object itself. Then we study
the surfel surface of this object (see Figure 7(a)).

We use here the definition of standard plane proposed in [26] and directly
derived from the standard digitization scheme:

Definition 8. Let P be a Euclidean plane defined by the equation ax+by+cz+
μ = 0, with a,b,c and μ integers. Then the standard digitization of P is the set
of voxels (x, y, z) such that:

−|a|+ |b|+ |c|
2

≤ ax + by + cz + μ <
|a|+ |b|+ |c|

2

Discrete Surfaces Segmentation into Discrete Planes 467

x

z

y

(a)

x

y
z p

V

(b)

Fig. 7. (a) Discrete half-space bounded by the naive plane of parameters (2, 3, −5).
The surfels of the surface are in grey. (b) Illustration of the bijective transformation
between a voxel V and a pointel p for given plane parameters

if (a > 0) or (a = 0 and b > 0 or (a = 0 and b = 0 and c > 0) (called standard
orientation). Otherwise, the left inequality is strict whereas the right one is not.

Note that the possible values of ax + by + cz + μ are centered around zero.
The following theorem makes the link between the naive plane parameters and
the pointels of the surface.

Theorem 1. Let P be a naive plane of parameters (a, b, c, μ) and S be the
surfel surface described as above. Then the pointels belonging to S belong to
the standard plane of parameters (a, b, c, μ′) in the discrete grid translated by
t = (1

2 ,
1
2 ,

1
2), with:

μ′ = τ − |a|+ |b|+ |c|
2

− v.(a, b, c)

where

• τ =
{

μ if (a > 0) or (a = 0 and b > 0) or (a = 0 and b = 0 and c > 0)
μ + 1 otherwise

• v = − 1
2 (sgn(a), sgn(b), sgn(c)) + (1

2 ,
1
2 ,

1
2)

(sgn(x) is equal to 1 if x > 0, −1 if x < 0, and 1 or −1 if x = 0).

Proof. This proof works by construction. Figure 8 illustrates the different steps
of this construction from a naive 2D segment to a standard 2D segment. This
example will be detailed in the next paragraph.

Since we transform a naive plane into a standard plane, the first thing is to
thicken the naive plane P . This is equivalent to adding some voxels that fulfill
larger inequalities (the thickness determines the bounds of the inequalities in a
discrete plane definition). This is done in three steps:

468 I. Sivignon, F. Dupont, and J.-M. Chassery

• Since the inequalities defining a standard plane depend on the signs of the
parameters, a preprocessing step is required when (a < 0) or (a = 0 and
b < 0) or (a = 0 and b = 0 and c < 0). We use the fact that the two double-
inequalities 0 ≤ ax + by + cz + μ < ω and 0 < ax + by + cz + μ + 1 ≤ ω are
equivalent when integer values are considered to do the parameters translation
(a, b, c, μ) → (a, b, c, μ + 1) in the case of a non standard orientation. This
operation simply swap the large and strict inequalities in the discrete plane
definition. In the following, we suppose that the parameters are in a standard
orientation since the two cases are similar.
• The thickness of a standard plane is |a|+ |b|+ |c|. Since we supposed that the

normal vector is directed towards the object, the voxels V = (x, y, z) fulfilling
the condition max(|a|, |b|, |c|) ≤ ax+by+cz+μ < |a|+ |b|+ |c| must be added
to thicken the plane inside the discrete object.
• At this point, our plane is defined by the double inequality 0 ≤ ax+ by+ cz+

μ < |a|+ |b|+ |c|. To be consistent with Definition 8, a last translation of the
parameters of vector (0, 0, 0,− |a|+|b|+|c|

2) must be done.

All the voxels of the discrete object that are 18-connected or 26-connected
with the background are added by those transformations, and the translation
(a, b, c, μ) → (a, b, c, μ(+1) − |a|+|b|+|c|

2) has been done. The next part of the
transformation consists in moving the discrete grid such that the discrete points
are now the pointels.

A one-to-one and onto transformation is defined between the voxels of the
plane P after thickening and the pointels of the surface: the pointel p = (x −
1
2 sgn(a), y − 1

2 sgn(b), z − 1
2 sgn(c)) is associated to the voxel V = (x, y, z). This

transformation is of course bijective but we must prove that if V belongs to
P , then p belongs to the surface of O. Let us consider a plane of parameters
(a, b, c) with a > 0, b > 0 and c < 0. The other cases are symmetrical. Then the
transformation maps the point V to the pointel p = (x − 1

2 , y −
1
2 , z + 1

2) (see
Figure 7(b)). Only three types of voxels may appear in the thickened discrete
plane P :

– : 6-connected with the background

– : 18-connected with the background

– : 26-connected with the background

For each case, the pointels that belong to the surface are underlined. We
note that for each voxel (x, y, z) of the thickened plane P , the pointel (x− 1

2 , y−
1
2 , z + 1

2) always belongs to O’s surface. For other parameters’ signs a similar
construction can be done, and finally, the transformation always maps a voxel of
P into a pointel of the surface. If one of the parameters a, b or c is equal to zero,
then two pointels of each voxel of P are always on O’s surface. Then two bijective
transformations are possible and correspond to the two possible values of sgn(x)
when x = 0. When two out of the three parameters are equal to zero, then 4

Discrete Surfaces Segmentation into Discrete Planes 469

pointels of each voxel belong to O’s surface, and then four transformations are
possible.

This transformation defines the first part of the translation vector v of the
theorem, and a simple translation of the grid of the vector t = (1

2 ,
1
2 ,

1
2) leads to

the final result. ��

The following Corollary shows how to transform a segmentation with naive
planes into a segmentation with standard planes:

Corollary 1. Let f be a discrete face recognized on the inner boundary of a
discrete object O with the algorithm presented in Section 3. If the OBQ dis-
cretization of the Euclidean plane of parameters (a, b, c, μ) contains the voxels of
f , then the standard discretization of the plane (a, b, c, μ′) (where μ′ is defined
as in Theorem 1) contains all the pointels belonging to the labelled surfels of f ,
in a discrete grid translated by t = (1

2 ,
1
2 ,

1
2).

The proof of this corollary is straightforward from Theorem 1.

4.2 Example

Figure 8 is an example of the transformation steps of Theorem 1 for a discrete
segment. The first column represents the discrete segment, the second one rep-
resents the set of Euclidean solution lines in the parameter space, and the third
one the parameters of the Euclidean lines related to the vertices of the convex
polygon of the parameter space.

On the first line, a segment of the naive line of parameters (2,−3, 3) is rep-
resented. On the second line, the naive segment has been thickened in order to
get a standard segment. The parameters translation corresponding to this thick-
ening is done. The third line represents the standard pointel segment derived
from the standard voxel segment of the second line. A second translation of the
Euclidean planes parameters is accomplished.

4.3 Results

Since the transformation presented above only concerns the parameters of the
Euclidean planes recognized, visual results are hard to show. Nevertheless, Fig-
ure 9 presents a result of this transformation for a catenoid 1. In (a), the surfel
labelling using a naive plane segmentation over the inner boundary is repre-
sented: all the voxels containing surfels of the same color belong to the same
discrete naive plane. In (b), the pointel labelling is represented after the trans-
formation defined in Theorem 1: all the pointels with the same color belong to
the same standard discrete plane. The same colors are used for the two images,
so that the comparison is easier. Note that since each pointel belongs to several
discrete faces, its color is the one of the first recognized face it belongs to.

1 This image has been generated using the volgen program available on
http://www.cb.uu.se/tc18/code_data_set/Code/Volgen/

470 I. Sivignon, F. Dupont, and J.-M. Chassery

Discrete segment
Solution Euclidean planes in the

parameter space (α, β)

Parameters (a, b, μ) of the
solution Euclidean lines ax+
by + μ = 0

y

x

1

2

4/3

3/2

10 2/31/2 3/4

B

DA

C

• A = (2, −3, 3)
• B = (2, −3, 4)
• C = (1, −2, 3)
• D = (3, −4, 4)

⏐⏐� μ − |a|+|b|
2

y

x

1

0

1/8
1/6

1/2

3/4

10 2/31/2 3/4

A

B

C

D

• A = (2, −3, 1
2)

• B = (2, −3, 3
2)

• C = (1, −2, 3
2)

• D = (3, −4, 1
2)

↓ μ − b

y

x

2

1

9/8
7/6

3/2

7/4

10 2/31/2 3/4

A

B

C

D

• A = (2, −3, 7
2)

• B = (2, −3, 9
2)

• C = (1, −2, 7
2)

• D = (3, −4, 9
2)

Fig. 8. All the steps from a naive voxel segment to a standard pointel segment

5 Conclusion

In this paper, we showed that two classes of discrete surface segmentation al-
gorithms can actually be considered: the first one consists in looking for naive
planes over the surface inner boundary, and the second one uses standard planes

Discrete Surfaces Segmentation into Discrete Planes 471

(a) (b)

Fig. 9. Segmentation of a discrete catenoid surface: (a) surfel labelling; (b) pointel
labelling

over the surface surfels. We recalled the different existing segmentation algo-
rithms highlighting the fact that they all belong to one of those two classes.

The second part of this work was to show that those two types of segmentation
are equivalent, and we expressed the transformation that changes from one to
the other. To do this study, we proposed a segmentation algorithm using naive
planes and generating a surfel labelling for 6-connected discrete objects.

Since the two segmentations are equivalent, an interesting future work would
be to propose a complete study on the quality of segmentation algorithms, point-
ing out the influence of the choice of the first voxels of the discrete faces for
instance. Such a study is very useful since the quality of the surface segmenta-
tion induces part of the quality of the polyhedrization or surface area estimation
based on it.

References

1. Françon, J., Papier, L.: Polyhedrization of the boundary of a voxel object. In
Bertrand, G., Couprie, M., Perroton, L., eds.: Discrete Geometry for Computer
Imagery. Volume 1568 of Lect. Notes on Comp. Sci., Marne-la-Vallée, France,
Springer-Verlag (1999) 425–434

2. Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area
estimation. In Arcelli, C., Cordella, L.P., Sanniti di Baja, G., eds.: International
Workshop on Visual Form. Volume 2059 of Lect. Notes on Comp. Sci., Capri, Italie,
Springer-Verlag (2001) 356–366

3. Papier, L.: Polyédrisation et visualisation d’objets discrets tridimensionnels. PhD
thesis, Université Louis Pasteur, Strasbourg, France (1999)

4. Perroton, L.: Segmentation parallèle d’images volumiques. PhD thesis, Ecole
Normale Supérieure de Lyon, Lyon, France (1994)

472 I. Sivignon, F. Dupont, and J.-M. Chassery

5. Udupa, J.K., Srihari, S.N., Herman, G.T.: Boundary detection in multidimension.
IEEE Trans. on Pattern Anal. and Mach. Intell. 4 (1982) 41–50

6. Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images.
Information and Control 51 (1981) 227–247

7. Malgouyres, R.: A new definition of surfaces of Z
3. A new 3D Jordan theorem.

Theoretical Computer Science 186 (1997) 1–41
8. Bertrand, G., Malgouyres, R.: Some topological properties of discrete surfaces.

In Miguet, S., Montanvert, A., Ubéda, S., eds.: Discrete Geometry for Computer
Imagery. Volume 1176 of Lect. Notes on Comp. Sci., Lyon, France, Springer-Verlag
(1996) 325–336

9. Brimkov, V., Klette, R.: Curves, surfaces and good pairs. Technical Report CITR-
TR-144, CITR, Auckland (NZ) (2004)

10. Kovalevsky, V.: Finite topology as applied to image analysis. Computer Vision,
Graphics and Image Processing 46 (1989) 141–161

11. Herman, G.T.: Discrete multidimenional jordan surfaces. Computer Vision, Graph-
ics and Image Processing 54 (1992) 507–515

12. Artzy, E., Frieder, G., Hreman, G.T.: The theory, design, implementation and
evaluation of a three-dimensional surface detection algorithm. Computer Graphics
and Image Processing 15 (1981) 1–24

13. Gordon, D., Udupa, J.K.: Fast surface tracking in three-dimensional binary images.
Computer Vision, Graphics and Image Processing 45 (1989) 196–214

14. Udupa, J.K.: Multidimensional digital boundaries. Computer Vision, Graphics
and Image Processing 56 (1994) 311–323

15. Perroton, L.: A new 26-connected objects surface tracking algorithm and its related
pram version. Journal of Pattern Recognition and Artificial Intelligence 9 (1995)
719–734

16. Réveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique.
Thèse d’etat, Université Louis Pasteur, Strasbourg, France (1991)

17. Andrès, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical
Models and Image Processing 59 (1997) 302–309

18. Brimkov, V., Coeurjolly, D., Klette, R.: Digital Planarity - A Review. Technical
Report CITR-TR-142, CITR, Auckland (NZ) (2004)

19. Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets. PhD
thesis, Université Louis Pasteur, Strasbourg, France (1995)

20. Vittone, J.: Caractérisation et reconnaissance de droites et de plans en géométrie
discrète. PhD thesis, Université Joseph Fourier, Grenoble, France (1999)

21. Vittone, J., Chassery, J.M.: (n − m)-cubes and farey nets for naive planes under-
standing. In Bertrand, G., Couprie, M., Perroton, L., eds.: Discrete Geometry for
Computer Imagery. Volume 1568 of Lect. Notes on Comp. Sci., Marne-la-Vallée,
France, Springer-Verlag (1999) 76–87

22. Vittone, J., Chassery, J.M.: Recognition of digital naive planes and polyhedriza-
tion. In: Discrete Geometry for Computer Imagery. Volume 1953 of Lect. Notes
on Comp. Sci., Springer-Verlag (2000) 296–307

23. Françon, J.: Sur la topologie d’un plan arithmétique. Theoretical Computer Science
156 (1996) 159–176

24. Coeurjolly, D., Guillaume, A., Sivignon, I.: Reversible discrete volume polyhedriza-
tion using marching cubes simplification. In Latecki, L.J., Mount, D.M., Wu, A.Y.,
eds.: Vision Geometry XII. Volume 5300 of Proceedings of SPIE., San Jose (2004)
1–11

25. Groen, F.C.A., Verbeek, P.W.: Freeman-coe probabilities of object boundary quan-
tized contours. Computer Graphics and Image Processing 7 (1978) 391–402

Discrete Surfaces Segmentation into Discrete Planes 473

26. Andrès, E.: Defining discrete objects for polygonlization : the standard model. In
Braquelaire, A., Lachaud, J.O., Vialard, A., eds.: Discrete Geometry for Computer
Imagery. Volume 2301 of Lect. Notes on Comp. Sci., Bordeaux, France, Springer-
Verlag (2002) 313–325

Sketch-Based Shape Retrieval Using Length and
Curvature of 2D Digital Contours

Abdolah Chalechale, Golshah Naghdy, and Prashan Premaratne

School of Electrical, Computer & Telecommunications Engineering,
University of Wollongong, NSW 2522, Australia

{ac82, golshah, prashan}@uow.edu.au

Abstract. This paper presents a novel effective method for line segment extrac-
tion using chain code differentiation. The resulting line segments are employed
for shape feature extraction. Length distribution of the extracted segments along
with distribution of the angle between adjacent segments are exploited to extract
compact hybrid features. The extracted features are used for sketch-based shape
retrieval. Comparative results obtained from six other well known methods within
the literature have been discussed. Using MPEG-7 contour shape database (CE-
1) as the test bed, the new proposed method shows significant improvement in
retrieval performance for sketch-based shape retrieval. The Average Normalized
Modified Retrieval Rank (ANMRR) is used as the performance indicator. Al-
though the retrieval performance has been improved using the proposed method,
its computational intensity and subsequently, its feature extraction time are slightly
higher than some other methods.

1 Introduction

Humans can easily recognize objects from their shapes. Many applications including
computer vision, object recognition, image retrieval, and indexing are likely to use
shape features. Shape feature extraction has received a great deal of attention over the
last decades [1–3]. In content-based image retrieval (CBIR), shape is exploited as one of
the primary image features for retrieval purposes [4, 5]. Shape representation techniques
fall into three main categories: feature vector approach (most popular technique), trans-
formation approach, and relational approach. The choice of a particular representation
is usually driven by application needs. These three categories are briefly explained in
the following.

A shape is represented as a numerical vector in the feature vector approach. The
difference between two shapes is evaluated based on a suitable distance. The Euclidean
distance is the most widely used distance metric. However, other distances such as
Hausdorff distance can also be employed. In the transformation methods [6, 7], shapes
are distinguished by measuring the effort needed to transform one shape to another.
Similarity is measured as a transformation distance. The methods in this category perform
run-time evaluation of shape differences and do not support indexing, their retrieval
performances are inefficient. In the relational approach [5, 8], complex shapes (or the
scene) are broken down into a set of salient component parts. These are individually

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 474–487, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Sketch-Based Shape Retrieval Using Length and Curvature of 2D Digital Contours 475

described through suitable feature vectors. The overall description includes both the
description of the individual parts and the relation between them. This approach is
not commonly used in shape-based retrieval but, instead, is widely employed for the
recognition of complex shapes or scenes.

Techniques in the feature vector approach are generally divided into two different
classes: contour-based and region-based [9]. The former exploits shape boundary in-
formation to generate feature vectors while the latter uses the whole area of the shape.
Contour-based techniques have gained more popularity based on the simplicity of shape
contour feature acquisition and the sufficiency of the contour to represent shape in many
applications. The Fourier descriptor (FD) and autoregressive methods, two represen-
tative techniques in this class, are compared in [10]. The curvature scale space (CSS)
technique is adopted by MPEG-7 for extraction of contour-based descriptor [11]. It is
computationally expensive and highly dependent on the contour continuity.

In region-based techniques, all the pixels within a shape region are taken into account
to obtain the shape representation. Moment descriptors are commonly employed in
region-based methods to describe shape. Zernike moments and angular radial transform
(ART) methods are exploited in MPEG-7 to extract region-based shape descriptors
[12, 11]. Recently Hoynck and Ohm [13] proposed a modification in the ART descriptor
extraction procedure for considering partial occlusions.

The 2D Fourier transform in polar coordinates is employed for shape description in
[14]. Its superiority over 1D Fourier descriptors, curvature scale space descriptor and
Zernike moments has been shown in [15]. The polar Fourier descriptor (PFD) is extracted
from frequency domain by exploiting two-dimensional Fourier transform on polar raster
sampled image. It is able to capture image features in both radial and spiral directions.

Although much work has been done in the area of image retrieval using shape queries,
very few have considered hand-drawn shapes as the input query. Matusiak et al. [16] and
Horace et al. [17] have previously reported using rough and simple hand-drawn shape
as input query for sketch-based shape retrieval. The approach in [16] is based on the
curvature scale space technique that is computationally expensive and has been shown
to be less efficient than the Fourier descriptors and Zernike moments techniques[15]. In
[17] several dominant points are extracted for each contour using information derived
from the convex hull and the contour curvature.

The angular partitioning (AP) method has been used for sketch-based image retrieval
[18]. In this approach an image consisting of a non-homogeneous background and several
objects is analyzed for the retrieval task. Scale and rotation invariant features are extracted
using (a) spatial distribution of edge pixels in an abstract image, and (b) the magnitude
of coefficients of a 1D Fourier transform. The abstract image is generated from original
image by a statistical approach and from sketched query by a morphological thinning.
An enhanced version of the approach which uses a more precise partitioning scheme
has been recently proposed [19]. Here, the abstract image is overlayed by an angular
radial partitioning (ARP) mask. The invariance features are extracted using several 1D
Fourier transforms applied to the concentric partitions. The essence of an image including
one isolated shape is different from an image containing multiple objects. The former
possesses an image plane which is more scarce than the image plane of the latter which
has more pixels therein. Hence, the philosophy behind angular or radial partitioning,

476 A. Chalechale, G. Naghdy, and P. Premaratne

used in the AP and ARP methods, is not adequate for shape description even though it
is reasonably sufficient for multi-component images.

In this paper, we propose a new method for contour polygonization using chain code
representation of the boundary shapes. The chain coded curve is filtered first for noise
elimination. Next, it is submitted to a shifting operation to reduce wraparound effect fol-
lowed by applying a Gaussian filter to smooth the curve. Finally, curvature/break points
are determined using curve derivation. The result is a line segment set which is exploited
for shape feature extraction using the existing length and curvature distributions. The
hybrid features are integrated to generate a distance measure for measuring the similarity
between the hand-drawn sketches and the original shapes.

The outline of the paper is as follows: the new proposed method is detailed in the next
section followed by comparative results and discussion in Section 3. Section 4 concludes
the chapter.

2 Contour Polygonization Using Chain Code Differentiation
(CPCD)

In this section the details of the chain-based line segment extraction method are discussed.
The input of the method is a digitized curveC derived by any contour extraction technique
on a planar shape. In addition, any thinned sketched contour can be used as the input
C. First, the starting point of an 8-connectivity chain code is determined using raster
scanning the curve plane I [20]. The macro chainAi = {a1, a2 . . . ani}, i = 1, 2, . . . ,m,
where m is the number of chains in I and ni is the chain length, is obtained and put in
a chain set {Ai}.

Note that for a simple shape from the database, there usually exists only one closed
contour C but for a corresponding sketched query, there are sometimes more than one
curve per shape. This is due to occasional disconnectivities resulting from free-hand-
drawing, scan resolution, and associated noise. The proposed method can cope with
multiple-contour shape as well as one-contour shape since it considers several chains to
be in the set {Ai}. For each Ai in {Ai} we apply the following steps (see Fig. 1):

1. Eliminating chain noise: noisy points which make the chain over oscillating are
eliminated by median filtering. Applying a third order one-dimensional median
filter on the vector Ai reduces the effect of such points adequately. Figs. 1-b and c
show the effect of reducing the number of chain points by median filtering.

2. Shifting operation: the standard chain code representation has the wraparound draw-
back [21]. For example, a line along −22.5◦ direction (in the forth quarter of
the trigonometric circle) is coded as {707070 . . .} using standard chain code
representation. To eliminate or reduce such wraparound, a new modified code
Bi = {b1, b2 . . . bni

} for each Ai = {a1, a2 . . . ani
} can be extracted by a shifting

operation defined recursively as:⎧⎨⎩
b1 = a1
bk = gk, gk ∈ Z | (gk − ak) mod 8=0 and

|gk − bk−1| is minimized for k = 2, 3, . . . ni

(1)

Sketch-Based Shape Retrieval Using Length and Curvature of 2D Digital Contours 477

(a)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

1

2

3

4

5

6

7

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

(c)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

4

5

6

7

8

9

10

11

12

13

14

(d)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
4

6

8

10

12

14

16

(e)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(f)

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

(g)

Fig. 1. (a) an example thinned hand-drawn sketch, (b) the corresponding chain code (c) median
filtered code, (d) shifted code, (e) smoothed representation, (f) derivative, and (g) extracted line
segments

478 A. Chalechale, G. Naghdy, and P. Premaratne

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. The effect of variable τ : (a) an original database image, (b) the contour (c) polygonized
contour with τ = 0.1, NoS=112, (d) τ = 0.3, NoS=64, (e) τ = 0.4, NoS=41, (f) τ = 0.5,
NoS=18, (g) τ = 0.7, NoS=8, (h) τ = 0.9, NoS=3, (i) τ = 1, NoS=2

The line along −22.5◦ direction is now coded as {787878 . . .} . Comparison of
Figs. 1-c and d shows the wraparound effect.

3. Smoothing operation: the shifted chain code Bi is then smoothed by a five-point
Gaussian filter {0.1, 0.2, 0.4, 0.2, 0.1} [21]. Γ (θ) is the shifted and smoothed wave-
form where θ is the traversing variable (Fig. 1-e).

4. First derivative and break points extraction: dΓ/dθ determines the rate of change
of Γ (θ) with respect to θ. The extreme points of this derivative is considered as
break points (ζk), if they are greater than a threshold τ . The τ value determines the
degree of coarse-to-fine approximation of the input curve with a polygon. Figs. 1-f
and g depict the resulting derivative and the corresponding extracted line segments
to rebuild the shape.

The selection of threshold τ has a great influence on the rebuilding of the shape.
Fig. 2 shows the effect of the variable τ and the resulting number of segments (NoS) for
an example shape. As can be seen, smaller values of τ make the resulting polygon to
resemble the contour curve more closely (with more line segments). For shape retrieval,
we are not interested in very fine polygons because the extracted features need to rep-
resent only the overall structure of the shape and the details are not important. Therefore,

Sketch-Based Shape Retrieval Using Length and Curvature of 2D Digital Contours 479

τ = 0.3 is chosen in our experiments. It is interesting to note that higher τ ’s can be used
for extracting a major axis of the shape as shown in Fig. 2-i.

The line segment lk which connects ζk to ζk+1 is considered as the lineal approx-
imation of the micro chain lying between the two points. This segment is employed
to construct the approximating polygon. Although a finer approximation for the micro
chain from ζk to ζk+1 can be employed to obtain more line segments and consequently
more precisely fitted polygons, experiments on many test data showed that there is no
significant improvement in the retrieval performance by applying such extra computa-
tions. This arises from the fact that overall structure of the shape can be well captured
by a moderate number of segments. Therefore the set

Li = {lk} (2)

where lk is the straight line segment connecting ζk to ζk+1 will be used as the line
segment set of chain Ai. Finally, the union of all Li sets, say L, for i = 1, 2, . . . ,m, is
obtained:

L = {L1} ∪ {L2} ∪ . . . {Lm} (3)

L is the line segment set of the underlying shape which is used as polygonal approx-
imation of the boundary curve C.

2.1 A Hybrid Shape Similarity Measure

The length of extracted line segments (lk ∈ L) are rotation and translation invariant.
Normalizing the length by the maximum length makes it scale invariant as well. In
addition, the angle between successive segments in L is scale, translation and rotation
invariant.

For the purpose of shape recognition and retrieval, we employ the aforementioned
principles to extract two discriminating and affine transforms invariant vectors Ψ and Φ
using the following procedure:

1. Initialize Ψ (30 entry) and Φ (18 entry).
2. For each segment in L:

– Compute the length.
– Normalize the length with the maximum length.
– Uniformly quantize the normalized length to 30 equal parts and add one to the

corresponding entry of Ψ .
3. For each segment pair in L which are adjacent:

– Compute the angle between the segments (corner angle).
– Uniformly quantize the corner angle to 18 equal parts (to make steps of 10◦)

and add one to the corresponding entry of Φ.

Next, we combine these two feature vectors to make hybrid shape features used for
measuring the similarity. For this, the distance between two different shapes is computed
using the combination of Euclidean distances obtained individually from corresponding
Ψ andΦvectors. One of the difficulties involved in integrating different distance measures
is the difference in the range of associated distance values. In order to overcome the
problem, the two distance values are normalized first to be within the same range of [0,1]

480 A. Chalechale, G. Naghdy, and P. Premaratne

and then are integrated with a weighting scheme. More precisely, let Q be a query image
and P be a database image. Let Dn

Ψ (Q,P) denotes the normalized Euclidean distance
between Q and P on the basis of geometric segment’s length and Dn

Φ(Q,P) denotes
their normalized Euclidean distance on the basis of corner angle. The normalization is
accomplished as follows:

Dn
Ψ (Q,P) = [DΨ (Q,P)−mindistΨ] / [maxdistΨ −mindistΨ]

Dn
Φ(Q,P) = [DΦ(Q,P)−mindistΦ] / [maxdistΦ −mindistΦ] (4)

where DΨ (Q,P) and DΦ(Q,P) are the Euclidean distances between Q and P based
on geometric length and based on corner angle respectively. mindist and maxdist are
the minimum and the maximum distance values of the query image Q to the database
images according to the corresponding distance used (i.e. DΨ or DΦ).

Finally, an integrated and hybrid distance D between Q and P is defined as:

D(P,Q) =
w1 ×Dn

Ψ (P,Q) + w2 ×Dn
Φ(P,Q)

w1 + w2
(5)

where w1 and w2 are the weights assigned to to the length-based distance and the
angle-based distance, respectively. In current implementation we have used w1 = 1 and
w2 = 1.5. This is to put more emphasis on the curvature features than on the length
features.

3 Experimental Results

To evaluate the retrieval performance of the proposed method, in comparison with other
well-known methods, seven different approaches were implemented. The Fourier de-
scriptor (FD) [9], PFD method [14], Zernike moment invariants (ZMI) [12], and the
ART [4, 11], AP [18], ARP [19] and the proposed CPCD methods (Section 2) were em-
ployed to extract features for sketch-based shape retrieval. The comparative results are
presented in this section.

The MPEG-7 contour shape database CE-1, set A1 and A2 [9], was used as the
common test bed for all methods. The database consists of pre-segmented shapes, defined
by single closed contours acquired from real world objects. It takes into consideration the
common shape distortions and the inaccurate nature of shape boundaries in segmented
shapes. Set A1 is for the test of scale invariance and contains 420 shapes of 70 classes
(6 in each class). An image of each class was scaled by the following factors: 200%,
30%, 25%, 20%, and 10%. In a similar manner, set A2 contains 420 images created by
rotation of the original 70 shapes by the following angles: 9◦, 36◦, 45◦, 90◦, and 150◦.
Consequently, appending sets A1 and A2 forms a database of 840 images in 70 groups,
each with 12 similar images. Fig. 3 depicts one image from each class in the database
and Fig. 4 shows examples of variation within a class.

Since the database images are all binary, we obtained the boundary contour of each
images as the set of foreground pixels which have at least one neighboring background
pixel. We also collected 105 different hand-drawn sketches similar to randomly selected
shapes (Fig. 5 shows some examples). They were morphologically thinned to represent

Sketch-Based Shape Retrieval Using Length and Curvature of 2D Digital Contours 481

Fig. 3. Shapes from 70 different classes existing in the MPEG-7, CE-1 database

482 A. Chalechale, G. Naghdy, and P. Premaratne

Fig. 4. Examples of variations within the deer class

shape’s boundary contour. To be able to evaluate scale and rotation invariance properties,
the database and the sketched images were chosen to have varying sizes and directions.

The ANMRR criterion is used as the retrieval performance measure. This measure
considers not only the recall and precision information but also the rank information
among the retrieved images. It is defined in the MPEG-7 standard [22] as follows:

AV R(q) =
∑NG(q)

κ=1
Rank(κ)
NG(q)

MRR(q) = AV R(q)− 0.5− NG(q)
2

NMRR(q) = MRR(q)
K+0.5−0.5∗NG(q)

ANMRR = 1
N

∑N
q=1 NMRR(q)

where NG(q) is the number of ground truth images for a query q. K = min(4 ∗
NG(q), 2 ∗ GTM) where GTM is max {NG(q)} for all q’s of a data set. Rank(k)
is the rank of the found ground truth images, counting the rank of the first retrieved
image as one. A Rank of K + 1 is assigned to each of the ground truth images which
are not in the first K retrievals. For example, suppose a given query qi has 10 similar
images in an image database (NG = 10). If an algorithm finds 6 of them in the top
20 retrievals (K = 20) in the ranks of 1,5,8,13,14 and 18, then the AV R(qi) = 14.3,
MRR(qi) = 8.8 and NMRR(qi) = 0.5677.

Sketch-Based Shape Retrieval Using Length and Curvature of 2D Digital Contours 483

Fig. 5. Examples of sketched shapes

484 A. Chalechale, G. Naghdy, and P. Premaratne

ZMI ART FD AR PFD ARP CPCD
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
N

M
R

R

Fig. 6. Retrieval performance of different methods expressed by the ANMRR

Note that the NMRR and its average (ANMRR) will always be in the range of [0, 1].
Based on the definition of ANMRR, the smaller the ANMRR, the better the retrieval
performance. In our experiments the NG(q) = 12 for all q’s, K = 24 and N = 105.

Fig. 6 exhibits the resulting ANMRR for different methods. As can be seen, the
proposed CPCD method shows the best retrieval performance (i.e., ANMRR=0.3403).
This is due to the ability to capture global and local structural similarities between
database images and the sketched queries. In other words, the extracted features are
capturing the overall structural properties of the shape using the length distribution
of predominant sides. In addition, the local properties of the shape are also exploited
utilizing angle size distribution of the corner points.

3.1 Discussion

It is worthwhile to note that as the ZMI and ART methods are region-based approaches,
their retrieval performances are the lowest in the current application, i.e. 0.4819 and
0.4687, respectively. The ARP method shows more effective performance (0.3739) than
the FD (0.4632), AP (0.4312), and PFD (0.4125) methods, respectively. The varying
degree of performance in these methods arises from different algorithms they employ
for feature extraction.

The FD and PFD methods are based on the Fourier transform in the Cartesian and
polar coordinates, respectively. The basis functions used in these methods can effec-
tively capture the similarity between different contour shapes as they exploit magnitude

Sketch-Based Shape Retrieval Using Length and Curvature of 2D Digital Contours 485

ART ZMI PFD CPCD FD ARP AP
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

F
E

T
Sec.

Fig. 7. Average feature extraction time for different methods using both database and sketched
shapes on a Pentium-III, 1000 MHz machine

and phase information of the Fourier coefficients. However, they cannot tolerate discon-
nectivities. Moreover, this kind of transform is more effective for contour-based shape
retrieval, that is when the outline of the shape is used for feature extraction. The AP and
ARP methods exhibit good performances where there is enough spatial information in
the relevant slices or sectors. In the current application (sketch-based shape retrieval),
that uses only the contour data, there is no sufficient information in terms of the num-
ber of pixels in such areas. This shortcoming can be partially overcome by refining the
partitioning scheme used in the AP and ARP approaches while adversely increases the
feature extraction time (FET).

Fig. 7 shows average feature extraction times for the aforementioned algorithms
using a Pentium-III, 1000 MHz machine on a collection of both the database and the
sketched shapes. The AP and ARP methods posses the shortest feature extraction times
as they are performed in the pixel domain and simply collect data from a few associated
regions. The AP extraction time is shorter as its partitioning scheme is less complicated
than the ARP’s scheme. The FD, CPCD, and PFD methods need a moderate time for
feature extraction and the ZMI and ART methods are the slowest. Longer extraction
times for the transform-based methods (i.e., FD, PFD, ZMI, and ART) arise from higher
computational cost of handling complex basis functions. For the CPCD method, the
convolution and differentiation operations involved in the smoothing and the break point
extraction are the most time consuming steps in the algorithm.

486 A. Chalechale, G. Naghdy, and P. Premaratne

4 Conclusion

A novel and effective feature extraction approach for sketch-based shape retrieval is
proposed. The approach is based on the distribution of line segments extracted by chain
code differentiation. The extracted features are affine transform invariant. The boundary
contour is approximated by a polygon using a line segment set. Predominant character-
istics of the polygon, sides and corners, are employed in a feature extraction algorithm.
Extracted features have a hybrid nature combining two different feature vectors. The
approximating polygon can be adjusted within a wide range of very fine to very coarse
based on the application’s requirements.

Experimental results using the MPEG-7 shape database CE-1, set A1 and A2 includ-
ing 840 shapes, and 105 different sketched queries, confirm the robustness and retrieval
performance improvement of the proposed method.ANMRR and feature extraction time
(FET) are used as performance criteria. It is shown that the proposed method has the best
retrieval performance in the current application. However, its computational intensity is
moderately high.

References

1. Pavlidis, T.: Survey: A review of algorithms for shape analysis. Computer Graphics and
Image Processing 7 (1978) 243–258

2. Loncaric, S.: A survey of shape analysis techniques. Patt. Recog. 31 (1998) 983–1998
3. Jain, A.J., Vailaya, A.: Shape-based retrieval: a case study with trademark image databases.

Patt. Recog. 31 (1998) 1369–1390
4. Bober, M.: MPEG-7 visual shape descriptors. IEEE Trans. Circ. and Syst. for Video Tech.

11 (2001) 716–719
5. Bimbo, A.D.: Visual Inform. retrieval. Morgan Kaufmann Publishers (1999)
6. Widrow, B.: The "rubber-mask" technique-ii. pattern storage and recognition. Patt. Recog. 5

(1973) 199–211
7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. Journal of Com-

puter Vision 3 (1988) 321–331
8. Smith, J.R., Chang, S.F.: VisualSEEk: a fully automated content-based image query system.

In: Proc. ACM Multimedia 96., USA (1996) 87–98
9. Zhang, D., Lu, G.: Evaluation of MPEG-7 shape descriptor against other shape descritors.

multimedia systems 9 (2003) 15–30
10. Kauppinen, H., Seppanen, T., Pietikainen, M.: An experimental comparison of autoregressive

and Fourier-based descriptors in 2D shape classification. IEEE Trans. Patt. Anal. and Mach.
Intel. 17 (1995) 201–207

11. ISO/IEC JTC1/SC29/WG11/N4358: Text of ISO/IEC 15938-3/FDIS information technology
– multimedia content description interface – part 3 visual, Sydney (2001)

12. ISO/IEC JTC1/SC29/WG11/N3321: MPEG-7 visual part of experimentation model version
5, Nordwijkerhout (2000)

13. Hoynck, M., Ohm, J.R.: Shape retrieval with robustness against partial occlusion. In: IEEE
Int. Conf. Acoustics, Speech, and Signal Processing. Volume 3. (2003) 593–596

14. Zhang, D., Lu, G.: Generic Fourier descriptor for shape-based image retrieval. In: Proc. IEEE
Int. Conf. Multimedia and Expo. Volume 1. (2002) 425–428

15. Zhang, D., Lu, G.: Shape-based image retrieval using generic Fourier descriptor. Signal
Processing: Image Commun. 17 (2002) 825–848

Sketch-Based Shape Retrieval Using Length and Curvature of 2D Digital Contours 487

16. Matusiak, S., Daoudi, M., Blu, T., Avaro, O.: Sketch-based images database retrieval. In:
Proc. 4th Int. Workshop Advances in Multimedia Inform. Syst. MIS’98. (1998)

17. Ip, H.H.S., Cheng, A.K.Y., Wong, W.Y.F., Feng, J.: Affine-invariant sketch-based retrieval of
images. In: Proc. IEEE Int. Conf. Comput. Graphics. (2001) 55–61

18. Chalechale, A., Naghdy, G., Mertins, A.: Sketch-based image matching using angular parti-
tioning. IEEE Trans. Systems, Man, Cybernetics - Part A: Systems and Humans (2004)

19. Chalechale, A., Naghdy, G., Premaratne, P.: Image database retrieval using sketched queries.
In: Proc. IEEE Int. Conf. Image Processing (ICIP’04), Singapore (2004)

20. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley (1992)
21. Li, H., Manjunath, B.S., Mitra, S.K.: A contour-based approach to multisensor image regis-

tration. IEEE Trans. Image Processing 4 (1995) 320–334
22. ISO/IEC JTC1/SC29/WG11-MPEG2000/M5984: Core experiments on MPEG-7 edge his-

togram descriptors, Geneva (2000)

Surface Smoothing for Enhancement of 3D Data
Using Curvature-Based Adaptive

Regularization�

Hyunjong Ki, Jeongho Shin, Junghoon Jung, Seongwon Lee, and Joonki Paik

Image Processing and Intelligent Systems Lab,
Department of Image Engineering,

Graduate School of Advanced Imaging Science, Multimedia, and Film,
Chung-Ang University,

221 Huksuk-Dong, Tongjak-Ku, Seoul 156-756, Korea
paikj@wm.cau.ac.kr

http://ipis.cau.ac.kr

Abstract. This paper presents both standard and adaptive versions of
regularized surface smoothing algorithms for 3D image enhancement.
We incorporated both area decreasing flow and the median constraint
as multiple regularization functionals. The corresponding regularization
parameters adaptively changes according to the local curvature value.
The combination of area decreasing flow and the median constraint can
efficiently remove various types of noise, such as Gaussian, impulsive, or
mixed types. The adaptive version of the proposed regularized smoothing
algorithm changes regularization parameters based on local curvature for
preserving local edges and creases that reflects important surface infor-
mation in 3D data. In addition to the theoretical expansion, experimental
results show that the proposed algorithms can significantly enhance 3D
data acquired by both laser range sensors and disparity maps from stereo
images.

1 Introduction

As the 3D modeling technique covers wider applications in the computer vision
area, 3D image processing attracts more attention. Recently, various modes of
signals such as intensity and range images are widely used in 3D reconstruction,
but observed data are corrupted by many different types of noise and often need
to be enhanced before further applications. Among various 3D image processing
techniques, surface smoothing is one of the most basic operations for processing
the surface.

� This work was supported in part by Korean Ministry of Science and Technology
under the National Research Lab. Project, in part by Korean Ministry of Education
under Brain Korea 21 Project, and in part by grant No.R08-2004-000-10626-0 from
the Basic Research Program of the Korea Science & Engineering Foundation.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 488–501, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Surface Smoothing for Enhancement of 3D Data 489

In order to reconstruct a surface, many regularization-based algorithms have
been studied in the field of early vision. Some of them adopted a smoothing inhibi-
tion on edge pixels by means of a Boolean-valued line process[1-3]. In [4], Gokmen
used continuously varying regularization parameters for edge detection and surface
reconstruction, which is an extended version of the 2D processing [5].

These methods, however, did not consider impulsive noise that frequently
arises in both range data and disparity maps. In general, range data includes
heavy noise in the mixed form of Gaussian and impulsive noise. Although the ex-
isting regularized noise smoothing algorithms can easily remove Gaussian noise,
there has not been many researches to deal with impulsive noise included in
observed range data. A few approaches to smoothing impulsive noise have been
proposed in [6, 7], but they consist of two independent steps, and could not
provide a structured way to get the optimal solution.

This paper presents a regularized noise smoothing algorithm for 3D image
using multiple regularization functionals for smoothing both Gaussian and im-
pulsive noise. For removing Gaussian noise we adopt area decreasing flow as the
first smoothness constraint. On the other hand, for removing impulsive noise, we
incorporate the second smoothness constraint that minimizes difference between
the median filtered data and the original data. Existing adaptive regulariza-
tion methods used the 2D edge information to adaptively change the weight
of the regularization parameter to preserve edges. The use of 2D edge map in
range data, however, is not effective because surface curvature is not considered.
Therefore we adaptively change regularization parameter according to curvature
information of the input range data.

The rest of this paper is organized as follows: In Section 2 we summarize
the regularizied surface smoothing with area decreasing flow and the median
constraint. In Section 3 we present adaptive edge preservation based on the
curvature estimation in conjunction with the proposed regularization. In Section
4 we summarized the proposed regularization algorithm. Experimental results
and conclusions are given in Sections 5 and 6, respectively.

2 Regularizied Surface Smoothing with
Area Decreasing Flow and Median Constraint

The 3D image smoothing problem corresponds to a constrained optimization
problem. Regularization is the most widely used method to solve practical op-
timization problems with one or more constraints. In Section 2.1, we present
the regularized-viewpoint invariant reconstruction of a surface from 3D data. In
Section 2.2, the area decreasing flow is applied to 3D data smoothing. Median
constraints for removing impulsive noise is presented in Section 2.3.

2.1 Viewpoint Invariant Model

The mathematical model for surface estimation can be written as

g = f + η, (1)

490 H. Ki et al.

where g represents an observed surface corrupted by noise η, f and denotes the
original surface. In order to solve (1), we have to solve the following optimization
problem

f̂ = arg min
f

O(f), (2)

where f̂ represents the optimally estimated surface and

O(f) = ‖g − f‖2 + λ‖Cf‖2. (3)

In (3) C is a matrix which represents a high-pass filter, λ and represents
the regularization parameter that controls the fidelity to the original surface,
‖g − f‖2, and smoothness of the restored surface, ‖Cf‖2.

In the viewpoint-invariant case, the cost function can be written∑
i,j

[fi,j − gi,j]2 cos2 φ + λ[Cfi,j]2 =
∑
i,j

[fi,j − gi,j]2
1

1 + z2
x + z2

y

+ λ[Cfi,j]2,

(4)

where zx and zy represent the first order derivative at the (i, j)th measurement
in the horizontal and vertical directions, respectively. The cost function given in
(3) can be minimized by solving the linear equation.

(I + λCTC)f = g. (5)

2.2 Area Decreasing Constraints

Traditionally, raw images are preprocessed using some filtering method. With
the regularization method, we can control the tradeoff between smoothness and
data compatibility by using an appropriate stabilizing functional related to the
3D surface properties.

Traditionally, the surface is considered as a graph z(x, y), which can be ex-
pressed as zi,j over a rectangular grid. Letting ci,j represent the observed data,
the cost function can be written as

O(z) =
∑
i,j

(zi,j − ci,j)2cos2φ + λFs. (6)

In practice, cosφ represents approximated surface slant with respect to the
incident direction of measurement. The larger the angel φ between the surface
normal and the direction of measurement, the smaller the confidence is. Because
(zi,j − ci,j)cos2φ represents the perpendicular distance between the estimated
and real surfaces, it is viewpoint-invariant. The stabilizing function Fs can take
various forms. For example, first order regularization is used in [8] while a second
order model is investigated in [9].

Estimating the elevation zi,j is feasible for sparse data. But in dense range
images from a range scanner with a spherical coordinate system, z(x, y) is no
longer a graph and but estimating the elevation may result in overlap in range

Surface Smoothing for Enhancement of 3D Data 491

measurement. Therefore, we estimate the range ri,j instead of zi,j so that all
refinement takes place a long the line of measurement.

For the Perceptron range scanner, the range value of each pixel Ri,j is con-
verted to (xi,j , yi,j , zi,j) in the Cartesian coordinate. We adopt the calibration
model, described in [8], as

{xi,j = dx + rsinα
yi,j = dy + rcosαsinβ
zi,j = dz − rcosαcosβ,{

α = α0 + H0(col/2− j)/N0
β = β0 + V0(row/2− i)/M0,

{dx = (p2 + dy)tanα
dy = dztan(θ + 0.5β)
dz = −p1(1.0− cosα)/tanγ,

(7)

and

{ r1 = (dz − p2)/δ
r2 =

√
dx2 + (p + dy)2/δ

r = (Ri,j + r0 − r1 − r2)/δ
(8)

where p1, p2, γ, θ, α0, β0, H0, V0, r0, δ represents the set of calibration parameters
of the scanner, and (M0, N0) refers to the image size. For estimating r, we can
use the following parameterization.

X(α, β) = (rsinα, rcosαsinβ,−rcosαcosβ), (9)

and small values denoted by dx, dy, and dz are ignored in the analysis process.
The coefficients of the first fundamental form, which will be used shortly in

the computation of the surface area, are given, in the basis of Xα, Xβ , as

{E = Xα ·Xα = r2 + r2
α

F = Xα ·Xβ = rαrβ

G = Xβ ·Xβ = r2cos2α + r2
β ,

(10)

where

Xα =
∂X

∂α
,Xβ =

∂X

∂β
, rα =

∂r

∂α
, rβ =

∂r

∂β
, (11)

and C represents the observed value of r. Range data smoothing can then be
performed by minimizing the following cost function,

f =
∑
i,j

(ri,j − ci,j)2/σ2
i,j + Fs. (12)

492 H. Ki et al.

We let the stabilizing function h be the surface area, which can be calculated
as

Fs = harea =
∫ ∫

D̄

√
EG− F 2dαdβ

=
∑
i,j

λi,j(r4
i,jcos

2α + r2
i,jr

2
βcos

2α),
(13)

where D represents the domain of (α, β).

2.3 Median Constraints for Removing Impulsive Noise

In general, range data is corrupted by the mixture of Gaussian and impulsive
noises. Although the existing regularized surface smoothing algorithm can easily
remove Gaussian noise, impulsive noise, caused by random fluctuation of the sen-
sor acquisition or by incorrect disparity measurement, is not easy to be removed
from observed 3D image data. It is also difficult to remove noise near edge when
the existing 2D edge-based adaptive regularization is used. Since it is well-known
that median filter is very effective in removing impulsive noise from images. The
second smoothness constraint is additionally incorporated into the existing regu-
larization algorithm. The proposed method minimizes the difference between the
median filtered data and the estimated data. The corresponding regularization
term can be formulated as

hmedian = λM

∑
i,j

(ri,j −M)2, (14)

where M represents the median filtered data of a noisy data.

3 Adaptive Regularization Using Curvature Estimation

Incorporation of the regularizing term into the cost function given in (12) tends
to suppress local activity in the range image. Although the smoothing function
is good for suppressing undesired noise, it also degrades important features such
as edges, corners, and segmentation boundaries. Existing adaptive regulariza-
tion methods used the 2D edge detection operation to adaptively change the
weight of the regularization parameter so that edges are preserved during the
regularization. But the use of 2D edge map in smoothing 3D data is not effective
because surface curvature is not considered. Therefore we utilize the result of
curvature analysis to adaptively weight the regularization parameter λ so that
real 3D edges are preserved during the regularization process.

Curvature estimation is an important task in 3D object description and recog-
nition. Differential geometry [9] provides several measures of curvature including
Gaussian and mean curvatures. The combination of these curvature values en-
ables to categorize the local surface types. Especially, Gaussian curvature gives
significant information of surfaces. Its sign determines the convexity of the sur-
face. If K > 0 K = 0 or K < 0 at a surface x, the corresponding surface is called
elliptic, parabolic, or hyperbolic, respectively.

Surface Smoothing for Enhancement of 3D Data 493

The magnitude of the Gaussian curvature represents the area of the changing
normals in relation to the area of the underlying surface. Thus, in surfaces which
contain shape curve or spicular patches, the magnitude of the curvature should be
relatively high, whereas in areas such as a plane, curvature value should become
low. Fig. 1(b) shows Gaussian curvature image of the lobster range image shown
in Fig. 1(a). As shown in Fig. 1(b), the curvature is where there is no bendings
or bumps, such as in the middle of the lobster. Curvature is high in areas in
3D edges or creases. This observation, together with the theoretical definition,
justifies the use of Gaussian curvature as a measure of adaptive controlling the
regularization parameters.

(a) (b)

Fig. 1. (a) Original range data ”lobster” and (b) The magnitude of its Gaussian cur-
vature

A formula for Gaussian curvature is written as

K =
rxxryy − r2

xy

(1 + r2
x + r2

y)2
, (15)

where r represents a range image, and its subscripts indicate partial differenti-
ations in the corresponding direction. the regularization term in (13) can adap-
tively be weighted by using

λi,j =
ρ

1 + θK2(i, j)
, (16)

where θ, 0 < θ < 1, represents a parameter that determines sensitivity of 3D
edge strength, and ρ is a scaling parameter. The selection of ρ generally depends
on the desired data compatibility as well as the level of noise reduction.

494 H. Ki et al.

4 The Proposed Regularization Algorithm

From (12), (13) and (14), we formulate the proposed regularized energy function
as

fi,j(r) =
∑
i,j

(ri,j − ci,j)2cos2φ + λMhmedian

=
∑
i,j

(ri,j − ci,j)2cos2φ

+ λA

∑
i,j

(r4
i,jcos

2α + r4
i,jcos

2α + r2
i,jr

2
β + r2

αr
2
i,jcos

2α)

+ λM

∑
i,j

(ri,j −M)2. (17)

The proposed regularization algorithm can be implemented in two different
versions, such as standard and adaptive versions. In the adaptive version of the
regularization algorithm, parameter λA in (17) adaptively changes according to
curvature estimation by (16), while it is fixed in the standard version.

Among various optimization methods, the simple gradient descent method is
adopted to minimize (17) because convergence can easily be controlled with an
adaptively varying regularization parameter. The estimation r

′
i,j of each mea-

surement ri,j is given as

rn+1
i,j = rn

i,j − w
∂fi,j

∂ri,j
(18)

where w represents the iteration step size, and

∂f
∂ri,j

= 2(ri,j − ci,j)/σ2
i,j + λi,j{4r3

i,jcos
2α

+ [2ri,j(ri+1,j − ri,j)2 − 2r2
i,j(ri+1,j − ri,j) + 2r2

i,j(ri,j − ri−1,j)](
1
∂β

)2

+ [2ri,j(ri,j+1 − ri,j)2 − 2r2
i,j(ri+1,j − ri,j) + 2r2

i,j−1(ri,j − ri,j−1)](
cosα

∂α
)2}.

(19)

In calculating the derivative of f in (17), the following forward difference
approximations were used

rα =
ri,j+1 − ri,j

dα
and rβ =

ri+1,j − ri,j

dβ
(20)

Alternatively, the central difference approximation can also be used for rα

and rβ , such as

rα =
ri,j+1 − ri,j−1

2dα
and rβ =

ri+1,j − ri−1,j

2dβ
(21)

with this central difference approximation the derivative of f is then obtained
as

Surface Smoothing for Enhancement of 3D Data 495

∂f

∂ri,j
= 2(ri,j − ci,j)/σ2

i,j + λi,j{4r3
i,jcos

2α + [2ri,j(ri+1,j − ri−1,j)2

− 2r2
i+1,j(ri+2,j−ri,j)+2r2

i−1,j(ri,j−ri−2,j)](
1

2∂β
)2+[2ri,j(ri,j+1−ri,j−1)2

− 2r2
i,j(ri+2,j−ri,j) + 2r2

i,j−1(ri,j − ri,j−2)](
cosα

2∂α
)2}. (22)

Algorithm 1 Surface Smoothing with Multiple Regularization Functionals
1. Set an initial guess as r0, and n ← 0.
2. Define regularization energy function fi,j(r)
3. Obtain experimentally optimal regularization functionals λA and λM in fi,j(r).
4. Evaluate ∇rfi,j(r)|r=rn by differentiating objective function fi,j(r) .
5. Choose iteration step size W .
6. Update the measurement point by rn+1 ← rn + w−∇fi,j(rn).
7. If |rn+1 −rn| is smaller than δ, a pre-specified error limit, then stop the algorithm,

and the current measurement point will be the estimate of the solution. Otherwise,
k ← k + 1, and go to step2. (δ = 0.0001)

Algorithm 2 Adaptive Regularizied Smoothing
1. Set an initial guess as r0, and n ← 0.
2. Define regularization energy function fi,j(r)

3. Calculate λA(i,j) = ρ
1+θK2(i,j) in fi,j(r), where K =

rxxryy−r2
xy

(1+r2
x+r2

y)2

4. Obtain experimentally optimal regularization functionals λM in fi,j(r).
5. Evaluate ∇rfi,j(r)|r=rn by differentiating objective function fi,j(r).
6. Choose iteration step size W .
7. Update the measurement point by rn+1 ← rn + w−∇fi,j(rn).
8. If |rn+1 −rn| is smaller than δ, a pre-specified error limit, then stop the algorithm,

and the current measurement point will be the estimate of the solution. Otherwise,
k ← k + 1, and go to step2. (δ = 0.0001)

5 Experiment Results

To demonstrate the performance of the proposed algorithm, we experimented
with two types of 3D data, such as range data using a laser range sensor and
disparity data from a pair of stereo images.

5.1 Experiment with Range Data

In this subsection, we present experimental results of range data acquired by a
laser range sensor. In the first experiment, Lobster range data of size 100×100,
shown in Fig. 2(a), is used. Fig. 2(b) shows the corrupted version of the range

496 H. Ki et al.

(a) (b)

(c) (d)

Fig. 2. (a) Original range data, (b) noisy range data with 30dB Gaussian noise and
impulsive noise, (c) smoothed range data using Gaussian smoothing filter (σ=1.5), and
(d) smoothed range data using a median filter(4×4)

data by 30dB Gaussian noise and 0.5% impulsive noise. Figs. 2(c) and 2(d) re-
spectively show the reconstructed range data using a simple Gaussian smoothing
filter with σ=1.5 and a 4×4 median filter. As shown in Fig. 2(c), shape of the
lobster is over-smoothed and impulsive noise is still remaining. In Fig. 2(d), im-
pulsive noise is removed to some degree but Gaussian noise is still remaining.
The standard and adaptive versions of the proposed regularization results are
respectively shown in Figs. 3(a) and 3(b). In case of the standard version, which
uses only area decreasing constraint, we choose w = 10−7 and λarea = 5× 10−3.
In case of the adaptive version, λarea changes according to estimated curva-
ture value. The standard regularization algorithm results in blurred edges in
most areas. On the other hand, as shown in Fig. 3(b), the smoothed range
data using the proposed adaptive algorithm keeps meaningful edge clear. For

Surface Smoothing for Enhancement of 3D Data 497

(a) (b)

Fig. 3. (a) Smoothed range data using the proposed non-adaptive regularization and
(b) smoothed range data using the proposed adaptive regularization

the proposed adaptive regularization, we used w = 10−8, ρ = 0.2, θ = 0.5, and
λmedian = 2× 106. As shown Fig. 3(b), both Gaussian and impulsive noises are
completely removed with preserving meaningful edges. Table 1 shows objective
performance of various smoothing algorithms. Both standard and adaptivever-

Table 1. The objective comparison of various smoothing methods

Each smoothing methods for noisy range data SNR(dB)
Noisy range data 27.8971
Averaging filter 29.7065
Gaussian filter 29.7619

The proposed non-adaptive regularization method 30.5328
The proposed adaptive regularization methods 35.1605

sions of the proposed regularization algorithms outperforms other existing meth-
ods in the sense of PSNR.

5.2 Disparity Data Using Stereo Images

In this section, we deal with experimental result of disparity data which is cal-
culated by using stereo image. A pair of stereo images of size 256×256 are used
for the experiment as shown in Figs. 5(a) and 5(b). Fig. 5(c) shows dispar-
ity data computed by the correlation technique from a pair of stereo images.
Fig. 6(a) shows the original disparity data in the range format. We can notice
that the original disparity data contains significant amount of noise component
due to correlation measurement error. The noise distribution in the disparity
data is similar to that of the range data shown in Figs. 2 and 4. Figs 6(b)

498 H. Ki et al.

(a)

(b) (c)

(d) (e)

Fig. 4. (a) Real noisy range data, (b) smoothed range data using the proposed non-
adaptive regularization, (c) the magnified version of (b), (d) smoothed range data using
the proposed adaptive algorithm, and (e) the magnified version of (d)

and 6(c) respectively show the reconstructed range data using the Gaussian
smoothing filter with σ = 1.5 and a 4×4 median filter. Figs. 6(d) and 6(e) show

Surface Smoothing for Enhancement of 3D Data 499

the smoothing results using the standard and adaptive versions of the proposed
regularization algorithms, respectively. The same regularization parameter is
used as given in subsection 5.1. As shown in the experiment result, we can
find that the propose smoothing algorithm also effectively remove noise of the
disparity data near edge when the 3D curvature-based adaptive regularization
is used.

(a) (b) (c)

Fig. 5. (a) The first stereo image, (b) The second stereo image, and (c) the correspond-
ing disparity data

6 Conclusions and Future Works

We presents both standard and adaptive versions of regularized surface smooth-
ing algorithm for 3D image enhancement. The basic idea of this work is to
incorporate multiple regularization functionals for suppressing various types of
noise and to adaptively change the weight of regularization based on curva-
ture analysis. For this end, we incorporated both area decreasing flow and the
median constraint as multiple regularization functionals. For removing Gaus-
sian noise we adopted area decreasing flow as the first smoothness constraint.
On the other hand, for removing impulsive noise, we incorporated the second
smoothness constraint that minimizes difference between the median filtered
data and the original data. At the same time, an adaptive version of regulariza-
tion
algorithm changed adaptively regularization parameters based on local
curvature for preserving local edges and creases that reflects important
surface information in 3D data. To demonstrate the performance of the
proposed algorithm, we experimented with two types of 3D data, such as range
data using laser sensor and disparity data using a pair of stereo images. As a
result, the proposed algorithms can significantly enhance 3D data acquired by
both laser range sensors and disparity maps from stereo images while preserving
meaningful edge.

500 H. Ki et al.

(a) (b)

(c) (d)

(e)

Fig. 6. (a) Original disparity data, (b) smoothed disparity data using a Gaussian
smoothing filter(σ = 1.5), (c) smoothed disparity data using a median filter (4×4)
(d) smoothed disparity data using the proposed non-adaptive regularization, and (e)
smoothed disparity data using the proposed adaptive regularization

Surface Smoothing for Enhancement of 3D Data 501

References

1. Blake, A., Zisserman, A.: Visual Reconstruction, MIT Press (1987)
2. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images. IEEE Trans. Pattern Analysis, Machine Intelligence 6 (1984)
721-741

3. Terzopoulos, D.: The computation of visual surface representations, IEEE Trans.
Pattern Analysis, Machine Intelligence 10 (1988) 417-438

4. Gokmen, M., Li, C.-C.: Edge detection and surface reconstruction using refined
regularization, IEEE Trans. Pattern Analysis, Machine Intelligence 15 (1993) 492-
499

5. Katsaggelos, A.K., Biemond, J., Schafer, R.W.: Mersereau, R. M.: A regularized
iterative image restoration algorithms, IEEE Trans. Signal Processing 39 (1991)
914-929

6. Sinha, S.S., Schunck, B.G.: A two-stage algorithm for discontinuity-preserving sur-
face reconstruction, IEEE Trans. Pattern Analysis, Machine Intelligence 14 (1992)
36-55

7. Umasuthan, M., Wallace, A.M.: Outlier removal and discontinuity preserving
smoothing of range data, IEE Proc.-Vis. Image Signal Process 143 (1996) 191-
200

8. Hoover, A.: The Space Envelope Representation for 3D Scenes, PhD thesis, Depart-
ment of Computer Science and Engineering, University of South Florida (1996.)

9. Manfredo Do Carmo.: Differential geometry of curves and surfaces, Prentice Hall
(1976)

10. June, H.Yi, David, M.Chelberg.: Discontinuity-preserving and viewpoint invariant
reconstruction of visible surface using a first order regularization, IEEE Trans.
Pattern Analysis, Machine Intelligence 17 (1995)

11. Stevenson, R.L., Delp, E.J.: Viewpoint invariant recovery of visual surface from
sparse data, IEEE Trans. Pattern Analysis, Machine Intelligence 14 (1992) 897-
909

12. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision, Prentice-
Hall (1998)

13. Shin, J.H., Sun, Y., Joung, W.C., Paik, J.K., Abidi, M.A.: Regularized noise
smoothing of dense range image using directional Laplacian operators, Proc. SPIE
Three-Dimensional Image Capture and Applications IV 4298 (2001) 119-126

14. Sun, Y., Paik, J.K., Price, J.R., Abidi, M.A.: Dense range image smoothing using
adaptive regularization, Proc. 2000 Int. Conf. Image Processing 2 (2000) 10-13

15. Ki, H., Shin, J., Paik, J.: Regularized surface smoothing for enhancement of range
data, Proc. IEEK 26 (2003) 1903-1906, in Korean

Minimum-Length Polygon of a Simple
Cube-Curve in 3D Space

Fajie Li and Reinhard Klette

CITR, University of Auckland, Tamaki Campus, Building 731,
Auckland, New Zealand

Abstract. We consider simple cube-curves in the orthogonal 3D grid of
cells. The union of all cells contained in such a curve (also called the tube
of this curve) is a polyhedrally bounded set. The curve’s length is defined
to be that of the minimum-length polygonal curve (MLP) fully contained
and complete in the tube of the curve. So far, only a ”rubber-band al-
gorithm” is known to compute such a curve approximately. We provide
an alternative iterative algorithm for the approximative calculation of
the MLP for curves contained in a special class of simple cube-curves
(for which we prove the correctness of our alternative algorithm), and
the obtained results coincide with those calculated by the rubber-band
algorithm.

1 Introduction

The analysis of cube-curves is related to 3D image data analysis. A cube-curve
is, for example, the result of a digitization process which maps a curve-like
object into a union S of face-connected closed cubes. The computation of the
length of a cube-curve was the subject in [3], and the suggested local method
has its limitations if studied with respect to multigrid convergence. [1] presents
a rubber-band algorithm for an approximative calculation of a minimum-length
polygonal curve (MLP) in S. So far it was still an open problem to prove whether
results of the rubber-band algorithm always converge to the exact MLP or not.
In this paper we provide a non-trivial example where the rubber-band algorithm
is converging against the MLP. So far, MLPs could only be tested manually for
”simple” examples. This paper also presents an algorithm for the computation
of approximate MLPs for a special class of simple cube-curves. (The example for
the rubber-band algorithm is from this class.)

Following [1], a grid point (i, j, k) ∈ Z3 is assumed to be the center point of
a grid cube with faces parallel to the coordinate planes, with edges of length 1,
and vertices as its corners. Cells are either cubes, faces, edges, or vertices. The
intersection of two cells is either empty or a joint side of both cells. A cube-curve
is an alternating sequence g = (f0, c0, f1, c1, . . . , fn, cn) of faces fi and cubes ci,
for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for 0 ≤ i ≤ n and
fn+1 = f0. It is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g with |i− k| ≥ 2
(mod n + 1), if ci

⋂
ck �= φ then either |i− k| ≥ 2 (mod n + 1) and ci

⋂
ck is an

edge, or |i− k| ≥ 3 (mod n + 1) and ci

⋂
ck is is a vertex.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 502–511, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Minimum-Length Polygon of a Simple Cube-Curve in 3D Space 503

A tube g is the union of all cubes contained in a cube-curve g. A tube is
a compact set in R3, its frontier defines a polyhedron, and it is homeomorphic
with a torus in case of a simple cube-curve. A curve in R3 is complete in g iff
it has a nonempty intersection with every cube contained in g. Following [4, 5],
we define that a minimum-length polygon (MLP) of a simple cube-curve g is a
shortest simple curve P which is contained and complete in tube g. The length
of a simple cube-curve g is defined to be the length l(P) of an MLP of g.

It turns out that such a shortest simple curve P is always a polygonal curve,
and it is uniquely defined if the cube-curve is not only contained in a single layer
of cubes of the 3D grid (see [4, 5]). If contained in one layer, then the MLP is
uniquely defined up to a translation orthogonal to that layer. We speak about
the MLP of a simple cube-curve.

A critical edge of a cube-curve g is such a grid edge which is incident with
exactly three different cubes contained in g. Figure 1 shows all the critical edges
of a simple cube-curve. If e is a critical edge of g and l is a straight line such
that e ⊂ l, then l is called a critical line of e in g or critical line for short.

Assume a simple cube-curve g and a triple of consecutive critical edges e1,
e2, and e3 such that ei ⊥ ej , for all i, j = 1, 2, 3 with i �= j. If the x-coordinates
(y-coordinates, or z-coordinates) of two vertices (i.e., end points) of e1 and e3
are equal when e2 is parallel to the x-axis (y-axis, or z-axis), we say that e1,
e2 and e3 form an end angle, and g has an end angle, denoted by ∠(e1, e2, e3);
otherwise we say that e1, e2 and e3 form a middle angle, and g has a middle
angle. Figure 1 shows a simple cube-curve which has 5 end angles ∠(e21, e0, e1),
∠(e4, e5, e6), ∠(e6, e7, e8), ∠(e14, e15, e16)), ∠(e16, e17, e18), and many middle an-
gles (e.g., ∠(e0, e1, e2), ∠(e1, e2, e3), and ∠(e2, e3, e4)).

A simple cube-curve g is called first class iff each critical edge of g contains
exactly one vertex of the MLP of g. This paper focuses on first-class simple
cube-curves which have at least one end angle (as the one in Figure 1).

Let S ⊆ R3. The set {(x, y, 0) : ∃z(z ∈ R∧ (x, y, z) ∈ S)} is the xy-projection
of S, or projection of S for short. Analogously we define the yz- or xz-projection
of S. The paper is organized as follows: Section 2 describes theoretical fundamen-

Fig. 1. Example of a first-class simple cube-curve which has middle and end angles

504 F. Li and R. Klette

tals for the length calculation of first-class simple cube-curves. Section 3 presents
our algorithm for length computation. Section 4 gives experimental results of an
example and a discussion of results obtained by the rubber-band algorithm for
this particular input. Section 5 gives the conclusions.

2 Basics

We provide mathematical fundamentals used in our algorithm for computing the
MLP of a first-class simple cube-curve. We start with citing a basic theorem
from [1]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.

This theorem is of fundamental importance for both the rubber-band algo-
rithm and our algorithm (to be defined later in this paper). Let de(p, q) be the
Euclidean distance between points p and q.

Let e1, e2, and e3 be three (not necessarily consecutive) critical edges in a
simple cube-curve, and let l1, l2, and l3 be the corresponding three critical lines.
We express a point p2(t2) = (x2 + kx2t2, y2 + ky2t2, z2 + kz2t2) on l2 in general
form, with t2 ∈ R. Analogously, let p1(t1), p3(t3) be points on l1, l3, respectively.

Lemma 1. Let d2(t1, t2, t3) = de(p1, p2) + de(p2, p3). It follows that ∂2d2
∂t22 > 0.

Space in this short conference note does not allow to provide proofs.1

Let li be a critical line, pi ∈ li, where i = 0, 1, 2, . . . , n. Let d(t0, t1, . . . , tn) =∑n−1
i=0 de(pi, pi+1). Assume n + 1 reals ti0 (i = 0, 1, . . . , n) which define a mini-

mum d(t00 , t10 , . . . , tn0) of function d(t0, t1, . . . , tn). By Lemma 1 we immediately
obtain

Lemma 2. For any two reals ti1 and ti2 , we have

d(t00 , . . . , ti0 , . . . , tn0) < d(t00 , . . . , ti1 , . . . , tn0) < d(t00 , . . . , ti2 , . . . , tn0)

if ti0 < ti1 < ti2 , and

d(t00 , . . . , ti1 , . . . , tn0) > d(t00 , . . . , ti2 , . . . , tn0) > d(t00 , . . . , ti0 , . . . , tn0)

if ti1 < ti2 < ti0 .

Let e1, e2, and e3 be three critical edges, and let l1, l2, and l3 be their critical
lines, respectively. Let p1, p2, and p3 be three points such that pi belongs to li,
where i = 1, 2, 3. Let the coordinates of p2 be (x2 + kx2t2, y2 + ky2t2, z2 + kz2t2).
Let d2 = de(p1, p2) + de(p2, p3).

1 See our online CITR-TR-147 for a longer version, also containing proofs.

Minimum-Length Polygon of a Simple Cube-Curve in 3D Space 505

Lemma 3. The function f(t2) = ∂d2
∂t2

has a unique real root.

Let li be a critical line, pi ∈ li, the coordinates of pi be (xi + kxiti, y2 +
kyiti, zi + kziti), where i = 1, 2, . . . , n. Let d(t0, t1, . . . , tn) =

∑n−1
i=0 de(pi, pi+1).

Theorem 2. There is a unique (n+1)-tuple of reals ti0 (i = 0, 1, . . . , n) defining
the minimum d(t00 , t10 , . . . , tn0) of d(t0, t1, . . . , tn), with ∂d

∂ti
(t00 , t10 , . . . , tn0) = 0,

for i = 0, 1, . . . , n.

Let e1, e2 and e3 be three consecutive critical edges of a simple cube-curve
g. Let D(e1, e2, e3) be the dimension of the linear space generated by e1, e2 and
e3. Let l13 be a line segment with its two end points at e1 and e3. Let deiej

be Euclidean distance between ei and ej (i.e., the minimum distance between
points p on ei and q on ej), where i, j = 1, 2, 3.

Lemma 4. The line segment l13 is not completely contained in g if D(e1, e2, e3)
= 3, min{de1e2 , de2e3} ≥ 1 and max{de1e2 , de2e3} ≥ 2, or if D(e1, e2, e3) ≤ 2 and
min{de1e2 , de2e3} ≥ 2.

Let g be a simple cube-curve such that any three consecutive critical edges
e1, e2 and e3 do satisfy that either D(e1, e2, e3) = 3, min{de1e2 , de2e3} ≥ 1
and max{de1e2 , de2e3} ≥ 2, or D(e1, e2, e3) ≤ 2 and min{de1e2 , de2e3} ≥ 2. By
Lemma 4, we immediately obtain

Lemma 5. Every critical edge of g contains at least one vertex of g’s MLP.

Let g be a simple cube-curve, and assume that every critical edge of g contains
at least one vertex of the MLP. Then we also have the following:

Lemma 6. Every critical edge of g contains at most one vertex of g’s MLP.

Proof. Assume that there exists a critical edge e such that e contains at least
two vertices v and w of the MLP P of g. Without loss of generality, we can
assume that v and w are the first (in the order on P) two vertices which are on
e. Let u be a vertex of P , which is on the previous critical edge of P . Then line
segments uv and uw are completely contained in g. By replacing {uv, uw} by
uw we obtain a polygon of length shorter than P , which is in contradiction to
the fact that P is an MLP of g. ��

Let g be a simple cube-curve such that any three consecutive critical edges
e1, e2, and e3 do satisfy that either D(e1, e2, e3) = 3, min{de1e2 , de2e3} ≥ 1
and max{de1e2 , de2e3} ≥ 2, or D(e1, e2, e3) ≤ 2 and min{de1e2 , de2e3} ≥ 2. By
Lemma 5 and Lemma 6, we immediately obtain

Theorem 3. The specified simple cube-curve g is first class.

Let e1, e2, and e3 be three consecutive critical edges of a simple cube-curve
g. Let p1, p2, and p3 be three points such that pi ∈ ei, for i = 1, 2, 3. Let the
coordinates of pi be (xi +kxi

ti, y2 +kyi
ti, zi +kzi

ti), where kxi
, kyi

, kzi
are either

0 or 1, and 0 ≤ ti ≤ 1, for i = 1, 2, 3. Let d2 = de(p1, p2) + de(p2, p3).

506 F. Li and R. Klette

Theorem 4. ∂d2
∂t2

= 0 implies that we have one of the following representations
for t3: we can have

t3 =
−c2t1 + (c1 + c2)t2

c1
(1)

if c1 > 0; we can also have

t3 = 1−

√
c21(t2 − a2)2

(t2 − t1)2
− c22 or (2)

t3 =

√
c21(t2 − a2)2

(t2 − t1)2
− c22 (3)

if a2 is either 0 or 1, and c1 and c2 are positive; and we can also have

t3 = 1−

√
(t2 − a2)2[(t1 − a1)2 + c21]

(t2 − b1)2
− c22 or (4)

t3 =

√
(t2 − a2)2[(t1 − a1)2 + c21]

(t2 − b1)2
− c22 (5)

if a1, a2, and b1 are either 0 or 1, and c1 and c2 are positive reals.

The proof of Case 3 of Theorem 4 and Lemma 3 show the following:

Lemma 7. Let g be a first class simple cube-curve. If e1, e2 and e3 form a
middle angle of g then the vertex of the MLP of g on e2 can not be an endpoint
(i.e., a grid point) on e2.

Lemma 8. Let f(x) be a continuous function defined on interval [a, b], and
assume f(ξ) = 0 for some ξ ∈ (a, b). Then, for every ε > 0, there exist a′ and b′

such that for every x ∈ [a′, b′] we have |f(x)| < ε.

Lemma 9. Let f(x) be a continuous function on an interval [a, b], with f(ξ) = 0
at ξ ∈ (a, b). Then for every ε > 0, there are two integers n > 0 and k > 0 such
that for every x ∈ [(k−1)(b−a)

n , k(b−a)
n], we have |f(x)| < ε.

3 Algorithm

This section contains main ideas and steps of our algorithm for computing the
MLP of a first class simple cube-curve which has at least one end angle.

3.1 Basic Ideas

Let pi be a point on ei, where i = 0, 1, 2, . . . , n. Let the coordinates of pi be
(xi + kxi

ti, y2 + kyi
ti, zi + kzi

ti), where i = 0, 1, . . . , and n. Then the length of

Minimum-Length Polygon of a Simple Cube-Curve in 3D Space 507

the polygon p0p1 . . . pn is d = d(t0, t1, . . . , tn) =
∑n

i=0 de(pi, pi+1). If the polygon
p0p1 . . . pn is the MLP of g, then (by Theorem 2) we have ∂d

∂ti
= 0, where

i = 0, 1, . . . , n.
Assume that ei, ei+1, and ei+2 form an end angle, and also ej , ej+1, and

ej+2, and no other three consecutive critical edges between ei+2 and ej form an
end angle, where i ≤ j and i, j = 0, 1, 2, . . . , n. By Theorem 4 we have ti+3 =
fi+3(ti+1, ti+2), ti+4 = fi+4(ti+2, ti+3), ti+5 = fi+5(ti+3, ti+4), . . . , tj , and tj+1 =
fj+1(tj−1, tj). This shows that ti+3, ti+4, ti+5, . . . , tj , and tj+1 can be represented
by ti+1, and ti+2. In particular, we obtain an equation tj+1 = f(ti+1, ti+2), or

g(tj+1, ti+1, ti+2) = 0, (6)

where tj+1, and ti+1 are already known, or

g1(ti+2) = 0. (7)

Since ei, ei+1, and ei+2 form an end angle it follows that ei+1 ⊥ ei+2. By
Theorem 4 we can express ∂d2

∂ti+2
either in the form

ti+2 − ti+1 − a1√
(ti+2 − ti+1 − a1)2 + b21

+
ti+2 − a2√

(ti+2 − a2)2 + (ti+3 − b2)2 + c22
(8)

or in the form

ti+2 − b1√
(ti+1 − a1)2 + (ti+2 − b1)2 + c21

+
ti+2 − a2√

(ti+2 − a2)2 + (ti+3 − b2)2 + c22
(9)

If ti+2 satisfies Equation (8), then ∂d2
∂ti+2

(a′
1) < 0, and ∂d2

∂ti+2
(a′

2) > 0, where
a′
1 = min{ti+1+a1, a2}, and a′

2 = max{ti+1+a1, a2}. It follows that Equation (8)
has a unique real root between a′

1 and a′
2. If ti+2 satisfies Equation (9), then

Equation (9) has a unique real root between a2 and b1. In summary, there are
two real numbers a and b such that Equation (9) has a unique root in between a
and b. If g1(a)g1(b) < 0, then we can use the bisection method (see [2–page 49])
to find an approximate root of Equation (9). Otherwise, by Lemma 9, we can also
find an approximate root of Equation (9). Therefore we can find an approximate
root for ∂d

∂tk
= 0, where k = i+2, i+3, . . . , and j, and an exact root for ∂d

∂tk
= 0,

where k = i + 1 and j + 1. In this way we will find an approximate or exact
root tk0 for ∂d

∂tk
= 0, where k = 1,2, . . . , and n. Let t′k0

= 0 if tk0 < 0 and
t′k0

= 1 if tk0 > 1, where k = 1, 2, . . . , n. Then (by Theorem 2) we obtain an
approximation of the MLP (its length is d(t′10

, t′20
, . . . , t′i0 , . . . , t

′
n0

)) of the given
first class simple cube-curve.

3.2 Main Steps of the Algorithm

The input is a first class simple cube-curve g with at least one end angle. The
output is an approximation of the MLP and a calculated length value.

Step 1. Represent g by the coordinates of the endpoints of its critical edges
ei, where i = 0, 1, 2, . . . , n. Let pi be a point on ei, where i = 0, 1, 2, . . . , n. Then

508 F. Li and R. Klette

the coordinates of pi should be (xi + kxi
ti, y2 + kyi

ti, zi + kzi
ti), where only one

of the parameters kxi
, kyi

and kzi
can be 1, and the other two are equal to 0, for

i = 0, 1, . . . , n.
Step 2. Find all end angles ∠(ej , ej+1, ej+2),∠(ek, ek+1, ek+2), . . . of g. For

every i ∈ {0, 1, 2, . . . , n}, let di+1 = de(pi, pi+1) + de(pi+1, pi+2). By Lemma 3,
we can find a unique root t(i+1)0 of equation ∂di+1

∂ti+1
= 0 if ei, ei+1 and ei+2 form

an end angle.
Step 3. For every pair of two consecutive end angles ∠(ei, ei+1, ei+2) and

∠(ej , ej+1, ej+2) of g, apply the ideas as described in Section 3.1 to find the root
of equation ∂dk

∂tk
= 0, where k = i + 1, i + 2, . . . , and j + 1.

Step 4. Repeat Step 3 until we find an approximate or exact root tk0 for
∂d
∂tk

= 0, where d = d(t0, t1, . . . , tn) =
∑n−1

i=1 di, for k = 0, 1, 2, . . . , n. Let t′k0
= 0

if tk0 < 0, and t′k0
= 1 if tk0 > 1, for k = 0, 1, 2, . . . , n.

Step 5. The output is a polygonal curve p0(t′10
)p1(t′20

) . . . pn(t′n0
) of total

length d(t′10
, t′20

, . . . , t′i0 , . . . , t
′
n0

), and this curve approximates the MLP of g.

We give an estimate of the time complexity of our algorithm in dependency
of the number of end angles m and the accuracy (tolerance ε) of approximation.

Let the accuracy of approximation be 1
2k . By [2–page 49], the bisection

method needs to know the initial end points a and b of the search interval
[a, b]. In the best case, if we can set a = 0 and b = 1 to solve all the forms of
Equation (7) by the bisection method, then the algorithm completes each run in
O(mk2) time. In the worst case, if we have to find out the values of a and b for
every of the forms of Equation (7) by the bisection method, then by Lemma 9,
and let us assume that we need 2k0 steps to find out the values of a and b, the
algorithm completes each run in O(mk22k0) time.

4 Experiments

We provide one example where we compare results obtained with our algorithm
with those of the rubber-band algorithm as described in [1].

We approximate the MLP of the first-class simple cube-curve of Figure 1.

Step 1. We identify all coordinates of the critical edges e0, e1, . . . , e21 of g.
Let pi be a point on the critical line of ei, where i = 0, 1, . . . , 21.

Step 2. We calculate the coordinates of pi, where i = 0, 1, . . . 21, as follows:
(1 + t0, 4, 7), (2, 4 + t1, 5), (4, 5, 4 + t2), (4 + t3, 7, 4), (5, 7 + t4, 2), (7, 8, 1 + t5) . . .
(2, 2, 7 + t21).

Step 3. Now let d = d(t0, t1, . . . , t21) =
∑21

i=0 de(pi, pi+1(mod 22)). Then we
obtain

∂d

∂t0
=

t0 − 1√
(t0 − 1)2 + t221 + 4

+
t0 − 1√

(t0 − 1)2 + t21 + 4
(10)

∂d

∂t1
=

t1√
(t0 − 1)2 + t21 + 4

+
t1 − 1√

(t1 − 1)2 + (t2 − 1)2 + 4
(11)

Minimum-Length Polygon of a Simple Cube-Curve in 3D Space 509

∂d

∂t2
=

t2 − 1√
(t1 − 1)2 + (t2 − 1)2 + 4

+
t2√

t22 + t23 + 4
(12)

∂d

∂t3
=

t3√
t22 + t23 + 4

+
t3 − 1√

(t3 − 1)2 + t24 + 4
(13)

∂d

∂t4
=

t4√
(t3 − 1)2 + t24 + 4

+
t4 − 1√

(t4 − 1)2 + (t5 − 1)2 + 4
(14)

and
∂d

∂t5
=

t5 − 1√
(t4 − 1)2 + (t5 − 1)2 + 4

+
t5 − 1√

(t5 − 1)2 + t26 + 4
(15)

By Equations (10) and (15) we obtain t0 = t5 = 1.
Similarly, we have t7 = t15 = 0, and t16 = 1. Therefore we find all end

angles as follows: ∠(e21, e0, e1), ∠(e4, e5, e6), ∠(e6, e7, e8), ∠(e14, e15, e16), and
∠(e15, e16, e17).

By Theorem 4 and Equations (11), (12), (13) it follows that

t2 = 1−
√

(t1 − 1)2[(t0 − 1)2 + 4]
t21

− 4 (16)

t3 =

√
t22[(t1 − 1)2 + 4]

(t2 − 1)2
− 4 (17)

and

t4 =

√
(t3 − 1)2[t22 + 4]

t23
− 4 (18)

By Equation (14) we have

t24[(t5 − 1)2 + 4] = (t4 − 1)2[(t3 − 1)2 + 4]

Let
g1(t1) = t24[(t5 − 1)2 + 4]− (t4 − 1)2[(t3 − 1)2 + 4] (19)

By Equation (16) we have t1 ∈ (0, 0.5), g1(0.4924) = 3.72978 > 0, and also
g1(0.4999) = −51.2303 < 0. By Theorem 2 and the Bisection Method we obtain
the following unique roots of Equations (19), (16), (17), and (18):

t1 = 0.492416, t2 = 0.499769, t3 = 0.499769, and t4 = 0.507584,

with error g1(t1) = 4.59444×10−9. These roots correspond to the two consecutive
end angles ∠(e21, e0, e1) and ∠(e4, e5, e6) of g.

Step 4. Similarly, we find the unique roots of equation ∂d
∂ti

= 0, where i =
6, 7, . . . , 21. At first we have t6 = 0.5, which corresponds to the two consecutive
end angles ∠(e4, e5, e6) and ∠(e6, e7, e8); then we also obtain

t8 = 0.492582, t9 = 0.494543, t10 = 0.331074, t11 = 0.205970, t12 = 0.597034,
t13 = 0.502831, t14 = 0.492339, which correspond to the two consecutive end

510 F. Li and R. Klette

Table 1. Comparison of results of both algorithms

Critical points ti0 (our algorithm) ti0 (Rubber-Band Algorithm)
p0 1 1
p1 0.492416 0.4924
p2 0.499769 0.4998
p3 0.499769 0.4998
p4 0.507584 0.5076
p5 1 1
p6 0.5 0.5
p7 0 0
p8 0.492582 0.4926
p9 0.494543 0.4945
p10 0.331074 0.3311
p11 0.205970 0.2060
p12 0.597034 0.5970
p13 0.502831 0.5028
p14 0.492339 0.4923
p15 0 0
p16 1 1
p17 0.501527 0.5015
p18 0.77824 0.7789
p19 0.56314 0.5641
p20 0.32265 0.3235
p21 0.2151 0.2157

angles ∠(e6, e7, e8) and ∠(e14, e15, e16); followed by t15 = 0, t16 = 1, which cor-
respond to the two consecutive end angles ∠(e14, e15, e16) and ∠(e15, e16, e17);
and finally t17 = 0.501527, t18 = 0.77824, t19 = 0.56314, t20 = 0.32265, and
t21 = 0.2151, which correspond to the two consecutive end angles ∠(e15, e16, e17)
and ∠(e21, e0, e1).

Step 5. In summary, we obtain the values shown in the first two columns of
Table 1. The calculated approximation of the MLP of g is p0(t′10

)p1(t′20
). . .pn(t′n0

),
and its length is d(t′10

, t′20
, . . . , t′i0 , . . . , t

′
n0

) = 43.767726, where t′i0 = ti0 for i
limited to the set {0, 1, 2, . . . , 21}.

The Rubber-Band Algorithm [1] calculated the roots of Equations (10)
through (15) as shown in the third column of Table 1. Note that there is only
a finite number of iterations until the algorithm terminates. No threshold needs
to be specified for the chosen input curve.

From Table 1 we can see that both algorithms converge to the same values.

5 Conclusions

We designed an algorithm for the approximative calculation of an MLP for a
special class of simple cube-curves (first-class simple cube-curves with at least
one end angle). Mathematically, the problem is equivalent to solving equations

Minimum-Length Polygon of a Simple Cube-Curve in 3D Space 511

with one variable each. Applying methods of numerical analysis, we can compute
their roots with sufficient accuracy. We illustrated by one non-trivial example
that the Rubber-Band Algorithm also converges to the correct solution (as cal-
culated by our algorithm).

Acknowledgements. The authors thank Dr Thomas Bülow for providing the
source code of and correct results of the Rubber-Band Algorithm. The IWCIA
reviewers’ comments have been very helpful for revising an earlier version of this
paper.

References

1. T. Bülow and R. Klette. Digital curves in 3D space and a linear-time length esti-
mation algorithm. IEEE Trans. Pattern Analysis Machine Intelligence, 24:962–970,
2002.

2. R.L. Burden and J.D. Faires. BFNumerical Analysis. 7th edition, Brooks Cole, Pa-
cific Grove, 2000.

3. A. Jonas and N. Kiryati. Length estimation in 3-D using cube quantization. J.
Mathematical Imaging Vision, 8:215–238, 1998.

4. F. Sloboda, B. Zaťko, and R. Klette. On the topology of grid continua. SPIE Vision
Geometry VII, 3454:52–63, 1998.

5. F. Sloboda, B. Zaťko, and J. Stoer. On approximation of planar one-dimensional
continua. In R. Klette, A. Rosenfeld, and F. Sloboda, editors, Advances in Digital
and Computational Geometry, pages 113–160. Springer, Singapore, 1998.

Corner Detection and Curve Partitioning
Using Arc-Chord Distance

Majed Marji1, Reinhard Klette2, and Pepe Siy1

1 Daimler Chrysler Corporation, 800 Chrysler Drive,
Auburn Hills, MI 48326-2757, USA

2 The University of Auckland, CITR, Tamaki campus, Bldg. 731,
Morrin Road, Glen Innes, Auckland 1005, New Zealand

Dedicated to Professor Azriel Rosenfeld

Abstract. There are several algorithms for curve partitioning using the
arc-chord distance formulation, where a chord whose associated arc spans
k pixels is moved along the curve and the distance from each border
pixel to the chord is computed. The scale of the corners detected by
these algorithms depends on the choice of integer k. Without a priori
knowledge about the curve, it is difficult to choose a k that yields good
results. This paper presents a modified method of this type that can
tolerate the effects of an improper choice of k to an acceptable degree.

1 Introduction

Partitioning of digital planar curves is often based on using the arc-chord
distance formulation. A polygonal approximation of the digital curve is then
generated by connecting the attained partitioning points - also referred to as
corners - with straight lines. In the arc-chord distance method, a chord whose
associated arc spans k pixels (i.e., a k-point arc of the curve) is moved along the
curve and the distance from each pixel on the k-point arc to the chord is com-
puted. A significance (also called cornerity) measure is formulated using these
distances (e.g., maximum, distance-accumulation etc.) and processed in order to
define corners of the curve.

Ramer’s algorithm [1] recursively partitions an arc at the point whose dis-
tance from the chord is a maximum. Rutkowski [2] computes the maximum
distance of each point p on the curve from any chord having a given arc length
and having p on its arc, and partitions the curve at local maxima of this distance.

The algorithm of Fischler and Bolls [3] labels each point on a curve as belong-
ing to one of three categories: 1) a point in a smooth interval, 2) a critical point,
or 3) a point in a noisy interval. To make this choice, the algorithm analyzes the
deviations of the curve from a chord or “stick” that is iteratively advanced along
the curve. If the curve stays close to the chord, points in the interval spanned by
the chord will be labeled as belonging to a smooth section. If the curve makes
a single excursion from the chord, the point in the interval that is farthest from
the chord will be labeled a critical point (actually, for each placement of the

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 512–521, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Corner Detection and Curve Partitioning Using Arc-Chord Distance 513

chord, an accumulator associated with the farthest point will be incremented by
the distance between the point and the chord). If the curve makes two or more
excursions, points in the interval will be labeled as noise points.

Phillips and Rosenfeld [4] presented a modified version of the algorithm pre-
sented in [2]. They also suggested an approach to choosing good values of k in
a given part of the curve. To find a good value of k, they determined the best
fit straight line for each k-point arc of the curve, and computed the RMS error
corresponding to this fit. This process is repeated for a sequence of arc lengths,
producing a sequence of fit measures for each border point. In a given part of
the border “good” values of k are taken as those which produce local minima in
the fit measure.

Han [5] proposed a method similar to that of Fischler and Bolls [3] but used
the signed distance to the chord. The algorithm keeps two separate accumulators
for the positive and negative arc-chord distances to distinguish between concave
and convex corners. For a given chord-length L, a line is drawn from point pi to
point pi+L on the curve. The signed distances from all points pi+1, . . . , pi+L−1 to
this line are calculated. The point with positive maximum distance is defined as
p+, and the point with the negative minimum distance is defined as p− . If the
absolute value of the maximum (minimum) distance exceeds a given threshold
Dmin , the counter (h(p+)/h(p−)), associated with the point that corresponds to
the maximum (minimum) is incremented (decremented). The line is advanced
by one pixel and the process is repeated until the entire curve is scanned. In
other words, this algorithm counts how many times each border point happened
to be the farthest point from the line pipi+L. At the end of the calculation, the
points whose accumulator value exceeds a given threshold Hmin are marked as
concave (convex) points.

Lin, Dou and Wang [6] proposed a new shape description method termed
the arc height function and used it to detect the corners of the border. A chord
that joins border points pi and pi+k is advanced along the curve, one pixel at
a time. A straight-line perpendicular to the chord passing through its center pc

intersects the border at point px. The distance between pc and px is the arc
height, which, when computed for all positions of the chord gives the arc height
function. The corner points of the border correspond to the local maxima of the
arc height function.

The algorithm of Aoyama and Kawagoe [7] starts by finding all occurrences of
digital straight-line patterns and marking their endpoints as candidate vertices.
The best approximating straight-lines are determined by considering the ratio
between the height H and the length L of the chord, which is termed the pseudo
curvature G. Two modifications were made to the calculation of H and G. First,
the pseudo curvature calculation was modified in such a way to prevent a long
straight-line from being approximated as an inclined line. Second, the distance
calculation was modified to take into account cases where the perpendicular line
does not intersect the line segment.

Wu and Wang [8] combined corner detection and polygonal approximation.
For a given parameter k, a significance measure is assigned to each border point

514 M. Marji, R. Klette, and P. Siy

Fig. 1. Illustration of the Phillips and Rosenfeld algorithm

pi as the ratio di

Li
, where di is the distance between point pi and the chord

(pi−k, pi+k), and Li is the length of the chord. Local maxima points whose
significance is greater than a threshold were taken as potential corners and used
as the starting points for polygonal approximation. The border points within
each segment (between two corners) are sorted according to their significance
(most significant first). The sorted points are tested sequentially by calculating
their distance to the chord that joins the end points of the segment; if this
distance exceeds a given threshold, the corresponding point is marked as a corner.

The work of Fischler and Wolf [9] extends the technique of [3]. An important
contribution of their work over [3] is a major revision of the approach to filter-
ing the critical points, based on comparisons at a given scale as well as across
different scales (i.e., different values of the input parameter k). In addition, the
sign of the computed saliency measure is taken into consideration.

Han and Poston [10] proposed an enhanced version of the algorithm presented
in [5]. Here, instead of incrementing a counter when the distance exceeds a
threshold as in [5], the actual signed Euclidean distance is accumulated.

In this work, we propose a new algorithm based on the work of Phillips
and Rosenfeld [4] that can tolerate the effect of an improper choice of k to an
acceptable degree.

Fig. 2. Arc-chord distance measure and the corners detected by the Phillips-Rosenfeld
algorithm using k = 6

Corner Detection and Curve Partitioning Using Arc-Chord Distance 515

Fig. 3. An isolated corner model (a) and its associated (b) arc-chord distance using
k = 6

Fig. 4. An isolated corner model (a) and its associated unsigned (b) and signed (c)
arc-chord distance measure using k = 6

2 The Method of Phillips and Rosenfeld

The algorithm is illustrated with the aid of Figure 1. Let p be a point on the
curve and let k be the chosen arc length. For each chord C whose arc has length
k and has p in its interior, let d(p, C) be the perpendicular distance from p to
C. Let M(p, C) be the maximum of these distances for all such chords. Point p
is called a partition point if the value of M(p, C) is a local maximum (for the
given k) and also exceeds a threshold t = k/5 ∼= (k/2) cos(135◦/2), which is the
altitude of an isosceles triangle whose vertex angle is 135◦ and whose equal sides
have lengths k/2. Point p is considered a local maximum point if the following
condition is satisfied:

M(p, C) ≥M(px, C), for all px ∈ {pi−(k/2), . . . , pi+(k/2)}
To demonstrate the effect of thresholding, the Semicircles shape [11] and its

associated arc-chord distance for k = 6 are shown in Figure 2. It is clear from
this example that we cannot expect the suggested threshold of k/5 to work in all
cases. Although lowering the threshold value will enable us to detect the missed
corners in this example, it may result in many spurious corners for other test
shapes.

A potential problem with the local maximum determination scheme is il-
lustrated in Figure 3, which shows an isolated corner model1 and its arc-chord
distance using k = 6. In this example, peak A will be suppressed by some points

1 A synthetic curve segment with a single corner. Thus, there are no near by corners
that may affect the resulting arc-chord distance measure.

516 M. Marji, R. Klette, and P. Siy

Fig. 5. The height of a peak is not indicative of its prominence

in its neighborhood with higher significance although non-of these points satisfy
the local maximum criterion.

Figure 4 demonstrates that the inclusion of the sign information in the defi-
nition of the arc-chord distance can prevent some peaks from being masked by
other neighboring peaks of opposite concavity (convexity). This figure shows an
isolated corner model and its associated signed and unsigned arc-chord distance
measures using k = 6. While peak B in the unsigned measure of Figure 4(b) will
be discarded by the non-maximum suppression scheme, it has a better chance
of being detected if the signed measure of Figure 4(c) is used instead. In addi-
tion, the inclusion of the sign information provides valuable evidence about the
concavity and convexity of the curve without introducing any overhead on the
subsequent calculations.

Figure 5 demonstrates that the height of a peak is not sufficient by itself to
quantify the peak. In this example, although peak A is more visually prominent,
it may be suppressed by peak B whose height is larger than that of peak A. This
suggests that other criteria should be considered to quantify the strength of the
peaks.

The final issue that was not explicitly discussed in [4] is that of plateaus. It is
possible to have adjacent curve points with equal arc-chord distances, and trying
to resolve these ties arbitrarily may result in detecting false corners. Although
this may not cause noticeable problems for real borders, a properly designed
algorithm should be able to handle these cases at least systematically.

3 The New Algorithm

The steps of the new algorithm will be described below and will be illustrated
with the aid of the Semicircles shape shown in Figure 6.

1. Compute the arc-chord distance for each border point using the method of
Phillips and Rosenfeld. Here however, we use the signed distance from the
point to the chord instead of the absolute distance value. For the Semicircles
shape, this measure is shown in Figure 7 using k = 6.

2. Separate the signed arc-chord distance function d(p) into two functions d+(p)
and d−(p) as follows

d+(p) =
{
d(p), if d(p) ≥ 0
0 otherwise and d−(p) =

{
| d(p) |, if d(p) < 0
0 otherwise

Figure 8 shows these two functions for the measure of Figure 7.

Corner Detection and Curve Partitioning Using Arc-Chord Distance 517

Fig. 6. Semicircles shape used to illustrate the new algorithm. Border points have been
numbered for convenience

Fig. 7. Signed arc-chord distance for the Semicircles shape using k = 6

Fig. 8. The functions d+(p) and d−(p) for the Semicircles shape using k = 6

3. The signals d+(p) and d−(p) are processed separately where a search proce-
dure is applied to detect the local maximum points. For each point pi, we
attempt to find the largest possible window that contains pi such that the
significance of all of the points in that window to both the left and right
of pi is strictly decreasing. If such a window exists, then pi is considered a
local maximum point, and the leftmost PL(pi) and rightmost PR(pi) points

518 M. Marji, R. Klette, and P. Siy

Fig. 9. Handling plateaus

Fig. 10. Significance measure for the Semicircles shape using k = 6

of that window are recorded. For example, in Figure 8 (d−(p)), point 28 is
a local maximum point with PL(pi) = 24 and PR(pi) = 29.

The two endpoints of valid plateaus are handled differently. A plateau
whose leftmost and rightmost end points are, respectively, px and py, is
considered to be valid if d(px) > d(px − 1) and d(py) > d(py + 1). In this
case, we set PR(px) = PR(py) and PL(py) = PL(px). This is illustrated in
Figure 9, which represents a segment of the function of Figure 8. In this
example, PL(py) = PL(px) = 52 and PR(px) = PR(py) = 58.

4. The significance of each local maximum point pi found in the previous
step is evaluated as the area of the polygon whose vertices are the points
(px, d±(px)) where px ∈ [PL(px), PR(px)]. This is shown in Figure 10 for the
Semicircles shape.

5. The mean significance μ is calculated for all the local maximum points. In
the above example (for instance) we have 40 local maximum points whose
mean significance evaluates to 1.39 (see Figure 10).

6. All local maximum points whose significance value is greater than or equal
to the average μ are marked as candidate corners. For the Semicircles test
shape, this results in the following 18 points: 11, 17, 32, 34, 36, 38, 40, 43,
53, 57, 67, 70, 72, 74, 76, 78, 93, and 99.

Fig. 11. Conditions for testing local maximum point pi

Corner Detection and Curve Partitioning Using Arc-Chord Distance 519

Fig. 12. Candidate corners after processing all local maxima points

7. The remaining local maxima points are sorted according to their significance
in descending order (most significant first) and processed sequentially. For
every local maximum point pi, we consider the two candidate corners that
proceed and succeed pi; denote these two points by pl and pr, respectively,
as shown in Figure 11.

Then pi is considered a candidate corner if

d ≥ 1 and
d

L
≥ d1d2

L2 sinα

where α is set to 155◦. The first condition is based on the fact that a slanted
straight line is quantized into a set of horizontal and vertical line segments
separated by one-pixel steps. In addition, we assume that the “border noise”
is no more than one pixel, and if the noise level is known a priori, this
threshold can be adjusted accordingly. The second condition allows us to
detect the vertex of a triangle whose vertex angle is less than α. In order
to preserve the symmetry of the shape, all local maxima points with equal
significance level are processed in the same iteration.

For the Semicircles shape, the first iteration examines points 49, 51,
59 and 61 (since all of them have the same significance); all these points
satisfy the two conditions and are hence marked as candidate dominant
points. The second iteration examines points 8, 20, 28, 82, and 90; none of
these points satisfy the two conditions. The process continues until all local
maxima points are examined. The output of this step is shown in Figure 12.

8. Because in step 6 we added all the peaks with ”above-average” significance
without paying attention to their proximity (in terms of border pixels), it
is reasonable to believe that some of the marked candidate corners do not
correspond to true corners of the curve. The purpose of the current step is
to suppress the false corners (if any). First, we calculate the ratio d/L (see
Figure 11) for all candidate corners and sort these corners in ascending or-
der (lowest first). Candidate corners with d < 1 are considered insignificant
and marked for deletion. Here also, we process all points with identical d/L
value in the same iteration. The final result after this step is shown in Fig-
ure 13. The figure also shows the corners detected by the Phillips-Rosenfeld
algorithm.

520 M. Marji, R. Klette, and P. Siy

Fig. 13. Corners of the Semicircles shape using k = 6 produced by the current algo-
rithm (a) and the Phillips-Rosenfeld algorithm (b)

Fig. 14. Scale-space map for the Semicircles shape: (a) Phillips-Rosenfeld algorithm
and (b) new algorithm

4 Experimental Results and Conclusions

To see the difference between the new algorithm and the Phillips-Rosenfeld algo-
rithm, the scale space map for the Semicircles shape is shown in Figure 14 using
k values in the range [3, 10(= N/10)]. Note that the Phillips-Rosenfeld algo-
rithm did not detect any corners for the curve segment [43, 67] for several scales
whereas the results of the new algorithm were consistent to within a tolerance
of 1− 2 pixels. In fact, the polygon generated by the new algorithm did provide
a visually pleasing approximation of the shape for all the considered values of k.

We have described a new algorithm for curve partitioning using the arc-chord
distance formulation. The algorithm can tolerate the effect of the scale parameter
k to an acceptable degree.

References

1. U. Ramer. An iterative procedure for the polygonal approximation of plane closed
curves. Computer Graphics Image Processing, 1:244–256, 1972.

Corner Detection and Curve Partitioning Using Arc-Chord Distance 521

2. W.S. Rutkowski and A. Rosenfeld. A comparison of corner-detection techniques
for chain-coded curves. Technical Report TR-623, Computer Science Center, Uni-
versity of Maryland, 1978.

3. M. Fischler and R. Bolles. Perceptual organization and curve partitioning, IEEE
Trans. Pattern Analysis Machine Intelligence, 8:100–105, 1986.

4. T.Y. Phillips and A. Rosenfeld. A method for curve partitioning using arc-chord
distance. Pattern Recognition Letters, 5: 285–288, 1987.

5. J.H. Han. Detection of convex and concave discontinuous points in a plane curve. In
Proc. 3rd Int. Conf. Computer Vision, December 4-7, Osaka, Japan, pages 71–74,
1990.

6. Y. Lin, J. Dou, and H. Wang. Contour shape description based on an arc height
function. Pattern Recognition, 25: 17–23, 1992.

7. H. Aoyama and M. Kawagoe. A piecewise linear approximation method for preserv-
ing visual feature points of original figures. CVGIP: Graphical Models and Image
Processing, 53: 435–446, 1991.

8. S.-Y. Wu and M.-J. Wang. Detecting the dominant points by the curvature-based
polygonal approximation. CVGIP: Graphical Models and Image Processing, 5: 79–
88, 1993.

9. M.A. Fischler and H.C. Wolf. Locating perceptually salient points on planar curves.
IEEE Trans. Pattern Analysis Machine Intelligence, 16:113–129, 1994.

10. J.H. Han and T. Poston. Chord-to-point distance accumulation and planar curva-
ture: a new approach to discrete curvature. Pattern Recognition Letters, 22:1133–
1144, 2001.

11. C.-H. The and R.T. Chin. On the detection of dominant points on digital curve.
IEEE Trans. Pattern Analysis Machine Intelligence, 11: 859–872, 1989.

Shape Preserving Sampling and Reconstruction
of Grayscale Images

Peer Stelldinger

Cognitive Systems Group, University of Hamburg,
Vogt-Kln-Str. 30, D-22527 Hamburg, Germany

Abstract. The expressiveness of a lot of image analysis algorithms de-
pends on the question whether shape information is preserved during
digitization. Most existing approaches to answer this are restricted to
binary images and only consider nearest neighbor reconstruction. This
paper generalizes this to grayscale images and to several reconstruction
methods. It is shown that a certain class of images can be sampled with
regular and even irregular grids and reconstructed with different inter-
polation methods without any change in the topology of the level sets of
interest.

1 Introduction

Much of the information in an analog image may get lost under digitization.
An image analysis algorithm can only be successful, if the needed information is
preserved during the digitization process. Since a lot of image analysis algorithms
are based on level sets, isosurface contours, and their shapes, it is important to
know how to guarantee that the shapes of level sets are preserved. Up to now the
problem of shape preserving digitization has mostly been dealt with for binary
images.

It is well known that so-called r-regular binary images (see definition 1)
can be digitized with square or hexagonal grids of a certain density without
changing the shape in a topological sense [2, 11, 12]. Recently Kthe and the
author were able to show that this is true for any grid of a certain density
and that this still holds if the image is blurred by a disc shaped point spread
function [7, 13]. In case of square grids, this is also proved for square shaped point
spread functions [8, 9]. But all this work is not only restricted to binary images
but also to nearest neighbor reconstruction in combination with thresholding.
The only exception is the work of Florncio and Schafer [2], which allows other
morphological reconstruction methods, too, but then only guarantees a bounded
Hausdorff error instead of topological equivalence. In general, reconstruction
means extending the domain of a discrete image function from the set of sampling
points to the whole plane IR2. In another paper [3] Florncio and Schafer show
that even certain grayscale images can be sampled and reconstructed with a
bounded Hausdorff error, when using a regular grid and some morphological
reconstruction method.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 522–533, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Shape Preserving Sampling and Reconstruction of Grayscale Images 523

All the mentioned approaches use several different ways to compare an image
with its reconstructed digital counterpart. The strongest mentioned similarity
criterion is strong r-similarity [13], which subsumes the others and which is used
in this paper. The prior results are generalized to grayscale images and to a
broad class of important reconstruction methods.

2 Regular Images and 2D Monotony

In this section some basic concepts are defined, which are necessary for the
following work. Namely a definition of r-regular graylevel images and a gener-
alization of monotony to 2D is given. Additionally some connections between
these two ideas are shown, which are used in the proofs of the following sections.

At first some basic notations are given: The Complement of a set A will be
noted as Ac. The boundary ∂A is the set of all common accumulation points
of A and Ac. The interior A0 of A is defined as A \ ∂A and the closure A is
the union of A and ∂A. A set A is open, if A = A0 and it is closed if A = A.
Br(c) := {x ∈ IR|(x − c)2 ≤ r2} denotes the closed disc and B0

r(c) := (Br(c))0

denotes the open disc of radius r and center c. The ε-dilation of a set A is defined
as the set of all points having a distance of at most ε to some point in A. Lt(f)
shall be the level set with threshold value t of an image function f : IR2 → IR:
Lt(f) := {x ∈ IR2|f(x) ≥ t}. A set A ⊂ IR2 is called simple 2D (simple 1D)
if it is homeomorphic to the unit disc B1(0) (to the unit interval). Obviously
compact subsets of the plane are simple 2D iff their boundary is a Jordan curve.

Definition 1. A compact set A ⊂ IR2 is called r-regular if for each boundary
point of A it is possible to find two osculating open discs of radius r, one lying
entirely in A and the other lying entirely in Ac. A grayscale image function
f : IR2 → IR is r-regular, if each level set is r-regular.

Note, that an r-regular grayscale image does not contain isolated extrema
or saddle points, but plateaus. Each local extremum is a plateau with r-regular
shape. The property that extrema become plateaus is similar to the concept of
one-dimensional local monotonic functions, as defined in [1]. These functions,
which are monotonic in any interval of some restricted size, do not change under
median filtering. Additionally they are invariant under morphological opening
and closing, which is also true for r-regular binary images as already stated by
Serra [12]. This suggests to ask for the relationship between the concepts of
monotony and r-regularity. Therefore a suitable generalization of monotony to
2D is needed.

Our approach is to understand local monotony as a topological criterion of the
neighborhood:Whenapplying anarbitrary threshold function to a 1D locallymono-
tonic function, the resulting binary set can have at most one component in each in-
terval of some restricted size. This can easily be generalized to higher dimensions:

Definition 2. Let A ⊂ IR2 be a simple 2D set. A closed set B ⊂ IR2 is called
monotonic in A, if both B ∩ A and Bc ∩ A are simple 2D, empty or one-point-

524 P. Stelldinger

(a) (b)

(c) (d)

Fig. 1. The image in (a) is monotonic on each straight line through it. Thus obviously it
can be called monotonic in 2D. (b) shows an image, which is homeomorphic to (a), and
thus monotonic. There is no local maximum or minimum in the shown area, except of
exactly one maximum and one minimum at the boundary. (c) shows a local maximum
and thus is not monotonic in the shown area. The same is true for image (d), since
there are two minimal regions

sets. B is called constant in A if B ∩ ∂A = ∅. An image function f : IR2 → IR
is called monotonic (constant) in A, if Lt(f) is monotonic (constant) in A for
each threshold value t ∈ IR.

This definition of monotony is a generalization of monotony on paths, since
a function is monotonic on some path if the level sets and their complements
are simple 1D, empty or one-point-sets. If you have an image function being
monotonic in a simple 2D set A, there exists from each point in A a monotonic
decreasing path to any minimal boundary point of A and a monotonic increasing
path to any maximal boundary point. Figure 1 illustrates, what monotony in
2D means: If an image is monotonic in some area, then this part of the image is
homeomorphic to an image which is (in the classical sense) monotonic on each
straight line though it.

Definition 3. Let f : IR2 → IR be an image function and let A ⊂ IR2 be a
simple 2D set. Further let Av = A + v be the result of the translation of A by a

Shape Preserving Sampling and Reconstruction of Grayscale Images 525

vector v ∈ IR2. Then f is called locally monotonic w.r.t. A, if f is monotonic in
Av for any v.

Lemma 1. An image function f is locally monotonic w.r.t. a simple 2D set A
iff each level set Lt(f) with t ∈ IR is locally monotonic w.r.t. A.

Proof. The lemma follows directly from the definition. ��

The next lemmas show the connection between local monotony and r-regu-
larity. Since 2D monotony is a fundamental property of several reconstruction
methods (see section 3), the lemmas explain why r-regular images have been
used for nearly all shape preserving sampling theorems:

Lemma 2. Let A be a disc with radius smaller than some r ∈ IR or let A be
an intersection of a finite number of such discs. Then every r-regular image f
is locally monotonic w.r.t. A.

Proof. For each threshold value t ∈ IR, Lt(f) is an r-regular set. Due to r-
regularity, no three boundary points of Lt(f) lie on a common circle of some
radius smaller than r. Since no three boundary points of A lie on a common
circle with a radius of at least r, A and Lt(f) can have at most two boundary
points in common. If Lt(f)∩A or (Lt(f))c∩A is empty, Lt(f) is monotonic in A.
Otherwise one or two of such boundary points exist, because no component of an
r-regular image can lie completely in A. If there is only one such boundary point,
Lt(f) ∩ A or (Lt(f))c ∩ A has to be a one-point-set, which implies monotony.
Finally if there are two such boundary points, the boundary part ∂Lt(f)∩A cuts
A into two simple 2D parts Lt(f)∩A and (Lt(f))c∩A, which implies monotony.
Obviously this is also true for any translated version of A and thus f is locally
monotonic w.r.t. A. ��

Thus you can take for example any disc shaped area of some r-regular image
and it will be monotonic, if the disc has some radius smaller than r. Or you
can take a finite intersection of such areas, e.g. Reuleaux triangles (see [13] for
a definition).

Lemma 3. Let A be an r-regular set and B,C ⊂ IR2 be two simple 2D sets such
that

– B is a subset of some r′-disc and C is a subset of some r′′-disc with r′, r′′ < r,
– A is monotonic in both B and C,
– ∂B crosses ∂C in exactly two points p1, p2,
– ∂A crosses ∂B in exactly two points b1, b2 both different from p1 and p2, and
– ∂A crosses ∂C in exactly two points c1, c2 both different from p1 and p2.

Then A is monotonic either in B \ C or in C \B. Furthermore A is mono-
tonic in either ∂B ∩ C or ∂C ∩B (see Fig. 2).

526 P. Stelldinger

b

CB

A
21b

2c

1c

2
p

1p B

A

C

1c

2b
2c

1b

2
p

1p B

A

C

A

1c

2c

2b

1b 2
p

1p

(a) (b) (c)

C

1c

2c
B

A

2b

1b 2
p

1p

B

A

C

2c

1c

1b

2b

2
p

1p

(d) (e)

Fig. 2. There are only 5 possibilities, how ∂A can go through B and C, such that their
boundaries are each only crossed twice but not in p1, and p2

Proof. Figure 2 shows the different possibilities of ∂A going through B and C.
Both ∂A∩B and ∂A∩C consist of exactly one component, since they cannot be
empty and since A is monotonic in B and C. Thus ∂A∩ (B ∪C) consists of two
components if ∂A∩(B∩C) is empty, and of one component otherwise. If ∂A∩(B∩
C) is empty, A∩B∩C is empty or equal to B∩C (see Fig. 2c) then A is monotonic
in both B \ C and C \B and A is even constant in both ∂B ∩ C and ∂C ∩B.

Otherwise ∂A ∩ (B ∪ C) must be connected. If the intersection of A and
B \ C is empty or equal to B \ C (see Fig. 2e) or if the intersection of A and
C \B is empty or equal to C \B (see Fig. 2d), A is monotonic in B \ C (then
A is constant and thus monotonic in ∂C ∩B) or in C \B (then A is constant in
∂B ∩ C), respectively.

Else ∂A∩ (B∪C) must go through B \ C, C \B and B∩C without meeting
p1 or p2. There are only two remaining possibilities: First, ∂A enters B \ C at
some point b1 on ∂B \ C, next enters B ∩ C at some point c1 on ∂B ∩ C0 and
leaves it at some point b2 on ∂C ∩B0, before finally leaving C \B through some
point c2 on ∂C\B (see Fig. 2a). Second, ∂A does not intersect ∂(B∪C). Starting
in B \C, it goes through (B ∩C)0 into C \B and on another path back through
(B∩C)0 into B \C to the starting point (see Fig. 2b). In both cases both B \ C
and C \B are cut by ∂A into two simple 2D parts, which implies monotony.

In the first case ∂A intersects both ∂B∩C and ∂C ∩B in only one point and
thus A is monotonic on these paths. The second case is in contradiction to the
r-regularity of A, since B ∪C is subset of the union of two discs of radii smaller
than r and no such union can cover an r-regular set. ��

Lemma 4. Let A,B be simple 2D sets, such that A is monotonic in B and
let S = (s0, s1, . . . , sn = s0) be a clockwise ordered cyclic list of points lying

Shape Preserving Sampling and Reconstruction of Grayscale Images 527

on ∂B, such that there exist no four points sa, sb, sc, sd with a < b < c < d
such that sa, sc ∈ A and sb, sd ∈ Ac or vice versa. Further let P = {p0,1, p1,2, . . . ,
pn−1,n},pi,j ⊂ B, be a set of non-intersecting (except of their endpoints) simple
paths in B between neighboring points of S, such that A is monotonic in each
path (the existence of such paths is shown in the proof of Theorem 1). Then the
area enclosed by the paths is simple 2D and A is monotonic in it.

Proof. The paths define a closed curve. Since they do not intersect (except of
their endpoints), this curve is a jordan curve. The closed set C, which is circum-
scribed by this curve, is a simple 2D set and a subset of B. Each path pi cuts
∂A ∩ B in at most two parts, where only one part can intersect C. It follows
by induction that ∂A∩C consists of at most one component, hitting ∂C in two
points. This component separates C into two simple 2D sets (bounded by jordan
curves) A ∩ C and Ac ∩ C. Thus A is monotonic in C. ��

3 Sampling and Reconstruction

In order to compare analog with digital images, a definition of the processes of
sampling and reconstruction is needed. The most obvious approach for sampling
is to restrict the domain of the image function to a set of sampling points. This
set is called a sampling grid. In most approaches only special grids like square
or hexagonal ones are taken into account [2, 3, 4, 5, 8, 9, 11, 12]. A more general
approach only needs that a grid is a countable subset of IR2, with the sampling
points being not too sparse or too dense anywhere [6, 7, 13]. There the pixel
shapes are introduced as Voronoi regions.

Definition 4. A countable set S ⊂ IR2 of sampling points, where the Euclidean
distance from each point x ∈ IR2 to the next sampling point is at most r ∈ IR, is
called an r-grid if for each bounded set A ∈ IR2 the subset S ∩ A is finite. The
Voronoi region of a sampling point is the set of all points lying at least as near to
this point than to any other sampling point. A maximal set of sampling points si,
whose Voronoi regions have a common corner point p, is called Delaunay tuple
and its convex hull is the Delaunay cell. Obviously, the sampling points si lie on
a common circle with center p (see Fig. 3c). p is called the center point of the
Delaunay cell. An r-grid is named degenerated if at least one of the associated
Delaunay cells (not necessarily triangles) does not contain its center point. A
Delaunay tuple is called well composed regarding to an image function f , if the
clockwise ordered cyclic list of sampling points s1, s2, . . . sn−1, sn = s0 has only
one local maximum and one local minimum (plateaus are allowed) in f , or in
other words that there exist no four points sa, sb, sc, sd with a < b < c < d such
that

f(sa) > f(sb), f(sb) < f(sc), f(sc) > f(sd) and f(sd) < f(sa), or
f(sa) < f(sb), f(sb) > f(sc), f(sc) < f(sd) and f(sd) > f(sa).

528 P. Stelldinger

s2

m2,3

s3m3,4

s4

4,1

s1

m A

m

p

1,2

B
r’ x

B’

(a) (b)

Fig. 3. (a): Definition of linear reconstruction (definition 5). (b): construction of mono-
tonic covering of a Delaunay cell (Theorem 1)

Note, that for any well composed set in the sense of Latecki [9], each Delaunay
tuple is well composed. The definition even matches the definition of extended
well composed sets by Wang and Bhattacharya [14].

Since reconstruction is a local process where the value of a point is influenced
by the surrounding sampling points, several reconstruction methods are defined
piecewise. One obvious idea is to define the reconstruction for each Delaunay cell
of the sampling grid separately. Then the basic idea is that an image, which is
locally monotonic, should have a locally monotonic reconstruction. Therefore a
class of such reconstruction functions is defined, which includes generalizations
of bilinear and nearest neighbor reconstruction to arbitrary grids.

Definition 5. Let Img be the class of all grayscale image functions f : IR2 → IR
and let S ⊂ IR2 be an r-grid for some r. A function recS : Img → Img is
called a reconstruction function if ∀f ∈ Img,∀s ∈ S : (recS(f))(s) = f(s) and
∀f, g ∈ Img : f |S = g|S ⇒ recS(f) = recS(g). A reconstruction function is called
Delaunay-monotonic if for each well composed Delaunay tupel the reconstruction
is monotonic in the corresponding Delaunay cell, and – restricted to this cell –
each nonempty level set of the reconstruction and its complement contains at
least one sampling point, respectively.

Now let S be a non-degenerated grid and f be an image function.
The linear reconstruction function recS is defined as follows. Let A be a De-

launay cell of the grid and p be its center point (see Fig. 3a). Then the Delaunay
cell can be divided by the median lines from p to the boundary edges of the De-
launay cell into quadrangles. Now the reconstruction function is defined by a
bilinear interpolation in each of the quadrangles, where the values for the four
vertices are the following: At the sampling points si, recS(f) is equal to f ; at
p, recS(f) is the mean of the values of f at the sampling points (p has equal

Shape Preserving Sampling and Reconstruction of Grayscale Images 529

distance to all of these sampling points); at the median points mi,j, recS(f) is
the mean value of the two corresponding sampling points si, sj.

The nearest neighbor reconstruction function recS is defined by giving each
point the value of the nearest of the sampling points which correspond to the
actual Delaunay cell. If there is no unique nearest sampling point, the one with
the highest value is taken.

In a Delaunay-monotonic reconstruction, the image is monotonic in each
Delaunay cell, where this is possible. Of course it cannot be monotonic in a
Delaunay cell where the clockwise ordered cyclic list of sampling points has not
only one local maximum and one local minimum in the image function.

In case of square grids, these definitions are equivalent to the standard bilin-
ear interpolation and the nearest neighbor interpolation. Any linear or nearest
neighbor reconstruction function is Delaunay-monotonic, since no overshooting
can occur. Note that even more complex reconstruction methods like biquadratic
interpolation only need slight modifications (cutting off the overshootings) in or-
der to be Delaunay-monotonic. In case of the nearest neighbor reconstruction,
the value of each sampling point is simply set to the whole Voronoi region, which
is equal to the reconstructions used in [2, 3, 7, 8, 9, 11, 12, 13]. Even the marching
squares algorithm, a two-dimensional simplification of the well-known marching
cubes algorithm [10], defines a Delaunay-monotonic reconstruction function.

4 Shape Preserving Sampling Theorems

In this section at first two minor sampling theorems are proved. The first the-
orem is only for binary images, where no sampling point lies on the boundary
of any foreground component. The second theorem extends this to any binary
image. After that the third and main result finally generalizes these theorems to
grayscale images.

In the following, the well-defined similarity criterion strong r-similarity (see
[13]) is used to compare shapes before and after digitization. Two shapes A,B ⊂
IR2 being strongly r-similar means that there exists a homeomorphic deformation
f of the plane IR2, with f(A) = B and where the movement of each point is
bounded by r: ∀x ∈ A : |x − f(x)| ≤ r. Such a restricted homeomorphism is
called r-homeomorphism. This criterion is stricter than both the preservation
of topology used by Pavlidis and Latecki et al. [8, 9, 11] and the isomorphy of
homotopy trees used by Serra [12]. It additionally sets a bound for the Hausdorff-
distance of the original and the reconstructed set and of their boundaries. Strong
r-similarity is originally a criterion for binary images like shapes. If we have a
grayscale image, we can investigate the shapes given by the level sets of the
image. So two grayscale images are called strongly r-similar if this is true for all
of their level sets.

Theorem 1. Let A be an r-regular set and S be a non-degenerated r′-grid with
r′ < r, such that no sampling point x ∈ S lies on ∂A. Further let recS be
a Delaunay-monotonic reconstruction function. Then there exists a 2r′-homeo-

530 P. Stelldinger

morphism from A to the reconstruction Lv(recS(A)) for each threshold value
v ∈ (0, 1).

Proof. In the following such a homeomorphism is defined by partitioning the
original image and the reconstruction into homeomorphic parts corresponding
to the Delaunay cells.

Let p be the center point of some Delaunay cell of the grid. Then there exists
a disc with radius of at most r′ and center in p, such that each element of the
Delaunay tuple lies on its boundary. The set X of all so defined discs (one for
each corner point) covers the whole plane and A is monotonic in each disc.

Now we replace each disc B by the intersection B′ of new discs of slightly
bigger radius r′′ < r, which cover all the sampling points lying on ∂B and which
each have exactly two neighboring sampling points on their boundary (see Fig.
3b). Doing this with an appropriate radius r′′ we can guarantee that ∂A∩B′ is
no one-point-set. The so constructed set X ′ still covers the plane, while A being
monotonic in each element of X ′ according to Lemma 2.

Due to the construction of X ′, the boundaries of each two elements of X ′

intersect in two or zero points. Now let B1, B2 be two elements of X ′, such that
their boundaries intersect in two points p1 and p2. Since the interior of each
element of X ′ does not contain any sampling point, the path ∂B1 ∩ B2, going
from p1 to p2 does not hit any sampling point except of the possible sampling
points p1 and p2. If p1 and p2 are both sampling points, we can choose one such
path P between them due to Lemma 3, with A being monotonic in P . By doing
this for every pair of neighboring sampling points we can map each edge of the
Delaunay graph to such a path. Each of these paths is covered by both discs of
X, which intersect with the endpoints of the path. Now we modify this set of
paths Y , such that no two paths intersect in non-sampling points:

If two paths intersect in a common subpath, which is not an isolated point,
we can displace one path in this area by a small distance, such that the two
new paths intersect only in the endpoints of the formerly common subpath and
in common intersection points with ∂A. This is possible without changing the
monotony of A on the paths since ∂A intersects the paths in at most one isolated
point. The resulting paths can be guaranteed to be covered by the corresponding
elements of X, due to the construction of X ′. Thus the resulting paths only
intersect in isolated points. Now let P1 and P2 be two paths, crossing each other
in two points p1 and p2. Then by swapping the parts of the paths between p1 and
p2 we get two paths, which intersect in p1 and p2, but do not cross each other
in these points. If two paths cross each other in only one point there are two
cases: First, if they intersect also in an endpoint we can use the same swapping
technique. Second, if they intersect in no other point, one of the endpoints of
one path must be enclosed by the circular set of paths covered by one of the
corresponding discs of X, which is impossible since no sampling point lies in the
interior of such a disc.

Since the swapped path parts are covered by the same discs of X, the covering
properties do not change under this swap operation. By induction we get a set

Shape Preserving Sampling and Reconstruction of Grayscale Images 531

Fig. 4. The reconstructed image function is monotonic in each Delaunay cell (colored
regions in the left figure). One can find corresponding regions in the original image,
where the image function is monotonic, too (colored regions in the right figure)

of paths Y ′ where no two paths cross each other. The paths can only intersect
at some single points without crossing. At these points we can displace one path
by a small distance such that the paths do not intersect anymore.

All these path modifications do not change the monotony of A on them. Thus
the resulting set of paths defines an embedding of the Delaunay graph into the
plane, such that each region can be covered by an r′-disc. Figure 4 shows an ex-
ample of neighboring Delaunay cells and their corresponding embeddings in the
reconstructed image. With Lemma 4 the Delaunay cells and their corresponding
regions due to the above construction are each homeomorphic. Since two such
corresponding regions can be covered by a common r′-disc, each homeomorphism
is a 2r′-homeomorphism. Obviously we can choose homeomorphisms which are
identical on the constructed paths, which implies strong r′-similarity of A and
Lv(recS(A)) for each theshold value v ∈ (0, 1). ��

This means that if a shape is r-regular, it can be sampled with any sampling
grid of a certain density and any Delaunay-monotonic reconstruction method,
such that the resulting reconstruction has exactly the same topological properties
and only a bounded Hausdorff distance to the original shape. The only restriction
is that the sampling points are not allowed to lie on the shape boundary. The
next theorem shows that this restriction is not really existent.

Theorem 2. Let A be an r-regular set and S be a non-degenerated r′-grid with
r′ < r. Further let rec be a Delaunay-monotonic reconstruction function. Then
there exists for any ε > IR a (2r′ +ε)-homeomorphism from A to the reconstruc-
tion Lv(recS(A)) for each threshold value v ∈ (0, 1).

Proof. Let d be the minimal distance between A and any sampling point not
lying in A – this is uniquely defined since there is only a finite number of sampling
points having a distance of at most r due to the compactness of A. Now let
ε be any number with 0 < ε < min(d, r − r′). Then the ε-dilation A′ of A
is ε-homeomorphic to A and has exactly the same reconstruction, since the
values at the sampling points did not change. Due to Theorem 1 the (r − ε)-
regular set A′ is (2r′)-homeomorphic to the reconstruction and in case of the
nearest neighbor reconstruction even r′-homeomorphic to it. The concatenation

532 P. Stelldinger

of the two homeomorphisms defines a (2r′ + ε)-homeomorphism from A to the
reconstruction Lv(recS(A)). ��

In case of nearest neighbor reconstruction the similarity bound is even stronger.
In [13] Kthe and the author showed that then even strong r′-similarity instead
of strong (2r′)-similarity is given.

Now the final step to grayscale images is straightforward, since each level set
of an r-regular grayscale image is r-regular, too.

Corollary 1. Let f be an r-regular image function and S be a non-degenerated
r′-grid with r′ < r. Further let rec be a Delaunay-monotonic reconstruction
function. Then the reconstruction is strongly (2r)-similar to f for any theshold
value, which is not equal to the image value at some sampling point.

If the threshold value is equal to the image value at some sampling point,
the corresponding level set of the reconstructed image function is not necessarily
simple 2D, but can contain one dimensional parts and thus the topology changes.
But one can show that this does not happen, if the original image is 2r-regular,
because then each plateau is reconstructed topologically correctly.

5 Conclusions

It was proved that any grayscale image, which has only r-regular level sets, can
be sampled by arbitrary sampling grids of sufficient density and reconstructed
by a non-overshooting interpolation method, and still remains strongly r′-similar
(for some bounded r′) for any threshold value, which is not an image value at
some sampling point. This implies that most level sets do not change topology
under digitization and thus you can say the topology of the image is preserved.
Each maximum or minimum plateau of the original image can be found in the
digitization having the same height.

References

1. Acton, S.T.: A PDE technique for generating locally monotonic images. Proceed-
ings of the IEEE International Conference on Image Processing, 1998.

2. Florncio, D.A.F., Schafer, R.W.: Homotopy and Critical Morphological Sampling.
Proceedings of SPIE Visual Communications and Image Processing, pp. 97-109,
1995.

3. Florncio, D.A.F., Schafer, R.W.: Critical Morphological Sampling and its Applica-
tions to Image Coding. In J. Serra, P. Soille (Eds.): Mathematical Morphology and
Its Applications to Image Processing, Computational Imaging and Vision, vol. 2,
pp. 109-116, Kluwer Academic Publishers, Dordrecht, 1994.

4. Haralick, R.M., Zhuang, X., Lim, C., Lee, J.S.J.: The Digital Morphological Sam-
pling Theorem. IEEE Transactions on Acoustics, Speech and Signal Processing 37,
pp. 2067-2090, 1989.

5. Heijmans, H.J.A.M., Toet, A.: Morphological Sampling. Computer Vision, Graphics
and Image Processing: Image Understanding 54, pp. 384-400, 1991.

Shape Preserving Sampling and Reconstruction of Grayscale Images 533

6. Herman, G.T.: Geometry of Digital Spaces. Birkhuser Boston, 1998.
7. Köthe, U., Stelldinger, P.: Shape Preserving Digitization of Ideal and Blurred Bi-

nary Shapes. In: I. Nystrm et al. (Eds.): DGCI 2003, LNCS 2886, pp. 82-91,
Springer, 2003.

8. Latecki, L.J., Conrad, C., Gross, A.: Preserving Topology by a Digitization Process.
Journal of Mathematical Imaging and Vision 8, pp. 131–159, 1998.

9. Latecki, L.J.: Discrete Representation of Spatial Objects in Computer Vision.
Kluwer, 1998.

10. Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm. Computer Graphics 21, no. 4, 1987.

11. Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science
Press, 1982.

12. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, 1982.
13. Stelldinger, P., Köthe U.: Shape Preservation During Digitization: Tight Bounds

Based on the Morphing Distance. In: B. Michaelis, G. Krel (Eds.): Pattern Recog-
nition, LNCS 2781, pp. 108-115, Springer, 2003.

14. Wang, Y., Bhattacharya, P.: Digital Connectivity and Extended Well-Composed
Sets for Gray Images. Computer Vision and Image Understanding 3, pp. 330–
345,1997.

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 534–547, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Comparison of Nonparametric Transformations and
Bit Vector Matching for Stereo Correlation

Bogusław Cyganek

AGH - University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

cyganek@uci.agh.edu.pl

Abstract. The paper describes and compares stereo matching methods based on
nonparametric image transformations. The new nonparametric measures for
local neighborhoods of pixels are proposed as well. These are extensions to the
well known Census transformation, successively used in many computer vision
tasks. The resulting bit-fields are matched with the binary vectors comparison
measures: Hamming, Tanimoto and Dixon-Koehler. The presented algorithms
require only integer arithmetic what makes them very useful for real-time
applications and hardware implementations. Many experiments with the
presented techniques, employed to the stereovision, showed their robustness
and competing execution times.

1 Introduction

The paper concerns stereo matching methods with special stress on development of
reliable algorithms suitable for hardware implementations. For such platforms the bit
or integer arithmetic is preferable. In this paper we compare different nonparametric
image transformations with respect to the diverse bit vector matching measures
applied to the task of stereo correlation.

The key concept behind the nonparametric correlation measures lies in changing a
given value from a statistical sample by its rank among all the other values in that
sample. This way, the resulting list of new values has the uniform distribution
function. Therefore the correlating statistics deals only with uniform sets of integers.
The two examples of such correlation measures are Spearman’s ρ or Kendall’s τ [13].

The nonparametric measures were introduced to image society by Zabih and
Woodfill [15], as well as by Bhat and Nayar [2]. Their Census and Rank measures are
built in local neighborhoods of pixels based on relations among neighboring pixels.
This way transformed images are then compared to find out the correlation measure.
They have proved great usefulness in stereo image matching [1][4], and also in image
processing with neural networks [3][5].
 The more complex versions of the nonparametric Census transformation are
proposed here. The new versions of this transformation have been developed to
convey more information than the original Census. In result, each pixel is transformed
to a bit-stream. Comparison of such data is a little different than comparison of the
luminance signals. Usually the Hamming distance is employed to find a correlation

 Comparison of Nonparametric Transformations and Bit Vector Matching 535

between bit-streams. In this paper we compare other useful metrics such as the
Tanimoto distance [14][9] or its modification proposed by Dixon and Koehler [8].
The last two measures have found great popularity in the molecular biology and
chemistry but can be also used by the computer vision community.

2 Nonparametric Measures in Pixel Neighborhoods

The Rank and Census transforms were proposed by Zabih and Woodfill [15] for
computation of correspondences by means of the local nonparametric
transformation applied to the images before matching process. Both transformations
start from the image intensity signals and are computed in a certain region around a
central pixel. Size and shape of this region can be set arbitrarily. Usually it is a
square and such square regions are also assumed in this paper, although this
assumption can be relaxed.

For a given central pixel and its closest neighborhood the Rank transform is
defined as the number of pixels in that region for which the intensity signal is
greater or equal than that of the central pixel. For the same setup the Census
transform returns an ordered stream of bits where a bit at a given position is set if
and only if intensity of the central pixel is less or equal to intensity of a pixel from
the neighborhood around this central pixel. Fig. 1a explains the ideas behind the
Rank and Census transformations. Fig. 1b depicts assumed pixel orders for
computation of the Census values for two 3×3 and 5×5 neighborhoods. An
interesting observation for Census is that a value of the central pixel is taken only as
a reference and does not go into the output bit stream. Therefore for 3×3 and 5×5
regions we obtain computer efficient representations of eight and twenty four bits
(i.e. one and three bytes), respectively.

Fig. 1. Explanation of the Census IC and Rank IR measures for an exemplary pixel at
position (2,2) (a). Assumed pixel numbering in the square 3×3 and 5×5 neighborhoods of pixels
when computing Census (b)

91

254

78

101

78

79

61

99

91

0 1 2 3 4

0
1

2
3

4

-

1

0

1

0

0

0

1

0

0 1 2 3 4

0
1

2
3

4

IC(2, 2) = 01110000 binary

Input image
(intensity values set for example)

Image after 3x3 Census
transformation

Census measure
for a point at (2,2) IR(2, 2) = 4 decimal

124

1

7

2

5

8

0

3

7

17

8

13

18

6

11

6

0 1 2 3 4

5 9

10 14

15 16 19

20 21 22 23 24

n=3

n=5

a b

536 B. Cyganek

 For a given central pixel at (i,j) and its closest square neighborhood containing n
pixels, the corresponding Census measure IC(i,j) can be expressed as a series of bits:

012312),(bbbbbbjiIC kn −
= ,

where [] { }
2

1,,0
22 / nnk −∈ .

(1)

Bit-pixel numbering in a neighborhood depicts Fig. 1b. The bk parameter can be
expressed as follows:

()>+−+−
=

otherwise

nk
n

j
n

kn
iwhen

b
jiII

k

0

mod
2

,
2

,1 ,
, (2)

where),(jiI denotes the intensity value for an image at a point at (i,j) in image

coordinates, nk means an integer division of k by n, k mod n is a modulo n

division. In (2) we additionally assume that all (i,j) locations denote valid image
indexes. If not then we assign 0 for that location.

Both transformations are resistive to the radiometric gain and bias imbalances
among images to be matched [15]. However, the Rank transform loses information of
spatial distribution of pixels since all of the pixels surrounding a central one are
encoded into a single value. The only advantage of this limiting process comes from
the reduction of memory necessary for representation of transformed images. For
example in a case of eight bits per pixel in an original image, after the Rank transform
only four bits per pixel are required (or even three with some additional assumptions).
Contrary to the Rank, the Census transformation preserves the spatial distribution of
pixels by encoding them in a bit stream. Therefore Census is much more robust for
block matching.

Usually the block matching for Rank representation of images is performed using
the L1 norm. For Census often the Hamming distance between bit streams is
computed.

In practice, these measures become very useful for strongly noised or not equally
lightened images. Moreover, the two transforms showed to be very attractive if
considered for custom hardware implementations or robotics [1].

2.1 Detailed Neighborhood Relation

Let us enhance the concept of the Census measure to convey more detailed
information on pixel relations. This can be done by allocation of more than one bit for
the relation between two pixels, which relation can now be defined as follows:

() () ()kIcIkR −= , (3)

where c is an index of the central pixel, k is a free index for all neighboring pixels.

 Comparison of Nonparametric Transformations and Bit Vector Matching 537

 Table 1 presents a proposition of a nonparametric measure in a form of the several
fuzzy-like [7][16] relations S(k) between pixels with the corresponding bit-encoding
E(k). This relation among neighboring pixels will be called Detail 3×3, since it is
computed in the 3×3 pixel neighborhood.

Table 1. Rules for the relation between pixels based on their relative intensity values

 Relation type S(k) Bit encoding E(k)
1 strongly smaller 011
2 smaller 010
3 little smaller 001
4 equal 000
5 little greater 101
6 greater 110
7 strongly greater 111

 The sigmoidal and hyperbolic fuzzy membership functions for the relation S(k)
were proposed in [7]. Alternatively, the rules in Table 1 can be approximated by a
piecewise-linear function and implemented by providing six threshold values on R(k).
However, this can be a little cumbersome in practice. Therefore the bit encoding
proposed in Table 1 has been chosen to form information in accordance with the
scheme presented in Table 2.

Table 2. Bit encoding scheme of the proposed Detail nonparametric measure

Bit number 2 1 0

Bit meaning
The sign of
difference

Difference category,
bit 1

Difference category,
bit 0

For computer implementation the bit encoding method was devised that relies only
on bit shifting and an increment by one. In each step the positive remainder R is
shifted right by two bits and if the result is still different than zero, the encoding value
is incremented by 1. Such a bit procedure leads to the following thresholds on R:

• If |R| ∈ [0,3] then S(k) = “equal”.
• If |R| ∈ (3, 15] then S(k) = “little smaller/greater”,
• If |R| ∈ (15, 63] then S(k) = “smaller/greater”,
• If |R| ≥ 64 then we classify as S(k) = “strongly smaller/greater”.

 The same thresholds hold for negative R. The proposed algorithm can be easily
implemented in assembly or in C++. For example see the following C++ code
fragment:

int E = 0x00; // init the encoding
if(R < 0) {
 R = -R; // make R positive

538 B. Cyganek

 E = 0x04; // set a sign
}
for(int i = 0; i < 3; ++ i)
 if((R >>= 2) != 0)
 ++ E; // shift R, and if not 0 then increment E

The code above is very simple and can be implemented in
any assembly language or in hardware (FPGA).

3 Correlation of the Bit-Stream Image Representations

For comparison of two bit-vectors of equal size the Hamming distance can be used:

() ⊗
=

=
N

i
iiH ba

N
D

1

1
, ba , (4)

where a, b are the compared binary vectors of the same length N (henceforth, we
assume a column representation of vectors), ⊗ denotes the bit XOR operation. Based
on (4) it is evident that DH only accounts for bits that do not match.

The other measure, know also as the Tanimoto distance [14][9], is defined as
follows:

()
−+

−

==
=

otherwise

if
DT

babbaa

ba
0ba

ba
TTT

T

1

1
, , (5)

where a, b are the binary vectors of the same length N. DT favors situations when a
match is done on bits with value ‘1’ rather than ‘0’.
 The modification made by Dixon and Koehler [8] is a composition of (4) and (5):

() () ()bababa ,,, THDK DDD = . (6)

DDK tends to equalize the opposing size effects of the Hamming and Tanimoto
coefficients.

Table 3. Examples of the measures DH, DT and DDK for different vectors. A value 0 means a
perfect match, 1 means no match at all. The lower the measure value, the better match

Ex. a b DH DT DDK
1 011001 011001 0 0 0
2 011001 111111 0.5 0.5 0.25
3 011001 000000 0.5 1 0.5
4 101010 010110 0.66 0.8 0.53
5 101011 010111 0.66 0.66 0.44
6 101011 010100 1 1 1

 Comparison of Nonparametric Transformations and Bit Vector Matching 539

Table 3 presents the three measures (4), (5) and (6) for exemplary vectors a and b
which length N is always 6. It can be noticed that all the measures produce 0 for the
perfect match (i.e. all bits are the same) and 1 for a total mismatch (i.e. all bits are
different). However, observing examples in the rows 2 and 3 of Table 3 we notice that
DT assigns 1 also in a case of comparison with a zero vector. The same effect can be
observed in examples at rows 4 and 5 from Table 3 where the two vectors a and b
match only on the last two bits. However, in the example 4 one of these bits is ‘0’ and
therefore DT gives worse match score (i.e. its value is higher). This favor of ‘1s’ can
be used in image matching since for the Census and the transformation from Table 1,
‘0’ is assigned for pixels with the same intensity. Such pixels, i.e. with the same
intensity values, cannot be used for further matching (e.g. for stereo or motion
detection) since in this case every comparison metric does not exhibit significant
extreme values and therefore does not lead to a reliable match. Indeed, for normed
vector spaces a norm value taken from the vector difference is 0 if the vectors are the
same.

It is also interesting to analyze behavior of the DDK which is a product of the DH
and DT. Comparing the examples 2 and 3 we see that in both cases there is a match of
three bits. However, in the former these bits are ‘1s’, in the latter do match ‘0s’. DDK
reflects this situation assigning “better” matching score to the match of ‘1s’. This is an
effect of the DT factor. At the other hand, the total mismatch indicated by the DT for
the example in row 3 seems to be to restrictive in many applications and therefore
DDK seems to be more appropriate.

4 Experimental Results

All of the presented algorithms were implemented in C++ and built into the image
matching software framework [6]. The platform run-time parameters are as follows:
IBM PC with Pentium 2GHz, 512 RAM.
 For experimental comparisons ten different stereo-pairs were selected; two of
them are presented in Fig. 2. “Tsukuba” is an artificial image of size 384×288;
“Parkmeter” is a real image of size 256×240.

a b

Fig. 2. Left images of the stereo pairs: “Tsukuba” 384×288 (a), “Parkmeter” 256×240 (b)

540 B. Cyganek

 We performed comparisons of the three local pixel neighborhoods:

1. Census 3×3: 8 bits per pixel (formula (1)).
2. Census 5×5: 24 bits per pixel (formula (1)).
3. Detail 3×3: 24 bits per pixel (8 neighbors, 3 bits per neighbor, coding from Table 1).

 Comparisons were done in respect to the following bit-vectors matching measures:

1. Hamming, formula (4).
2. Tanimoto, formula (5).
3. Dixon-Koehler, formula (6).

 The chosen stereo method is an area-based version with a matching window 3×3
pixels. The area matching window should not be confused here with the neighborhood
window for computation of Census or Detail measures. Stereo correlation is done in a
canonical setup. For reduction of false matches the disparity map cross checking
method and median 3×3 filtering were employed [17][10][5][6]. The three
comparison breakdowns are presented in Fig. 3, Fig. 5 and Fig. 7.

 Detail 3×3 (8 bits/pixel)

 “Tsukuba” 384×288 “Parkmeter” 256×240

H
am

m
in

g

T
an

im
ot

o

D
ix

on
-K

oe
hl

er

Fig. 3. Disparity maps of the two test stereo-pairs “Tsukuba” and “Parkmeter”. The pixel
neighborhood coding Detail 3×3. Bit-fields compared with measures: Hamming, Tanimoto and
Dixon-Koehler (from top to bottom). Block matching window size 3×3 pixels

 Comparison of Nonparametric Transformations and Bit Vector Matching 541

a

b

c

Fig. 4. Comparison of the quality of disparity maps measured as a normalized amount of false
matches (the vertical axes). Each plot compares two disparity maps (left bar - “Tsukuba” and
right - “Parkmeter”) in respect to the three binary comparison measures (Hamming, Tanimoto,
Dixon-Koehler) and different pixel neighborhood coding: Census 3×3 (a), Census 5×5 (b),
Detail 3×3 (c)

542 B. Cyganek

 Census 5×5 (24 bits/pixel)
 “Tsukuba” 384×288 “Parkmeter” 256×240

H
am

m
in

g

T
an

im
ot

o

D
ix

on
-K

oe
hl

er

Fig. 5. Disparity maps of the two test stereo-pairs “Tsukuba” and “Parkmeter”. The pixel
neighborhood coding Census 5×5. Bit-fields compared with measures: Hamming, Tanimoto
and Dixon-Koehler (from top to bottom). Block matching window size 3×3

 Comparison of the quality of disparity maps measured as amount of false
matches detected by the cross-checking is presented in Fig. 4. Each plot in Fig. 4
compares two disparity maps of “Tsukuba” and “Parkmeter” in respect to the three
binary comparison measures: Hamming, Tanimoto, Dixon-Koehler, as well as

 Comparison of Nonparametric Transformations and Bit Vector Matching 543

a

b

Fig. 6. Qualitative comparison of the binary measures against local pixel neighborhoods (a),
and vice versa (b). The vertical axis denotes number of false matches detected by the cross-
checking, divided by a total number of pixels. The lower bar, the better quality

544 B. Cyganek

 Census 3×3 (8 bits/pixel)
 “Tsukuba” 384×288 “Parkmeter” 256×240

H
am

m
in

g

T
an

im
ot

o

D
ix

on
-K

oe
hl

er

Fig. 7. Disparity maps of the two test stereo-pairs “Tsukuba” and “Parkmeter”. The pixel
neighborhood coding Census 3×3. Bit-fields compared with measures: Hamming, Tanimoto
and Dixon-Koehler (from top to bottom). Block matching window size 3×3

different pixel neighborhoods: Census 3×3, Census 5×5, Detail 3×3. Based on
additional experimental results with other stereo-pairs we can state that the best
quality results are obtained for the Census 5×5 neighborhood with Hamming and
Detail neighborhood 3×3 with Dixon-Koehler measures. Both setups use 24 bits per
single pixel. However, the size of neighborhoods is quite different. This result is
also affirmed in Fig. 6.

 Comparison of Nonparametric Transformations and Bit Vector Matching 545

a

b

Fig. 8. Averaged execution times in seconds of the stereo-matching algorithms against local
pixel neighborhoods (a), and comparison measures (b). The lower bar, the lower execution time

546 B. Cyganek

 Further experiments revealed that when Detail 3×3 is extended from 3×3
neighborhoods to 5×5 then the increase of quality is about 15-25%.
 The situation is different when one compares execution times presented in Fig.
8. It is evident that the Hamming measure outperforms the Tanimoto and Dixon-
Koehler in respect to the computation complexity. Certainly, execution times shown
in Fig. 8 can be significantly shortened in time optimized implementations.

5 Conclusions

This paper presents the comparison of the nonparametric transformations with
respect to the three binary matching measures. The tested nonparametric
transformations are: Census 3×3, Census 5×5, and devised here Detailed 3×3. The
binary matching measures are: Hamming, Tanimoto and Dixon-Koehler. The
experiments for ten different stereo images were performed in the software test-
bench implemented in C++. In this paper results of experiments with the two stereo-
pairs were presented: the artificial “Tsukuba” and the real stereo-pair “Parkmeter”.
Different combinations of the nonparametric transformations, stereo-pairs and
correlation measures were tested. Of the special interest was the quality of resulting
disparity maps and execution times. The former was measured in terms of the
normalized number of false matches rejected during cross-checking. The smaller
the outliers, the better quality of a given method. After experiments we can draw
the following conclusions:

1. The use of nonparametric transformations increases resistance to the noise and
distortions encountered in the input images.

2. Regarding quality, the nonparametric measures allowed for much smaller
matching windows compared to such measures as SAD, SSD, etc. [4]. In the
presented experiments we matched square windows of only 3×3 pixels thus
small details were not filtered out.

3. The best quality is obtained for larger pixel neighborhoods in the
nonparametric transformations at considerably small matching windows (thus
allowing for preservation of image features).

4. The practical trade off between quality and speed offers Census 5×5 with the
Hamming measure.

Acknowledgement

This work was sponsored by the scientific grant no. KBN 3T11C 045 26 of the Polish
Committee for Scientific Research.

References

1. Banks J., Bennamoun M., Corke P.: Non-Parametric Techniques for Fast and Robust
Stereo Matching. CSIRO Manufacturing Science and Technology, Australia (1997)

 Comparison of Nonparametric Transformations and Bit Vector Matching 547

2. Bhat D.N., Nayar S.K.: Ordinal Measures for Image Correspondence. IEEE Transaction on
Pattern Analysis and Machine Intelligence Vol. 20 No. 4 (1998)

3. Cyganek B.: Neural Networks Application to The Correlation-Based Stereo-Images
Matching, Engineering Applications of Neural Networks, Proceedings of the 5th
International Conference EANN ’99, Warsaw, Poland (1999) pp. 17-22

4. Cyganek, B., Borgosz, J.: A Comparative Study of Performance and Implementation of
Some Area-Based Stereo Algorithms, LNCS 2124 (2001) 709-716

5. Cyganek, B.: Three Dimensional Image Processing, (in Polish) EXIT Warsaw (2002)
6. Cyganek, B., Borgosz, J.: An Object-Oriented Software Platform for Examination of

Algorithms for Image Processing and Compression, LNCS 2658 (2003) 713-720
7. Cyganek B., Borgosz J.: Fuzzy Nonparametric Measures for Image Matching, Springer

Lecture Notes in Artificial Intelligence 3070 (Subseries of LNCS), L. Rutkowski et.al.
(Eds.), Proceedings of the 7th International Conference on Artificial Intelligence and Soft
Computing – ICAISC 2004, Zakopane, Poland (2004) 712-717

8. Dixon, S.L., Koehler, R.T. J. Med Chem. 42 (1999) 2887–2900
9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley (2001)

10. Fua P.: A Parallel Stereo Algorithm that Produces Dense Depth Maps and Preserves Image
Features, INRIA Technical Report No 1369 (1991)

11. Fusiello, A. et.al..: Efficient stereo with multiple windowing. CVPR 858–863 (1997)
12. Hartley, R.I., Zisserman A.: Multiple View Geometry in Computer Vision. CUP (2000)
13. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C. The

Art of Scientific Computing. Second Edition. Cambridge University Press (1999)
14. Sloan Jr., K. R., Tanimoto, S. L.: Progressive Refinement of Raster Images, IEEE

Transactions on Computers, Vol. 28, No. 11 (1979) 871-874
15. Zabih, R., Woodfill, J.: Non-Parametric Local Transforms for Computing Visual

Correspondence. Proc. Third European Conf. Computer Vision (1994) 150-158
16. Zadeh, L.A.: Fuzzy sets. Information and Control, 8 (1965) 338-353
17. Zhengping, J.: On the Mutli-Scale Iconic Representation for Low-Level Computer Vision.

Ph.D. Thesis. The Turing Institute and University of Strathclyde (1988) 114-118

Exact Optimization of Discrete Constrained
Total Variation Minimization Problems

Jérôme Darbon1,2 and Marc Sigelle2

1 EPITA Research and Development Laboratory (LRDE),
14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre, France

jerome.darbon@{lrde.epita.fr, enst.fr}
2 ENST TSI / CNRS LTCI UMR 5141,
46 rue Barrault, F-75013 Paris, France

marc.sigelle@enst.fr

Abstract. This paper deals with the total variation minimization prob-
lem when the fidelity is either the L2-norm or the L1-norm. We propose
an algorithm which computes the exact solution of these two problems
after discretization. Our method relies on the decomposition of an image
into its level sets. It maps the original problems into independent bi-
nary Markov Random Field optimization problems associated with each
level set. Exact solutions of these binary problems are found thanks to
minimum-cut techniques. We prove that these binary solutions are in-
creasing and thus allow to reconstruct the solution of the original prob-
lems.

1 Introduction

Image reconstruction and deconvolution methods are often based on the min-
imization of the constrained total variation [1, 2] of an image. These problems
have minimizers in the space of functions of bounded variation [3] which al-
lows for discontinuities and thus preserve edges and sharp boundaries. Suppose
u is defined on a rectangle Ω of IR2. Then the total variation (TV) of u is
TV (u) =

∫
Ω
|∇u| , where the gradient of u is taken in the distributional sense.

A classical way to minimize the TV is achieved by a gradient descent which
yields the following evolution equation: ∂u

∂t = div
(

∇u
|∇u|

)
. The last term cor-

responds to the curvature of u. In order to avoid division by zero, a classical
approximation is to replace |∇u| by

√
|∇u|2 + ε. However, this scheme tends

to smooth discontinuities and although it converges towards the solution when
ε tends to 0, it does not provide an exact solution. Other formulation of TV
minimization using duality is presented in [4]. A fast algorithm which converges
towards the solution can be derived from this formulation. In [5], a fast approx-
imation minimization algorithm for Markov Random Field (MRF) is presented.
It relies on minimum cost cut and the result is a local minimum.

In [6], a fast algorithm to compute the exact solution in 1D for the TV
minimization problem subject to the L2 constraint is presented. However, the

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 548–557, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Exact Optimization of Discrete Constrained TV Minimization Problems 549

algorithm does not scale to higher dimensions. In 1D, one can find an exact so-
lution using dynamic programming [7], provided that the label state is discrete.
The complexity of such a method is Θ(N2|Ω|), where N and |Ω| are the car-
dinality of the label state and the number of pixels in the discrete domain Ω,
respectively. In [8], Ishikawa presents an algorithm to find the exact solution for
MRF with convex priors in a polynomial time.

In this paper, we focus on TV minimization with L1 or L2 fidelity. Thus, we
are interested in minimizing the following functionals:

Eα(u, β) =
∫

Ω

|u(x)− v(x)|α dx + β

∫
Ω

|∇u| ,

where α ∈ {1, 2} and β ≥ 0. The use of the L1 fidelity has already been studied
in [9–11]. Our main contribution is an exact optimization of a discretization
of the two functionals Eα(., β) . It relies on reformulating the original problem
into several independent binary problems which are expressed through the MRF
framework. It is based on the decomposition of a function into its level sets.

The rest of this paper is as follows. The decomposition of the considered
problems into independent binary problems is described in section 2. In section 3,
reconstruction of the solution from solutions of the binary problems is shown.
Minimization algorithm and results are presented in section 4. Finally we draw
some conclusions in section 5.

2 Formulation Through Level Sets

In this section, we show that minimization of the TV minimization problem with
L1 or L2 fidelity can be decomposed into the minimization of independent binary
problems. For each level λ ∈ [0, N −1], we consider the thresholded images uλ of
an image: uλ = 1lu≤λ. Note that this decomposition is sufficient to reconstruct
the gray-level image: u(x) = min{λ, uλ(x) = 1}.

2.1 Coarea Formula

For any function u which belongs to the space of bounded variation, the Coarea
formula [3] gives TV (u) =

∫
IR P (uλ)dλ ,for almost all λ and where P (uλ) is the

perimeter of uλ. In the discrete lattice version we define for each site s its grey
level us and uλ

s = uλ(s) = 1lus≤λ . We estimate the perimeter using pairs of
neighboring pixels: TV (u) =

∑N−1
λ=0

∑
s∼t Rs,t(us, vs, λ) , where s ∼ t denotes

neighboring pixels and Rs,t(us, vs, λ) = ws,t|uλ
s − uλ

t | (ws,t is some coefficient).
For our experiments we use two different contour length estimators. The first one
consists in considering only the four-connected neighborhood and setting ws,t to
1. The second one, as proposed in [12], sets ws,t to 0.26 and 0.19 for the four
and eight connected neighborhood respectively. Note that the latter estimation
is not accurate for small regions.

550 J. Darbon and M. Sigelle

2.2 Expressing L1 and L2 Through Level Sets

We reformulate L1 fidelity into level sets. We decompose the domain into the
following two disjoint sets {s : us < vs} and {s : us > vs}. This yields

∑
s∈Ω

|us−vs|=
∑

us<vs

|vs−us|+
∑

us>vs

|us−vs| =
∑
s∈Ω

N−1∑
λ=0

(1lus≤λ<vs
+ 1lvs≤λ<us

)

=
N−1∑
λ=0

∑
s∈Ω

1lus≤λ 1lλ<vs + 1lvs≤λ 1lλ<us =
N−1∑
λ=0

∑
s∈Ω

uλ
s (1− vλ

s) + (1− uλ
s) vλ

s

=
N−1∑
λ=0

∑
s∈Ω

|uλ
s − vλ

s | =
N−1∑
λ=0

∑
s∈Ω

D1(us, vs, λ) (1)

where D1(x, y, λ) = |xλ − yλ| , and where we used the property: |a − b| =
a + b − 2ab for binary variables a, b. Note that this formulation shows that the
L1-norm treats level sets of the image u independently of their associated gray-
levels. This can be seen as adopting a geometrical point of view.

The same approach is used for the decomposition of L2 into level sets. How-
ever, contrary to the L1 norm, the decomposition cannot be independent of its
gray-levels. We begin with separating the sum according previous disjoint sets
and using the formula

∑M
k=1(2k − 1) = M2 :

∑
s∈Ω

(us − vs)2 =
∑

us<vs

vs−us∑
k=1

(2k − 1) +
∑

us>vs

us−vs∑
l=1

(2l − 1).

Then for the first sum we make the following change of variable k ← vs − λ,
while we do l← λ− vs + 1 for the second one. It leads to:∑

s∈Ω

(us − vs)2 =
∑

us<vs

vs−1∑
λ=us

(2(vs − λ)− 1) +
∑

us>vs

us−1∑
λ=vs

(2(λ− vs) + 1)

=
∑
s∈Ω

N−1∑
λ=0

1lus≤λ<vs (2(vs − λ)− 1) +
N−1∑
λ=0

1lvs≤λ<us (2(λ− vs) + 1)

=
∑
s∈Ω

N−1∑
λ=0

(1lus≤λ 1lλ<vs
− 1lvs≤λ 1lλ<us

) (2(vs − λ)− 1)

=
N−1∑
λ=0

∑
s∈Ω

(uλ
s (1− vλ

s) − (1− uλ
s) vλ

s) (2(vs − λ)− 1)

=
N−1∑
λ=0

∑
s∈Ω

(uλ
s − vλ

s) (2(vs − λ)− 1) =
N−1∑
λ=0

∑
s∈Ω

D2(us, vs, λ) (2)

where D2(x, y, λ) = (xλ − yλ) (2(y − λ)− 1) . This formulation shows that L2

can be decomposed into level sets where their associated gray-levels are taken
into account.

Exact Optimization of Discrete Constrained TV Minimization Problems 551

(a) (b) (c)

Fig. 1. Since E1(., β) is not strictly convex, minimizers can be non-unique. The original
image is depicted in (a) where 4-connectivity is considered. Black and white circles refer
to sites whose value is 0 and 1, respectively. If β = 0.25 then there are two minimizers
depicted in (b) and (c), whose associated energy is 1

2.3 Independent Optimizations

Finally, both energies can be re-written as follows:

Eα(u, β) =
N−1∑
λ=0

(∑
s∈Ω

Dα(us, vs, λ) + β
∑
s∼t

ws,t|uλ
s − uλ

t |
)

=
N−1∑
λ=0

Eλ
α(uλ, β) ,

where Eλ
α(uλ, β) =

∑
s∈Ω Dα(us, vs, λ) + β

∑
s∼t ws,t|uλ

s − uλ
t | . Note that each

term Eλ
α(uλ, β) is a 2D MRF which only involves binary variables and pairwise

interactions. Pairwise interactions only deal with the same gray-level component
(λ) of two neighboring pixels (us and ut). The data fidelity term can use different
gray-level components of the observed image v, such as the L2-norm case for
instance. This is possible provided that the data fidelity energy can be linearly
decomposed with respect to each component uλ

s . The prior is an Ising model [13].
Now suppose that for each λ, we independently find the best binary con-

figuration ûλ which minimizes the energy of the MRF. Clearly, the summation
will be minimized. Thus we will find a minimizer for Eα(., β) provided that the
following property of monotony holds for binary minimizers:

ûλ ≤ ûμ ∀λ < μ . (3)

Indeed, if this property holds, then the minimizer û of Eα(., β) is given [14] by
ûs = min{λ, ûλ

s = 1} ∀s . The monotone property is proved in the next section.

3 Reconstruction of the Solution

In this section, we prove the monotone property defined by (3). However, since
E1(., β) is not strictly convex, it leads to non-unique minimizers in general. Such
a situation is depicted in Figure 1. The monotone property can be violated in
that case. However the following Lemma will be useful.

552 J. Darbon and M. Sigelle

3.1 A Lemma Based on Coupled Markov Chains

Lemma. If the local conditional posterior energy at each site s can be written
up to a constant, as:

Eα(us | {ut}, vs) =
N−1∑
λ=0

φs(λ) uλ
s (4)

where φs(λ) is a non-increasing function of λ, then one can exhibit a “coupled”
stochastic algorithm minimizing each total posterior energy Eλ

α(uλ, β) while pre-
serving the monotone condition: ∀s , uλ

s ↗ with λ .
In other words, given a binary solution u� to the problem Ek

α, there exists at
least one solution û to the problem El

α such that u� ≤ û ∀k ≤ l. The proof of
the Lemma relies on coupled Markov chains [15].

Proof: We endow the space of binary configurations by the following order : u ≤
v iff us ≤ vs ∀s ∈ Ω. From the decomposition (4) the local conditional posterior
energy at level value λ is φs(λ) uλ

s . Thus the related Gibbs local conditional
posterior probability is

P (uλ
s = 1 | {uλ

t }, vλ
s) =

exp−φs(λ)
1 + exp−φs(λ)

=
1

1 + expφs(λ)
. (5)

With the conditions of the Lemma, this latter expression is clearly a monotone
non-decreasing function of λ.

Let us now design a “coupled” Gibbs sampler for the N binary images in the
following sense: first consider a visiting order of the sites (tour). When a site s is
visited, pick up a single random number ρ uniformly distributed in [0, 1]. Then,
for each value of λ, assign: uλ

s = 1 if ρ ≤ P (uλ
s = 1 | {uλ

t }, vλ
s) or else uλ

s = 0.1

From the non-decreasing monotony of (5) it is seen that the set of assigned
binary values at site s satisfies uλ

s = 1 ⇒ uμ
s = 1 ∀μ > λ. The monotone

property uλ ≤ uμ ∀ λ < μ is thus preserved. Clearly, this property also extends
to a series of N coupled Gibbs samplers having the same positive temperature
T when visiting a given site s: it suffices to replace φs(λ) by φs(λ) / T in (5).
Hence, this property also holds for a series of N coupled Simulated Annealing
algorithms [16] where a single temperature T boils down to 0 (either after each
visited site s or at the beginning of each tour [13] .) ��

Several points should be emphasized here:
• The coupled monotony-preserving Gibbs samplers described in [15] relate to

the same MRF but for various initial conditions, while here, our N coupled
Gibbs samplers relate to N different posterior MRF’s (one for each level λ).

• It must also be noticed that our Lemma gives a sufficient condition for the si-
multaneous, “level-by-level independent” minimization of posterior energies
while preserving the monotone property.

1 This is the usual way to draw a binary value according to its probability, except that
we use here the same random number for all the N binary images.

Exact Optimization of Discrete Constrained TV Minimization Problems 553

3.2 The L1 and L2 Cases

Let us show that both L1 regularization and attachment to data energies fea-
ture property (4); so will do their sum and thus the total posterior energy. Using
previous property for binary variables a, b: |a− b| = a + b− 2ab, this yields:

∑
t∼s

|us − ut| =
N−1∑
λ=0

∑
t∼s

|uλ
s − uλ

t | =
N−1∑
λ=0

∑
t∼s

(1− 2uλ
t) uλ

s + C

where C =
N−1∑
λ=0

∑
t∼s

uλ
t is a “constant” since it only depends on the {uλ

t }. Thus

φs(λ) =
∑
t∼s

(1− 2uλ
t), which is by essence a non-increasing function of λ.

Similarly starting from (1) for the L1 attachment to data term:

|us − vs| =
N−1∑
λ=0

|uλ
s − vλ

s | =
N−1∑
λ=0

(1− 2vλ
s) uλ

s + C ′ , C ′ =
N−1∑
λ=0

vλ
s

The approach for the L2 relies on the same method. From (2) one can write:

(us − vs)2 =
N−1∑
λ=0

φs(λ) uλ
s + C ′′ ,

where φs(λ) = 2(vs − λ)− 1 clearly fulfills our requirement.
Thus in both cases, φs(λ) is a non-increasing function, so that TV regular-

ization with either L1 and L2-fidelity both follow the conditions of our Lemma.
Although we have proved the monotone property, it does not provide an algo-
rithm to compute the solution. Indeed, using a Simulated Annealing process, one
knows it has no stopping criteria. We propose an algorithm in the next section.

4 Computations and Experiments

In this section, we describe our algorithm and present some experiments.
Greig et al. [17] were the first ones to propose an exact optimization for binary

MRF. It is based on constructing a graph such that its minimum cut (MC) gives
an optimal labelling. Since this seminal work, other graph constructions were
proposed to solve some non-binary problems exactly [8, 18]. In [19], the authors
propose a necessary condition for binary functions to be minimized via MCs
along with a graph construction. Our Ising model fulfills the condition.

For each level we construct the graph as proposed in [19] and compute a MC.
However, since uniqueness cannot be assured with L1 fidelity, the algorithm
returns one of the optimal configurations. Since these minimizations are inde-
pendently performed, the monotone property can be violated. To reconstruct
the solution, one flips every pixel where this property is violated. This flipping
process also gives an optimal labelling since the energy does not change.

554 J. Darbon and M. Sigelle

Table 1. Time results (in seconds) with L1 fidelity for the image “hand”

Size 4-Connectivity 8-Connectivity
151x121 4.97 7.58
343x243 21.02 30.56

(a) (b) (c)

Fig. 2. Minimizers of TV under L2 constraints (β = 1). The original image is depicted
in (a). The level lines resulting from the gradient descent algorithm are presented in
(b). The level lines of the exact solution, using our algorithm, are depicted in (c)

To compute the MC, we used the algorithm described in [20]. For our binary
problems, this algorithm gives near-linear performance with respect to the num-
ber of pixels |Ω|. Since we compute N cuts, the complexity of our algorithm is
near-linear both with respect to N and |Ω|. Time results (on a 1.6GHz Pentium
IV) for our method are presented in table 1 for L1 fidelity. This is in contrast
with the near-quadratic behavior of [8] with respect to N .

For our experiments, we always use the 8-connectivity. In [21] the authors
give exact and analytic solutions for TV minimization with L2 attachment for
radial symmetric functions. For instance, if the observed image is a circle then
the solution is a circle with the same radius : only its gray-levels change. Figure 2
depicts the level-lines of the solutions for our algorithm and the gradient descent
algorithm. For the latter, we approximate TV (u) by

√
|∇u|2 + ε with ε = 1.

Note how many level lines are created by the gradient descent algorithm.
TV minimization is well-known for its high performance in image restoration.

Figure 3 depicts a cartoon image and its noisy version corrupted by an additive
Gaussian noise (σ = 30). It also presents the results of the restoration using
the gradient descent method and our algorithm. Although the results visually
look the same, the exact solution provides a much better result in terms of level
lines. Note how corners of the squares are smoothed. This is predicted by the
theory [22] which states that a square cannot arise as a solution. Results of the
regularization using L1-fidelity are depicted in figure 4. The higher the coefficient
β, the more fine structures are removed while the contrast remains preserved.

5 Conclusion

In this paper we have presented an algorithm to compute the exact solution of
the discrete TV-based restoration problem when fidelity is the L1 or L2 norm.

Exact Optimization of Discrete Constrained TV Minimization Problems 555

(a) Original image (b) Noisy image (σ = 30)

(c) Gradient descent restoration (d) Some level lines of (c)

(d) Restoration using our method (e) All level lines of (d)

Fig. 3. Restoration of a blocky image corrupted by a Gaussian noise. Results of TV
minimization with L2 fidelity for the gradient descent algorithm and our method. Only
level lines multiples of 5 are displayed on (d)

556 J. Darbon and M. Sigelle

(a) Original image (b) β = 1.5

(c) β = 1.7 (d) β = 2.0

(d) β = 2.5 (e) β = 3.0

Fig. 4. Minimizers of TV with L1 fidelity

It relies on the decomposition of the problem into binary ones thanks to a levelset
formulation. It allows for an algorithm whose complexity is near-linear both with
respect to the image size and the number of labels.

Extension of this method to other types of fidelity is in progress. We will
show that the condition stated by our Lemma is equivalent to the fact that each

Exact Optimization of Discrete Constrained TV Minimization Problems 557

local conditional posterior energy is a convex function. Finally a faster minimiza-
tion algorithm which takes into account the monotone property is under study.
Comparisons with other exact minimization algorithms must also be made.

References

1. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D. 60 (1992) 259–268

2. Sauer, K., Bouman, C.: Bayesian estimation of transmission tomograms using
segmentation based optimization. IEEE Nuclear Science 39 (1992) 1144–1152

3. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC
Press (1992)

4. Chambolle, A.: An algorithm for total variation minimization and applications.
Journal of Mathematical Imaging and Vision 20 (2004) 89–97

5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE PAMI 23 (2001) 1222–1239

6. Pollak, I., Willsky, A., Huang, Y.: Nonlinear evolution equations as fast and exact
solvers of estimation problems. to appear in IEEE Signal Processing (2004)

7. Amini, A., Weymouth, T., Jain, R.: Using dynamic programming for solving vari-
ational problems in vision. IEEE PAMI 12 (1990) 855–867

8. Ishikawa, H.: Exact optimization for Markov random fields with priors. IEEE
PAMI 25 (2003) 1333–1336

9. Alliney, S.: A property of the minimum vectors of a regularizing functional defined
by means of the absolute norm. IEEE Signal Processing 45 (1997) 913–917

10. Chan, T., Esedog̃lu, S.: Aspect of total variation regularized l1 function approxi-
mation. Technical Report 7, UCLA (2004)

11. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity
terms. SIAM J. Num. Anal. 40 (2002) 965–994

12. Nguyen, H., Worring, M., van den Boomgaard, R.: Watersnakes: Energy-driven
watershed segmentation. IEEE PAMI 23 (2003) 330–342

13. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods.
Applications of mathematics. Springer-Verlag (2003)

14. Guichard, F., Morel, J.: Mathematical morphology ”almost everywhere”. In: Pro-
ceedings of ISMM, Csiro Publishing (2002) 293–303

15. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and sta-
tistical mechanics. Random Structures and Algorithms 9 (1996) 223–252

16. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE PAMI 6 (1984) 721–741

17. Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for
binary images. Journal of the Royal Statistics Society 51 (1989) 271–279

18. Roy, S.: Stereo without epipolar lines: A maximum-flow formulation. International
Journal of Computer Vision 34 (1999) 147–162

19. Kolmogorov, V., Zabih, R.: What energy can be minimized via graph cuts? IEEE
PAMI 26 (2004) 147–159

20. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE PAMI 26 (2004) 1124–1137

21. Strong, D., Chan, T.: Edge preserving and scale-dependent properties of total
variation regularization. Inverse Problem 19 (2003) 165–187

22. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equa-
tions. University Lecture Series 22 (2001)

Tensor Algebra: A Combinatorial Approach
to the Projective Geometry of Figures

David N.R. McKinnon and Brian C. Lovell

Intelligent Real-Time Imaging and Sensing (IRIS) Group,
School of Information Technology and Electrical Engineering,

University of Queensland, St. Lucia QLD 4066, Australia
mckinnon@itee.uq.edu.au

Abstract. This paper explores the combinatorial aspects of symmetric and anti-
symmetric forms represented in tensor algebra. The development of geometric
perspective gained from tensor algebra has resulted in the discovery of a novel
projection operator for the Chow form of a curve in P

3 with applications to com-
puter vision.

1 Introduction

The notation used in this paper is adapted from [16] with the novel addition of the
symmetric operators which we will use to derive the representations for curves, surfaces
and other non-linear algebraic maps. Also, we will maintain the use of vectorizations
of the (anti)symmetric tensor forms, that offer an equivalent expression of the algebra
as a coefficient ring defined over the field of real numbers (R). This in turn can be
expressed as the elements of a vector space on a computer. This approach to geometry
is analytically equivalent to the approach taken by other authors studying geometry of
linear objects [17], invariants [15, 8], multiple view geometry [16, 10] and also in the
theory symmetric functions [14]. The major contribution of this paper is the projection
operator for the Chow form of a curve in space. This projection operator has allowed for
a new class of curve based approaches to multiple view geometry.

2 Tensor Basics

Tensors are a generalization of the concept of vectors and matrices. In fact vectors and
matrices are 1 and 2-dimensional instances of a tensor. Tensors make it easier to under-
stand the interaction of algebraic expressions that involve some type of multilinearity
in their coefficients. The following sections will briefly introduce some of the algebra
underlying the types of tensors we are most interested in.

2.1 Vector Spaces

Tensors are composed entirely from vector spaces. Vector spaces can be combined using
a range of standard operators resulting in differently structured tensors. We will limit

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 558–567, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Tensor Algebra: A Combinatorial Approach to the Projective Geometry of Figures 559

our study of the geometry herein to projective vector space Pn. An element of an n-
dimensional projective vector space in the tensor notation is denoted as xmAs

i ∈ Pn.
The symbol mAs

i is called an indeterminant and identifies several important properties
of the vector space. Firstly in order to better understand the notation we must rewrite xA

in the standard vector form. This is achieved by listing the elements of the vector space
using the indeterminant as the variables of the expression. In this manor the symbol
that adjoins the indeterminant is merely cosmetic, for example the equivalent vector
space is, xmAs

i ≡ [mAs
0,mAs

1, . . . ,mAs
n]�, where m identifies the multilinearity of the

indeterminant, s depicts the degree (or step) of the indeterminant. We show in the next
section that there are several different types of degree that we will be concerned with
and that these are used to denote a vectorization of the tensor form. The last element
specifying the indeterminant is i, this a choice of the positioning of the elements in the
vector, we most commonly refer to i as the index of the indeterminant. The standard
indexing is i ∈ {0 . . . n} for an n-dimensional projective vector space.

Indeterminants of a regular vector (vertical) space (Pn) are called contravariant and
indeterminants of a dual (horizontal) vector space in ∗Pn (covector) are called covariant.
The notation for a dual vector (covector) space is analogous to that for a regular vector
space, x∗

mAs
i
≡ [∗mAs

0,
∗
mAs

1, . . . ,
∗
mAs

n], the only difference being that the vector is
transposed. In the interests of compactness and clarity often we will abandon the entire
set of labels for an indeterminant via an initial set of assignments. If this is the case
assume that i is any arbitrary scalar between 0 and n and s,m = 1. If an indeterminant
is used in a covariant expression then the ∗ may also be omitted.

2.2 Tensors and Contraction

Tensor contraction is the process of eliminating vector spaces from a given tensor. Tensor
contraction is achieved via a dot product of elements from a regular and dual vector space,
resulting in a cancellation of both indeterminants.

x∗
mAs

i
xmAs

i ≡ [∗mAs
0,

∗
mAs

1, . . . ,
∗
mAs

n]

⎡⎢⎢⎢⎣
mAs

0

mAs
1

...
mAs

n

⎤⎥⎥⎥⎦ = α (1)

Since our vector spaces are projective the contraction results in the scalar α. Most
often we will be concerned with algebraically exact contractions that result in the scalar
0, such a contraction is referred to as an incidence relation. Geometrically this usually
corresponds to an exact point-hyperplane pair. The rules for tensor contraction are as
follows;

– Contraction may only occur between common indeterminants, xAyAB = zB .
Whereas is the case of xAyCB no contraction can occur.

– Contraction occurs independent of the ordering of the indeterminants. For example
xAByA = zB is equivalent to yAxBA = zB , this is called the Einstein summation
notation.

560 D.N.R. McKinnon and B.C. Lovell

3 Tensor Products

The basic tools used to construct the algebraic/geometric entities in the tensor notation are
called operators. There are three different types of operators that we will use in this paper
and for each operator we will maintain two differing representations, that of a tensor
form and its equivalent vector form (Table 1). In Table 1 the symbols νd

n =
(
d+n

d

)
− 1,

ηk
n =

(
n+1

k

)
− 1 and πd

n =
∏d

i=1 ni.
The two different forms of the tensor are representative of the fact that we can

always rewrite any tensor expression as an ordered vector of its coefficients. We call
this alternative to the tensor form the vector form. Writing the tensor as a vector of
coefficients abandons any symmetry present in the tensor this results in a less fruitful
representation since it limits the way in which an equation can be contracted for symbolic
derivations but in turn reduces the redundancy associated with the symmetry resulting
in a more efficient representation for mappings between vector spaces.

Table 1. Tensor Operators

Operator Symbol Tensor Form Vector Form

Segre - xAi...Bj xαd ∈ P
πd

n where xAi ∈ P
nA

Antisymmetric (Step-k) [. . .] x[Ai...Bj] xα[k] ∈ P
ηk

n

Symmetric (Degree-d) (. . .) x(Ai...Aj) xα(d) ∈ P
νd

n

3.1 Segre Operator

The Segre or tensor product operator is the most familiar of operators as it is generaliza-
tion of the outer product rule for multiplication from linear algebra. A simple example of
the Segre product operator is in the outer product multiplication of two vectors xA ∈ Pn

and yB ∈ Pm the resulting tensor form is a purely contravariant matrix.

xAyB ≡

⎡⎢⎢⎢⎣
A0B0 A0B1 · · · A0Bm

A1B0 A1B1 · · · A1Bm

...
...

. . .
...

AnB0 AnB1 · · · AnBm

⎤⎥⎥⎥⎦ ≡ zα2 ∈ Pnm (2)

If the multiplication had occurred in the order yBxA the then resulting matrix zBA

will simply be zAB transposed. There is no analogue of the transpose from linear algebra
in the tensor notation. Instead the equivalent of a transpose operation is just a shuffling
of the indeterminants in the symbolic expression.

The equivalent vector form of the Segre product example given above is found
by listing the elements of the resulting matrix zAB in a vector ordered by the first

indeterminant A, xAyB ≡ zα2 ∈ Pnm =
[
A0B0 A0B1 · · · AnBm

]�
.

3.2 Antisymmetric Operator

The next operator of interest is the anti-symmetric operator ([. . .]), the number of times
the operator is applied to the vector space (k) is referred to as the step. Antisymmetriza-

Tensor Algebra: A Combinatorial Approach to the Projective Geometry of Figures 561

tion in tensor algebra can be summarized as the process of multiplying tensor spaces
according to following rules;

– Antisymmetrization may only occur between projective vector spaces of equivalent
dimension, ie. for x[AyB] to be admissible then given xA ∈ Pn and yB ∈ Pm then
m = n.

– Labeling the result of x[AyB] as z[AB] where xA,yB ∈ Pn. Denoting the indeter-
minants of Pn as belonging to the set αi ∈ {0 . . . n} then the following rules apply
to the indeterminants Aαi

Bαj
,

1. if αi = αj then [Aαi
Bαj

] = 0
2. if αi �= αj then [Aαi

Bαj
] = 1

p! sign(βαiαj)Aαi
Bαj

where β = α/{αi, αj},
which is the entire set of indeterminants modulo the ones contained in the
expression (αi, αj), also p is the number of different ways you can reorder
AαiBαj .

– The antisymmetrization of step n + 1 or greater of elements from Pn will be 0 for
projective vector spaces (x[A0...yAn...zBj] = 0).

Now we apply these rules to a simple example,

x[AyB] ≡

⎡⎣ 0 [A0B1] [A0B2]
[A1B0] 0 [A1B2]
[A2B0] [A2B1] 0

⎤⎦ =

⎡⎣ 0 A0B1
2 −A0B2

2
−A1B0

2 0 A1B2
2

A2B0
2 −A2B1

2 0

⎤⎦ ≡ z[AB] ∈ Pη2
2

(3)

Analyzing the sign of the elements in the tensor in a little more detail we see that
[A0B1] = A0B1 since (201) is an even permutation of (012) resulting in positive sign.
Also [A0B2] = −A0B2 since (102) is an odd permutation of (012). Another point to
note about the tensor given in the example above is that assuming the field for the tensor
operations is commutative their are only 3 unique elements involved in its construction.
These elements are repeated in an antisymmetric fashion across the main diagonal.

This is due to the fact that k anitsymmetrizations of an-dimensional projective vector
space contains ηk

n + 1 indeterminants (from Table 1). This is precisely equivalent to the
number of ways that we can reorder the members of α in a strictly increasing manor.
For example the unique elements and associated vector spaces of Pη2

2 and Pη3
3 are;

[+01,−02,+12] and [−012,+013,−023,+123] Here we have ordered the elements of
these sets in a lexicographic order.

3.3 Symmetric Operator

The next operator of interest is the symmetrization operator. The symmetrization operator
allows us to create symmetric expansions of the vector space at hand, the number of
symmetrizations applied is referred to the degree d of operator. The vectorized version
of the symmetrization operator is known in the literature as the Veronese embedding [9].
Symmetrization may also be summarized according to the following set of rules;

– Symmetrization may only occur between projective vector spaces of equivalent
dimension, ie. for x(AyB) to be admisable then given xA ∈ Pn and yB ∈ Pm then
m = n. As a matter of convention we will usually denote a symmetrization with the
same indeterminant repeated ie. x(AyA).

562 D.N.R. McKinnon and B.C. Lovell

– Labeling the result of x(A · · ·yA) as z(A···A) where xA ∈ Pn. Denoting the indeter-
minants of Pn as belonging to the set α = {0 . . . n} then the following rule applies
to the indeterminants Aαi

· · ·Aαj
,

• for all αi . . . αj , (Aαi · · ·Aαj) = perms(Aαi · · ·Aαj)
– (Aαi

Bαj
) = 1

p!Aαi
Bαj

where p is the number of unique permutations possible by
reordering Aαi

Bαj
.

These rules state that the symmetrization produces indeterminants that are equal for
every possible reordering of the indexes, thus enabling the symmetry. Applying this to
a simple example we have,

x(AyA) ≡

⎡⎣ (A0A0) (A0A1) (A0A2)
(A1A0) (A1A1) (A1B2)
(A2A0) (A2B1) (A2A2)

⎤⎦ =

⎡⎣A0A0
A0A1

2
A0A2

2
A0A1

2 A1A1
A1A2

2
A0A2

2
A1A2

2 A2A2

⎤⎦ ≡ z(AB) ∈ Pν2
2

(4)
Again assuming a commutative field we have only 6 (ν2

2 + 1 = 6, Table 1) unique
combinations of indeterminants in the tensor given above. This is precisely equivalent
to the number of ways that we can reorder the members of α in a strictly non-decreasing
manor. For example the unique elements of ν2

2 and ν3
1 are; [00, 01, 11, 02, 12, 22] and

[000, 001, 011, 111]. Again we have ordered the elements of these sets in a lexicographic
order.

4 Linear Features in P 2 and P 3

The application of the tensor operators given in Table 1 to vector spaces gives us a
means represent the geometry of various features we encounter in computer vision as
the embedding of the (codimension 1) coefficient ring of the feature into a vector space.

4.1 Geometry of the Antisymmetrization Operator

Linear features are defined as any feature the that can be expressed in terms of strictly
linear coefficients, this is to say the highest degree of the monomials composing the
geometric form is 1. In order to construct the total set of linear features in a projective
vector space Pn we use a geometric interpretation of the antisymmetric operator defined
in the previous section.

This amounts to viewing the application of the antisymmetrization operator to a
set of contravariant vectors as the join (∧) of two vectors (ie. x[AyB] ≡ xA ∧ yB).
Likewise the application of the antisymmetrization operator to two or more covariant
vectors is the meet (∨) (ie. x[AyB] ≡ xA ∨ yB). This equivalent interpretation of the
antisymmetrization operator originates from the Grassmann-Cayley algebra [5, 17].

The Degrees Of Freedom (DOF) of contravariant hyperplanes is the the same as the
size of the space they are embedded in, whereas covariant hyperplanes will always have
1 DOF. Generically contravariant vectors are points in a projective space and covariant
vectors are lines, planes for P2, P3 respectively.

The interpretation of the join (∧) and meet (∨) operators is quite literal as they denote
the joining of two or more contravariant vectors (points) and the intersection of two or
more covariant vectors (lines, planes, etc.).

Tensor Algebra: A Combinatorial Approach to the Projective Geometry of Figures 563

In P2 or the projective plane the only linear features not including the plane itself
are the point and line. Table 2 summarizes the representation and the DOF for linear
features in the projective plane ([A0, A1, A2] ∈ P2). Similarly, Table 3 summarizes the
representation and the DOF for linear features in projective space ([a0, a1, a2, a3] ∈ P3).

Table 2. Linear features and their duals in P
2

Feature P
2 ∗

P
2 DOFi Embedding

Points xA0 A∗ : xA0 → εA0A1A2x
A0 = x[A1A2] 2 P

2

Lines x[A0A1] A∗ : x[A0A1] → εA0A1A2x
A0A1 = xA2 1 P

2

Table 3. Linear features and their duals in P
3

Feature P
3 ∗

P
3 DOFs Embedding

Points xa0 A∗ : xa0 → εa0a1a2a3x
a0 = x[a1a2a3] 3 P

3

Lines x[a0a1] A∗ : x[a0a1] → εa0a1a2a3x
a0a1 = x[a2a3] 4 P

5

Planes x[a0a1a2] A∗ : x[a0a1a2] → εa0a1a2a3x
a0a1a2 = xa3 1 P

3

Tables 2 and 3 also demonstrate the process of dualization for linear feature types via
the dualization mapping (A∗) [7]. Dual representations in the antisymmetric (Grassmann-
Cayley) algebra are equivalent covariant forms of the same geometric object interchang-
ing the position and structure indeterminants using an alternating contraction (εβ0...βn

).
In addition to this the dualization function (A∗) in the antisymmetric algebra is commu-
tative.

4.2 Lines in P 3

The only feature included in the prior discussion that cannot be classified as a hyperplane
is the variety of the line embedded in P3. From Table 3 we denote the line joining two
points as x[a0ya1] ! l[a0a1] ≡ lω ∈ P5 or dually as the intersection of two planes
x[a0ya1] ! l[a0a1] ≡ lω ∈ ∗P5. Therefore, analyzing the 6 coefficients of the line,

l[aiaj] ≡ lω ∈ {[a0a1], [a0a2], [a1a2], [a0a3], [a1a3], [a2a3]} (5)

we see that they are degree two monomials formed by taking the determinant of rows i
and j (where i < j) of the the [4×2] matrix formed by the two contravariant points on the
line. Similarly the dual representation of the line is formed by taking the determinant of
columns i and j from the [2×4] matrix formed by the two covariant vectors depicting the
planes that meet to form the line. This representation of the line is called the Plucker line.

The coefficients of the Plucker line have only 4 DOF (instead of 6). This is due to
the loss of one DOF in the projective scaling and another due to a special relationship
between the coefficients of the line called the quadratic Plucker relation. Writing the
equations of the line in the skew-symmetric tensor form and taking the determinant
of l[aiaj] we find, ([a0a1][a2a3] − [a0a2][a1a3] + [a0a3][a1a2]) which is the quadratic
Plucker relation for the line. If the quadratic Plucker relation does not equal zero then
the coefficient vector in P5 does not correspond to a line in P3.

564 D.N.R. McKinnon and B.C. Lovell

5 Degree-d Features in P 2 and P 3

The next group of features we are interested in expressing in tensor algebra are curves
and surfaces in P2 and P3. These features are essentially non-linear as they are composed
of monomials which are of degree ≥ 2.

5.1 Hypersurfaces in P 2 and P 3

Curves in P2 and surfaces in P3 are both instances of codimension 1 hypersurfaces,
which we will construct from the symmetric operator (. . .) as demonstrated in Table 4.
In the Algebraic-Geometry literature hypersurfaces are referred to as the coefficient ring
corresponding to the degree-dVeronese embedding of a complex vector space xα ∈ CPn

[9]. This means that hypersurfaces are generically points in a CPνd
n dimensional space,

where νd
n =

(
n+d

n

)
−1, thus they have νd

n−1 DOF. This results in a degree-d hypersurface

Hα(d) (where xα ∈ Pn) satisfying the equation Hα(d)xα(d)
= 0, which is the incidence

relation for hypersurfaces. Hypersurfaces allow us to categorize implicit curves and
surfaces into different classes according to their total degree (d) of the embedding.

Table 4. Degree-d hypersurfaces and their duals in P
2 & P

3

Hypersurface Regular Dual DOF Embedding

CP
2 x(A...A) S∗ : x(A...A) → x(A...A) νd

2 CP
νd
2

CP
3 x(a...a) S∗ : x(a...a) → x(a...a) νd

3 CP
νd
3

Curves in P 2. A common example of an implicit hypersurface in P2 is the quadratic
hypersurface (conic) We can write this as a vector of coefficients and use the incidence
relation of hypersurfaces to get the typical equation for a point xA on a degree 2 curve
(conic).

c(AA)xAxA ≡ cA(2)xA(2)
= 0 (6)

All quadratic curves in the plane can be given in terms of this incidence relation
by varying the coefficient vector cA(2) of the hypersurface. This concept can be used
to define curves of any degree in P2 and likewise surfaces of any degree in P3. The
dualization operator for symmetrically embedded hypersurfaces (S∗) has a much more
complicated action on the coefficient ring (see [6] for more details), however it simplifies
in the case of degree 2 hypersurfaces to being simply the adjoint of the original symmetric
matrix of coefficients (ie. S∗(c(AA)) ≡ adj(c(AA)) = c(AA)). Also in the degree 2 case
the tangent cone at a single point pα to the surface or curve is identical since degree 2
hypersurfaces embedded in Pn (where n ≥ 2) have no shape characteristics.

5.2 Hypersurfaces in P 5 : Chow Forms

For practical purposes we wish to have a single equation (codimension 1 hypersurface)
to define the locus of a curve in space. Arthur Cayley in the first of two papers [1, 2] on
the topic describes the problem like this; ’The ordinary analytical representation of a
curve in space by the equations of two surfaces passing through the curve is, even in the

Tensor Algebra: A Combinatorial Approach to the Projective Geometry of Figures 565

case where the curve is the complete intersection of the two surfaces, inappropriate as
involving the consideration of surfaces which are extraneous to the curve’.

The use of the extraneous surfaces in the representation of the curve can be abandoned
if insted we consider the curve as the intersection of a cone of Plucker lines having as
its apex a variable point in pa ∈ P3. In this manor the equation of the curve depicts the
intersection of every cone of Plucker lines with apex pa not incident with the curve. So
for this purpose we represent the equation of a curve embedded in P3 as the degree-d
embedding of the Plucker line xω ∈ P5 (Table 3).

This results in a degree-d curve satisfying the equation Cω(d)xω(d)
= 0 this type

of equation is referred to as the Chow Form of the curve (see [6] 1-cycle) after its
more contemporary definition by Chow and van der Waerden [3]. There exists νd

5 =(
d+5

d

)
coefficients in the ring of the Chow Form of a degree-d curve in P3. Due to the

redundancy of the Plucker relation for a line, the DOF of the Chow Form are [9, 12],
DOFcf = ξd

5 =
(
d+5

d

)
−
(
d−2+5

d−2

)
− 1.

It is important to be able to characterise the Plucker relations that lead to the ancillary
constraints on the Chow Form. Cayley [1, 2] was able to show that this condition for
curves in space is equivalent to the following equation,

∂2Cω(d)

∂ω0∂ω5
+

∂2Cω(d)

∂ω1∂ω4
+

∂2Cω(d)

∂ω2∂ω3
= 0 (7)

which we can manufacture by symbolic differentiation of the Chow polynomial. This
condition does suffice for d ≤ 3 however for d ≥ 4 further constraints constructed from
higher order derivatives of the Chow form must be used.

A key property of the Chow form of the curve is its invariance to projective space
transforms, this property is inherited from the underlying Plucker line representation.
This makes the Chow form of the curve ideal for use in solving problems based in pro-
jective geometry (eg. those relating to projective observations) since the shape properties
for all curves are invariant.

6 Projection Operators

The projection operator is an in injective projective transformation of vector space. Pro-
jection (in a geometric context) is the process projecting a feature to a lower dimensional
embedding. The abstract definition of a projection is the mapping,

πp : Pn − {p} → Pn−1 (8)

which is projection from Pn to Pn−1 from a point p where p ∈ Pn but doesn’t intersect
X where X is the projective variety (feature) that is being projected. Primarily we will
be interested in projections of features in P3 to P2.

6.1 Embedded Projection Operators

Projection Operators for Surfaces. First we will develop the projection operator for
surfaces in P3. In this setting the projection of a surface into the image is achievable by a
projection of the dual tangent cone to the surface with the camera center as its apex (Sa(d)

)

566 D.N.R. McKinnon and B.C. Lovell

to the dual plane curve in the image (cA(d)
). This projection utilizes the vectorization of

the degree d symmetric embedding of the Point-to-Point projection operator. However,
since the degree of the dual of an algebraic surface is d(d − 1)2 in a practical setting
only the projection of a degree 2 surface is reasonably attainable. Furthermore its seems
to be an open question as to whether or not there exists a closed form manor of deriving
the dual of surface with degree > 2. This operator has been noted and used by several
authors [4, 11, 13] in the degree 2 case.

cA(d) ! PA(d)

a(d) Sa(d)
(9)

Projection Operators for Curves in P 3. We now develop a novel projection operator
for the Chow form of the curve in P3. We saw in section 5.2 that a curve in P3 is
represented as the coefficient ring cω(d) where xω ∈ P5 is the coefficient ring of a
Plucker line. Using the transpose of the Line-to-Point projection operator P[a0a1]

A [13]

and rewriting it as P[a0a1]
A ≡ Pω

A, where xω ∈ P5 is the Plucker embedding of the line.
We now have the basic linear mapping between a Plucker line passing through the camera
center (ea) and the point at which it intersects the image plane. The vectorization of the
symmetric degree d embedding of the transpose of the Line-to-Point operator gives us
the projection operator,

xA(d) ! Pω(d)

A(d)cω(d) (10)

which projects the coefficients of the Chow form of the curve from P3 to its image
a hypersurface (or curve) in P2. This projection operation is invariant to projective
transforms of P3 since the underlying object in the embedding is the Plucker line which
itself is invariant to projective transforms of P3.

7 Conclusions and Future Work

In this paper we presented the use of the symmetric and anti-symmetric tensor algebras
for exemplifying the geometry of linear and non-linear figures. We showed that the anti-
symmetric algebra naturally encompasses the range of linear objects in P2 and P3, also
providing us with a means producing projections between these spaces.

We broadened the application of the symmetric tensor algebra to include the repre-
sentation of degree d hypersurfaces, as far as the authors are aware this is first application
of symmetric tensor algebra as a geometrically constructive operator in the computer
vision literature. This understanding has allowed the generalization of earlier results for
the projection of surfaces and also a novel operator for the projection of the Chow form
of a curve in P3. These discoveries have resulted in a number of practical algorithms to
compute location of curves and surfaces in space, as well as solving for the location of
the cameras viewing known curves or surfaces, this will be a feature of future work.

References

1. A. Cayley. On a new analytical representation of curves in space. Quart. J. of Pure and Appl.
Math., 3, 1860.

Tensor Algebra: A Combinatorial Approach to the Projective Geometry of Figures 567

2. A. Cayley. On a new analytical representation of curves in space ii. Quart. J. Math., 5, 1862.
3. W. Chow and B. van der Waerden. Zur algebraische geometrie ix. Math. Ann., 113:692–704,

1937.
4. G. Cross. Surface Reconstruction from Image Sequences : Texture and Apparent Contour

Constraints. PhD thesis, University of Oxford, Trinity College, 2000.
5. O. D. Faugeras and B. Mourrain. On the geometry and algebra of the point and line corre-

spondences between N images. Int. Conf. on Computer Vision, pages 951–956, 1995.
6. I. M. Gelfand, M. M. Kapranov, and A.V. Zelvinsky. Discriminants, Resultants and Multidi-

mensional Determinants. Birkhauser, 1994.
7. W. Greub. Multilinear Algebra. Springer-Verlag, 1978.
8. Frank D. Grosshans. Invariant theory and superalgebras. Regional conference series in

mathematics, no. 69. America Mathematical Society, 1987.
9. Joe Harris. Algebraic Geometry, A first course. Springer Verlag, first edition, 1992.

10. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

11. F. Kahl and A. Heyden. Using conic correspondences in two images to estimate the epipolar
geometry. Int. Conf. on Computer Vision, 1998.

12. J.Y. Kaminski, M. Fryers, A. Shashua, and M. Teicher. Multiple view geometry of non-planar
algebraic curves. Int. Conf. on Computer Vision, 2001.

13. David N. McKinnon and Brian C. Lovell. Towards closed form solutions to the multiview
constraints of curves and surfaces. DICTA03, pages 519–528, 2003.

14. Bruce E. Sagan. The Symmetric Group : Representations, Combinatorial Algorithms and
Symmetric Functions. Graduate Texts in Mathematics, Vol. 203. Springer, 2001.

15. B. Sturmfels. Algorithms in Invariant Theory. Springer-Verlag, 1993.
16. B. Triggs. The geometry of projective reconstruction i: Matching constraints and the joint

image. Int. Conf. on Computer Vision, pages 338–343, 1995.
17. Neil White. Geometric applications of the grassmann-cayley algebra. Handbook of Discrete

and Computational Geometry, pages 881–892, 1997.

Junction and Corner Detection Through the
Extraction and Analysis of Line Segments

Christian Perwass�

Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel,

Christian-Albrechts-Platz 4, 24118 Kiel, Germany
chp@ks.informatik.uni-kiel.de

Abstract. An algorithm is presented that analyzes the edge structure
in images locally, using a geometric approach. A local edge structure that
can be interpreted as a corner or a junction is assumed to be representable
by a set of line segments. In a first step a segmentation of the local
edge structure into line segments is evaluated. This leads to a graph
model of the local edge structure, which can be analyzed further using a
combinatorial method. The result is a classification as corner or junction
together with the absolute orientation and internal structure, like the
opening angle of a corner, or the angles between the legs of a junction.
Results on synthetic and real data are given.

1 Introduction

In many areas of Computer Vision the detection of feature points in an image
plays an important role. For example, in the field of object recognition the use of
”key features” for an object shows some promising results [12, 9]. Also tracking
and 3D-reconstruction algorithms use feature points in images. These feature
points are quite often corners, or more specifically, intrinsically two dimensional
(i2D) structures. The advantage of i2D structures over intrinsically one dimen-
sional (i1D) structures, i.e. edges, is that they can be identified with a specific
position in an image, whereas i1D structures only allow for a localization along
one direction. Note that the intrinsic dimensionality of a structure is synonymous
with its co-dimension.

Many algorithms have been developed to detect corners and edges, see e.g.
[7, 10, 8, 13, 6]. At a signal level, edge detectors basically locate places in an image
where the image gradient is high. Different types of edges may also be distin-
guished by evaluating the local phase of the image signal (cf. [5]). In order to
detect i2D structures, usually the image gradients within an image patch are
combined in some way. One method often used is the summation of the struc-
ture tensor over an image patch. The rank of the resultant matrix then indicates

� This work has been supported by DFG Graduiertenkolleg No. 357 and by EC Grant
IST-2001-3422 (VISATEC).

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 568–582, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Extraction and Analysis of Line Segments 569

whether the image gradient vectors in the respective image patch span a 1D-
space or a 2D-space. In the first case an edge is present in the image patch,
since all gradients point (approximately) in the same direction. In the second
case a corner or junction must be present, since the gradients point in two or
more different directions. For example, the Förstner operator [7] and the corner
detector by Harris and Stevens [10] are based on this principle.

Methods using the structure tensor in this way can only distinguish between
i1D and i2D structures. A further distinction between i2D signals is not possible,
since the structure tensor can at most encode two directions. Nevertheless, it
would be advantageous to distinguish between i2D image structures like corners,
line crossings, Y-junctions and T-junctions and also to measure the orientations
of their different parts. Consequently, there has been some effort to analyze i2D
structures further, see e.g. [1, 4, 11].

In this paper we propose a method to extract the type of i2D image structures
and to evaluate their parameters, like the opening angle of a corner, for example.
Instead of analyzing the image gradients directly, we use a two step approach. In
a first step the image gradients are used to find edges. At this step an appropriate
scale and smoothing has to be selected for the given image. The result of this
first step is an image containing only the edges of the initial image.

In a second step the local geometry of the edges is analyzed. This analysis
is again split into a number of steps. First we observe that the line structures
we are interested in can be represented by a pair of conics in a useful way. Note
that we do not use the form of the fitted conics directly to analyze the image
structure, as for example in [15], but consider their intersections instead. From
this a weighted graph representing the local edge structure can be constructed.
Which particular structure is present may then be deduced from a combinatorial
analysis of the graph.

The remainder of this paper is structured as follows. First we discuss the
fitting of conic pairs to edge data and how this can be used to extract a graph
representing the local edge geometry. The next part is dedicated to the combi-
natorial analysis of the extracted graph. This is followed by the presentation of
experimental results and some concluding remarks.

2 Fitting Conic Pairs

As mentioned in the introduction, an image is reduced to a set of edge pixels
in an initial preprocessing step. The assumption we then make is that within
a local area the edge pixels can be segmented into a set of line segments. A
corner, for example, consists of two line segments that meet in the local area.
Even though we are looking for line segments, it is not obvious how to fit lines to
the data, since it is in general not known how many line segments are present. A
Y-junction, for example, has three line segments, while a corner or a T-junction
only have two.

The basic idea we follow here is to perform an eigenvector analysis of the
edge data in a local area. However, instead of using the data directly we first

570 C. Perwass

transform it to some other space, where the eigenvectors represent conics. From
a geometric point of view, we try to find the conics that best fit the data. How
this can be used to segment the data into line segments will be described later.
First the embedding used and the eigenvector analysis are discussed.

As mentioned before, the edge geometry is evaluated locally. That is, given
an edge image, we move a window of comparatively small size over it and try to
analyze the local edge geometry within the window for all window positions. For
each window position the pixel coordinates of the edge points are transformed to
coordinates relative to the center of the window, such that the top left corner of
the local area is at position (−1, 1) and the bottom right corner at the position
(1,−1). The main reason for this transformation is to improve the numerical
stability of the algorithm. Let the position vector of the ith edge point in the
local area in transformed coordinates be denoted by the column vector wi =
(ui, vi)T. These position vectors are embedded in a 6D-vector space of symmetric
matrices, which allows us to fit conics to the set of edge points. The details of
this embedding are as follows.

2.1 The Vector Space of Conics

It is well known that given a symmetric 3 × 3 matrix A, the set of vectors
x = (x, y, 1)T that satisfy xT A x = 0, lie on a conic. This can also be written
using the scalar product of matrices, denoted here by ·, as

(
x xT

)
· A = 0.

It makes therefore sense to define a vector space of symmetric matrices in the
following way. If aij denotes the component of matrix A at row i and column j,
we can define the transformation T that maps elements of R3×3 to R6 as

T : A ∈ R3×3 �→
(
a13, a23,

1√
2
a33,

1√
2
a11,

1√
2
a22, a12

)T ∈ R6. (1)

A vector x ∈ R3 may now be embedded in the same six dimensional space
via

x := T
(
x xT) =

(
x, y, 1√

2
, 1√

2
x2, 1√

2
y2, x y

)T ∈ R6. (2)

If we define a := T (A), then xT A x = 0 can be written as the scalar product
xT a = 0. Finding the vector a that best satisfies this equation for a set of points
{xi} is usually called the algebraic estimation of a conic [2].

In the following we will denote the 6D-vector space in which 2D-conics may
be represented by D2 ≡ R6. A 2D-vector (x, y) ∈ R2 is transformed to D2 by the
function

D : (x, y) ∈ R2 �→ (x, y, 1√
2
, 1√

2
x2, 1√

2
y2, xy) ∈ D2. (3)

2.2 The Eigenvector Analysis

In order to analyze the edge data, we embed the data vectors {wi} in the vec-
tor space of symmetric matrices as described above, i.e. wi := D(wi). Note
that we use a different font to distinguish image vectors wi ∈ R2 and their
embedding wi ∈ D2. Denote by W the matrix constructed from the {wi} as

Extraction and Analysis of Line Segments 571

W = (w1, . . . , wN)T, where N is the number of data vectors. A conic a = T (A)
that minimizes ‖Wa‖2 is then a best fit to the data in an algebraic sense. The
key to our algorithm is not just to look at the best fit but at the two eigenvectors
of W with the smallest eigenvalues.

We evaluate the eigenvectors and eigenvalues of W by performing a singular
value decomposition (SVD) on WT W, which is symmetric. The singular vectors
are then simply the eigenvectors and the square root of the singular values gives
the eigenvalues of W.

If W has two small eigenvalues, this means that the whole subspace spanned
by the corresponding eigenvectors is a good fit to the data. In mathematical
terms this can be written as follows. Throughout this text we will use c1, c2 to
denote the two eigenvectors with smallest eigenvalues of W. For any α, β ∈ R,
c = α c1 + β c2 is a good fit to the data. This may also be termed a pencil of
conics. The base points that define this pencil of conics are those that lie on all
conics in this pencil. These points are simply the intersection points of the conics
c1 and c2. It therefore seems sensible that the intersection points of c1 and c2
also contain important information about the structure of the data from which
W was constructed. An example that this is indeed the case can be seen in figure
1. The dots in this figure represent the data points and the two hyperbolas are
the conics represented by the two eigenvectors of the corresponding W matrix
with the smallest eigenvalues. It can immediately be seen that each conic by
itself does not represent the data distribution. However, their intersection points
lie exactly in the clusters formed by the data.

Fig. 1. Examples of four and three clusters of data points and the conics represented
by the two eigenvectors with the smallest eigenvalues

By intersecting conics c1 and c2, we basically try to represent the data in
terms of up to four points. In effect, this is not much different from a principal
component analysis (PCA). The space of intersections of eigenvectors of W may
actually be expressed as the vector space of bivectors in a Clifford algebra over
the vector space of symmetric matrices. In this sense, the space of intersections
may be regarded as a kind of ”second order” null space of W. See [14] for more
details.

572 C. Perwass

2.3 Analyzing Image Data

The type of data that we want to analyze with the above described method, are
sets of a few line segments, like those shown in figure 2. Images 1 and 2 show
Y-junctions. Note that the fitting of conics to the data also works for gray scale
edge images and thick lines as shown in image 2. Image 3 shows a T-junction,
images 4 and 5 different types of corners, image 6 a line crossing and images
7 and 8 show lines. A standard PCA approach on 2D position vectors will not
be of any use in this case, since this would not allow us to distinguish between
differently oriented line segments in the same data subspace. Instead we observe
that the intersections of conics c1 and c2, represent the data in a very useful
way, which can be seen in figure 2, where the two conics are drawn on top of
the image structures. The images show that the intersection points of c1 and
c2 lie on the line segments, and that the line segments always lie approximately
between two intersection points. Unfortunately, we cannot give an analytic proof
that this always has to be the case. However, we can give a motivation for this
behavior.

First of all consider the case where only two line segments are present as in
corners, crossings and T-junctions. By fitting projective conics to the data, line
pairs can be represented well, since they are simply degenerate conics. Hence,
the best fitting projective conic will approximate the actual structure in the
image. The next best fitting conic is orthogonal to the first and also has to pass
somehow through the data, since it is still a fairly good fit. Therefore, the two
conics have to intersect on the line segments.

Fig. 2. Examples of typical image structures

The more complex case is the one where three different line segments meet in
a single point, as is the case for Y-junctions. In this case one pair of line segments
can be represented by one branch of one conic, and the last line segment by one
branch of the other conic. Hence, the two conics again have to meet on or near
the line segments.

Extraction and Analysis of Line Segments 573

In the following we will denote the set of intersection points of c1 and c2 in
R2 as SE ⊂ R2. We use the subscript E for S, since SE contains the intersection
points in Euclidean space R2. If |SE | = 4, that is, c1 and c2 intersect in four
points, then there are six unique point pairs between which lines could occur.
Typically, only a few of these lines are actually present in the image, though.
Therefore, we are not finished once we have found SE . We also have to check
which of the possible six lines have support in the image. Once we have identified
such a subset, the last step will be to analyze the extracted line segments and
to decide which type of structure, if any, is currently present.

2.4 Intersection of Conics

Finding the intersection points of two 2D conics is not trivial. In general one
has to solve a polynomial equation of degree at most four. The method we
use is described in detail in [14]. In short, given two conics we find a linear
combination of them that represents a degenerate conic, for example a line pair.
This degenerate conic then also passes through the intersection points of the two
initial conics. This allows us to evaluate the intersection points of the two conics
by evaluating the intersection of the degenerate conic with one of the initial
conics. This is much simpler than solving a polynomial of degree four, since it
results in two polynomial equations of degree two. The only numerically sensitive
operation we have to use is the evaluation of eigenvectors and eigenvalues, for
which many stable numerical algorithms exist.

2.5 Finding Support for Lines

Given the set of intersection points SE of two conics, the question now is which
of the

(|SE |
2

)
lines, is actually present in the data, if any. The basic idea is as

follows: the number of data points along a line segment should be at least as high
as the separation between the two corresponding intersection points measured
in pixels. Since the data points give the coordinates of edge pixels, this condition
basically says that there is a closed line of pixels between two intersection points.
In order to weaken this condition somewhat, we use the following mathematical
approach to implement the idea.

Denote by W ⊂ R2 the set of data points, i.e. the set of edge pixels in a
local area. Furthermore, let N = |W| be the number of data points. We take as
distance between a data point and a line segment the orthogonal separation of the
point from the line segment, if the data point projects onto the line segment. If it
does not, then the distance is taken as infinity. The latter condition implements
the idea that a data point that does not project onto a line segment should not
count at all towards the support of a line segment.

The support of the jth line segment is then given by

qsup
j =

N∑
i=1

exp

(
− 1

2

(
dij

λ dpix

)2
)
, (4)

where dij ∈ R is the distance measure between data point i and line segment j,
dpix ∈ R gives the width of a pixel, and λ ∈ R is a scale factor. When dij = 0,

574 C. Perwass

then a data point lies directly on the line segment in question. This will then
add unity to the support measure qsup

j . The factor λ sets the support data points
off the line segment add towards qsup

j . If dij → ∞, then this will add nothing
to qsup

j , i.e. the corresponding data point adds no support to the respective line
segment.

In order to decide whether an evaluated support measure qsup
j represents

good or bad support for a line segment, we have to evaluate the support that
could ideally be expected for the line segment. Ideal support for a line segment
means, that the maximum number of pixels possible along the line segment were
present. If this is the case, the value of qsup

j will be just this number of pixels.
Since we only count those data points that appear between the end points of the
line segment, the value qexp

j we should expect for qsup
j can be evaluated as

qexp
j :=

1
dpix

max
{
|r1

j |, |r2
j |
}
− 1, (5)

where rj := (r1
j , r

2
j) is the direction vector of the jth line segment.

If qsup
j ≥ qexp

j we can be sure that the jth line segment has good support in
the image. If, however, qsup

j < qexp
j we should give the respective line segment a

lower confidence value. The final quality measure for a line segment is therefore
evaluated as

qj :=

⎧⎪⎨⎪⎩ exp
(
− 1

2

(
qsup
j − qexp

j

τ qexp
j

)2)
: qsup

j < qexp
j

1 : qsup
j ≥ qexp

j

, (6)

where τ ∈ R gives a measure of how close qsup
j has to be to qexp

j in order for it
to give a high qj value.

Every qj ∈ [0, 1] gives a measure of support for a line segment. The closer the
value of qj to unity, the more likely it is that the respective line segment is also
present in the local image area under inspection. Which particular structure is
present in the local image area depends on the combination of line segments with
good support. It is therefore useful to collect the separate support measures in
a support matrix. Let us denote the support value of the line segment between
intersection points si ∈ SE and sj ∈ SE by qi,j = qj,i. The support matrix Q is
now defined as

Q :=

⎛⎜⎜⎜⎜⎝
0 q1,2 q1,3 q1,4

q2,1 0 q2,3 q2,4

q3,1 q3,2 0 q3,4

q4,1 q4,2 q4,3 0

⎞⎟⎟⎟⎟⎠ (7)

We can also regard Q as a weight matrix, giving the weights of the edges
of a fully connected graph with four vertices. Note that if less than four conic
intersection points are found, Q is reduced accordingly.

Extraction and Analysis of Line Segments 575

Fig. 3. Examples of analyzed image structures

3 Analyzing the Line Segments

After the support for the set of possible line segments has been evaluated, we still
have to analyze the set of lines and decide on the type of image structure that
is present. Figure 3 shows a set of typical structures that are encountered. In
this collection of images the round points represent the conic intersection points
found and the lines drawn show those lines for which sufficient support was found.
The thicker a line, the higher its support value as evaluated in equation (6).

Images 1 and 2 of figure 3 show line pairs. The structures in images 3, 4 and
5 will be called 4-chains. The structure in image 6 is called a 3-chain and image
7 shows a star. The remaining images show spurious structures. An example not
shown here is that of a line. When a line is the only element in the local area
that is analyzed, the four conic intersection points also lie almost on that line.
In the following we will neglect such structures and concentrate on the detection
of corners and junctions. The structures we will interpret are thus a line pair, a
4-chain, a 3-chain and a star.

Given a set of intersection points and line segments, the next step is to test
the line segment structure for one of the different patterns described above. We
will describe the method used with the help of an example. Figure 4 shows the
intersection points and the line segments with their respective weights found for
an image structure. Let Q denote the support quality matrix for this structure
as defined in equation (7). In this case, the values q1,2, q1,3 and q1,4 are close
to unity and the values q2,3, q3,4 and q4,2 are close to zero. We can therefore
evaluate a measure of confidence that the present structure is a star as

C =
(
q1,2 q1,3 q1,4

) (
1− q2,3 q3,4 q4,2

)
(8)

That is, we have to test for a positive and a negative pattern. Since the num-
bering of the intersection points is arbitrary, the above measure will in general
have to be evaluated for all permutations of {1, 2, 3, 4}. In order to formulate this
mathematically, let us denote by i an index vector defined as i := (i1, i2, i3, i4).

576 C. Perwass

Fig. 4. Example of a junction structure

We can then define a positive (p+) and a negative (p−) pattern that we expect
for a particular structure. In the case of the star structure, these patterns are

p+(i) =
(
(i1, i2), (i1, i3), (i1, i4)

)
,

p−(i) =
(
(i2, i3), (i3, i4), (i2, i4)

)
.

(9)

In the following let p+
k denote the kth index pair of p+, and analogously for

p−. In order to improve the readability of the following formulas, we will also
write Q[i1, i2] to denote the element qi1,i2 . The confidence value for the star
pattern for a particular i may then be written as

C
(
p+(i), p−(i)

)
=

(∏
k

Q[p+
k (i)]

) (
1−

∏
l

Q[p−
l (i)]

)
(10)

The permutation of i that gives the largest value of C(p+(i), p−(i)) then
allows us to evaluate the central point of the star (i1) and the three end points
(i2, i3, i4). We will denote this value of i as î, with

î = arg max
i∈perm{(1,2,3,4)}

C
(
p+(i), p−(i)

)
, (11)

where perm{(1, 2, 3, 4)} denotes the set of index vectors of permutations of
(1, 2, 3, 4).

For each structure that we would like to test for, we can define a posi-
tive (p+) and a negative (p−) pattern and then evaluate the confidence value
C(p+(̂i), p−(̂i)) on a given Q matrix. In our implementation of the algorithm we
test for the star, the 4-chain, the 3-chain, the 3-chain with a disjoint point and
the line pair. Typical examples of these structures are shown in figure 5. Note
that image 5 shows a 3-chain with a disjoint point and images 2 and 3 both show
4-chains. The latter two structures should be interpreted in different ways. While

Extraction and Analysis of Line Segments 577

Fig. 5. Examples of structures tested for. 1. Star, 2. & 3. 4-Chain, 4. & 5. 3-Chain, 6.
Line Pair

image 2 can be interpreted as a double corner, image 3 should be interpreted
as a single corner. This shows that by finding the best matching structure to
a local image area, we still cannot make a final decision on what the structure
represents.

3.1 Analyzing Line Structures

For each of the structures we test for, we obtain a confidence value C(p+(̂i),
p−(̂i)). The structure with the highest confidence value is then analyzed further
to decide whether it represents a corner, a double corner or a junction. One
could also test for a curve, a line or a line pair, but in this text we are mainly
interested in finding corners and junctions.

The Star. The star can be interpreted immediately. Since we have î we know
which of the intersection points is the central point and which are the three edge
points. From this the position of the junction in the image and the angles between
the legs can be readily evaluated. If the angle between two legs is nearly 180
degrees one may also call the junction a T-junction and otherwise a Y-junction.

The 4-Chain. A 4-chain can represent a number of different entities: a corner,
a double corner, a curve and a line. The difference between these entities can-
not be defined strictly in general. Which structure is present depends on the
angles between the legs of the 4-chain. Here thresholds have to be set that are
most appropriate for the current application. In this text we will concentrate
on distinguishing between corners and junctions. Therefore, a curve will also be
interpreted as a corner with large opening angles. See figure 6 for examples of
these structures.

578 C. Perwass

Fig. 6. Examples of entities that can be described by a 4-chain. From top-left to
bottom-right: corner, double corner, double corner, curve, line, ”snake”

Two angles (α1, α2) can be evaluated between the three legs of a 4-chain.
Since we always take the smaller angle between two line segments, we have to
make sure that the present 4-chain does not have a form as in the bottom-right
image of figure 6, which we will call a ”snake”. This can be checked by evaluating
the cross products of the directions of the line segment pairs from which the
angles are evaluated. If the resultant vectors point in opposite directions, then
the 4-chain describes a snake.

The other structures are distinguished using α1 and α2 as follows.

– Line, α1 > 170◦ and α2 > 170◦.
– Double Corner, α1 < 150◦ and α2 < 150◦.
– Corner, in all other cases. The corner is given by the two line segments with

the smaller angle between them.

The 3-Chain. A 3-chain either describes a corner or a line. It usually appears if
one of the intersection points of the conics lies outside the local image area under
investigation and is thus neglected. A 3-chain can also appear if two intersection
points are so close to each other that they are combined into a single point.

The Line Pair. A line pair either describes two disjunct lines which we will not
interpret further, or a crossing of two lines. These two cases can be distinguished
quite easily by evaluating the intersection point of the two lines given by the
extension of the line segments. If the intersection point lies on both line segments,
then we found a crossing.

Extraction and Analysis of Line Segments 579

3.2 Translation Invariance of Structure Analysis

Using the analysis described in the previous sections, we can obtain for each
local area in an image an interpretation of the area’s structure, where we distin-
guish between corners and junctions. For every corner we obtain its location, its
opening angle and its orientation. Junctions may be separated into Y-junctions,
T-junctions and crossings. For each of these we also obtain their location, orien-
tation and angles.

The same structure found in one local area is also likely to be found in neigh-
boring areas, whereby each time the structure has the same absolute position.
This follows, since the method described here is translation and rotation invari-
ant for one data set. In a real image, however, translating a local area will remove
some edge points from the local area and others will appear. For some examples
of translation invariance see [14].

Nevertheless, typically a particular corner or junction may not only be found
at one particular test position. Instead, strong structures are likely to appear
for a set of neighboring test positions. This offers the possibility of applying a
clustering procedure to the corners and junctions found, in order to stabilize the
output of the algorithm. However, this has so far not been implemented.

4 Experiments

Before the structure analysis algorithm can be applied, the edges of an image
have to be extracted. This was done using the Canny edge detector [3]. The
initial image and the result of the edge detection can be seen in figure 7. The
algorithm was applied to this edge image, whereby a test window of 15×15 pixels
was moved over the image in steps of two pixels. The factor λ from equation (4)
was set to 0.1 and the factor τ from equation (6) to 0.2.

Recall that equation (11) gives a confidence value for a structure. This confi-
dence can be used to measure the confidence we can have in a corner or junction
found. The junctions found are shown in figure 8. Here the left image shows all
junctions and the right image only those junctions with a confidence value of
0.90 or higher. The images in figure 9 show those corners with a confidence value
of 0.99 or higher and an opening angle between 0 and 150 degrees, and 0 and
110 degrees, for the left and right image, respectively.

From the images shown here it can be seen that the algorithm finds all impor-
tant corners and also gives a good measure of their opening angle. Furthermore,
almost all junctions were found. Junctions that were not detected have fairly
large gaps in their contour with respect to the size of the test window. Three
spurious junction were found. These false positives occurred at places where the
gap between two separate structures became so small that they appear locally as
one structure with some missing pixels. The problem that manifests itself here
is, that within a small test window, structures can only be interpreted locally.
Global relationships are not taken into account which leads to false positives and
false negatives.

580 C. Perwass

Fig. 7. Example image ”blox” (left), and the extracted edges (right)

The two main problems the algorithm faces are the following:

– Corners and junctions only become apparent at a particular scale. If the
scale is chosen too small, many spurious corners may be found. If it chosen
too large, too much structure may be present in a test window such that the
algorithm fails.

– Edges may be incomplete. If there are only small gaps in the edges, the algo-
rithm may still give good results. However, if the gaps become too large with
respect to the test window, structures will not be detected correctly. Here

Fig. 8. Detected junctions in example image ”blox”, with confidence value ≥ 0.50 (left)
and ≥ 0.90 (right)

Extraction and Analysis of Line Segments 581

Fig. 9. Detected corners in example image ”blox”, with confidence value ≥ 0.90 and
opening angles between 0 and 150 degrees (left), and 0 and 110 degrees (right)

the balance has to be found between bridging gaps and detecting corners
and junction where there are none.

Compared with algorithms that use the gradient field directly for the corner
and junction detection, the algorithm presented here does not work directly on
the image data. Instead, an initial edge detection abstracts somewhat from it.
This means that the edge detection algorithm has to deal with most of the noise
present in an image. The type of noise the analysis algorithm then has to be able
to cope with are incomplete edges. Clearly, the better the edge detection, the
better the results the analysis algorithm generates. Note that more experimental
results can be found in [14].

5 Conclusions

We have presented an algorithm that uses conics to analyze local image structure.
The main idea is to fit intersections of conics to the data. It was found that these
intersections can represent local image structures in a very useful way: the line
segments that make up the local image structure lie between intersection point
pairs. This basically reduces the search space of possible line segments to at most
six specific ones. It was then shown that through a combinatorial analysis of the
resultant graph it is possible to extract corners and junctions from an image and
to evaluate their parameters.

A potential advantage of the presented algorithm over standard corner de-
tectors is that it can distinguish between different types of i2D structures, like
corners and junctions. Furthermore, it can be used to extract parameters of the
local image structures, like the opening angle of a corner.

582 C. Perwass

References

1. S. Baker, S. K. Nayar, and H. Murase. Parametric feature detection. IJCV,
27(1):27–50, 1998.

2. F.L. Bookstein. Fitting conic sections to scattered data. Comp. Graph. Image
Proc., 9:56–71, 1979.

3. J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6), November 1986.

4. M.A. Cazorla, F. Escolano, R. Rizo, and D. Gallardo. Bayesian models for finding
and grouping junctions. In Second International Workshop on Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, 1999. York.

5. M. Felsberg and G. Sommer. The monogenic signal. IEEE Transactions on Signal
Processing, 49(12):3136–3144, December 2001.

6. M. Felsberg and G. Sommer. Image features based on a new approach to 2D
rotation invariant quadrature filters. In A. Heyden, G. Sparr, M. Nielsen, and
P. Johansen, editors, Computer Vision, ECCV02, Kopenhagen, 2002, volume 2350
of LNCS, pages 369–383. Springer, 2002.

7. W. Förstner. A feature based correspondence algorithm for image matching. Intl.
Arch. of Photogrammetry and Remote Sensing, 26:150–166, 1986.

8. W. Förstner. A framework for low level feature extraction. In J. O. Eklundh, editor,
Computer Vision - ECCV’94, volume 2 of LNCS 801, pages 383–394. Springer-
Verlag, 1994.

9. Gösta H. Granlund and Anders Moe. Unrestricted recognition of 3-D objects using
multi-level triplet invariants. In Proceedings of the Cognitive Vision Workshop,
Zürich, Switzerland, September 2002. URL: http://www.vision.ethz.ch/cogvis02/.

10. C. G. Harris and M. J. Stevens. A combined corner and edge detector. In Proc.
of 4th Alvey Vision Conference, 1988.

11. U. Köthe. Edge and junction detection with an improved structure tensor. In
B. Michaelis and G. Krell, editors, Pattern Recognition, LNCS 2781, pages 25–32.
Springer-Verlag, 2003.

12. D. G. Lowe. Local feature view clustering for 3d object recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 682–688, 2001.

13. F. Mokhtarian and R. Suomela. Curvature scale space for robust image corner
detection. In Proc. International Conference on Pattern Recognition, pages 1819–
1821, 1998.

14. C. Perwass. Analysis of local image structure using intersections of conics. Tech-
nical Report Number 0403, Christian-Albrechts-Universität zu Kiel, Institut für
Informatik und Praktische Mathematik, July 2004.

15. M. Shpitalni and H. Lipson. Classification of sketch strokes and corner detection
using conic sections and adaptive clustering. Trans. of ASME J. of Mechanical
Design, 119(2):131–135, 1997.

Geometric Algebra for Pose Estimation and
Surface Morphing in Human Motion Estimation

Bodo Rosenhahn and Reinhard Klette

University of Auckland (CITR),
Computer Science Department,

Private Bag 92019 Auckland, New Zealand
{bros028, r.klette}@cs.auckland.ac.nz

Abstract. We exploit properties of geometric algebras (GAs) to model
the 2D-3D pose estimation problem for free-form surfaces which are cou-
pled with kinematic chains. We further describe local and global surface
morphing approaches with GA and combine them with the 2D-3D pose
estimation problem. As an application of the presented approach, human
motion estimation is considered. The estimated joint angles are used to
deform surface patches to gain more realistic human models and there-
fore more accurate pose estimation results.

1 Introduction

A geometric algebra is a Clifford algebra with a specific geometric interpreta-
tion. The term geometric algebra was introduced by D. Hestenes, who applied
Clifford Algebras on classical geometry and mechanics in the early 1960’s [13].
Due to its properties, geometric algebra unifies mathematical systems which are
of interest for computer graphics and computer vision. Examples of such systems
are quaternions, dual-quaternions, Lie algebras, Lie groups, screw geometry in
Euclidean, affine, projective or conformal geometry. In this contribution we show
the applicability of conformal geometric algebra (CGA) [12, 15, 18] for solving
the 2D-3D pose estimation problem. We use the example of human motion mod-
eling and estimation [1, 4, 6, 9, 10] to show how it is possible to apply a unified
approach to extend a basic scenario to a complex application by exploiting prop-
erties of CGA.

Pose estimation is a common task in computer vision. For a definition of the
pose problem, we quote [11]: By pose we mean the transformation needed to
map an object model from its inherent coordinate system into agreement with
the sensory data. We deal with the 2D-3D pose estimation problem: we assume
an image of an object captured by a calibrated camera. Additionally to these
2D sensory data we also assume that a 3D representation of an object model is
given. 2D-3D pose estimation means to specify a rigid motion (containing both
3D rotation and 3D translation) which fits the object model data with the 2D
sensory data. The problem of 2D-3D pose estimation can be tackled from differ-
ent points of view such as geometric or numerical perspectives. In the literature,

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 583–596, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

584 B. Rosenhahn and R. Klette

Euclidean, projective and conformal approaches can be found in combination
with Kalman-filter, SVD, Newton-Raphson or gradient descent approaches. It is
further crucial how objects are represented. The literature deals with point and
line based representations, kinematic chains, higher order curves/surfaces, up to
free-form contours or free-form surfaces. See [19] for an overview.

Geometric algebras can handle different object representations due to their
multi-vector concepts and they allow to transform entities (rotation, translation,
screw motion, reflection, refraction, etc.) with the help of the geometric product.
It is therefore a useful tool to model geometric and numerical aspects in a unified
language. For an introduction to geometric algebras, the reader is referred to
[7, 8, 13, 18, 19, 21]. A brief list of homepages and research projects on Clifford
algebras (with further links) can be found in [14].

For complex tasks, such as human motion estimation, a representation of the
human body as a simple joint and skeleton model can be inadequate. Indeed
the coupling of joints within a 2-parametric surface model gives a good initial
guess about human motion (see Figure 1), but the human anatomy allows for
much more degrees of freedom than, for example, three revolute joints for the
shoulder, two for the elbow and two for the wrist. The human being is able to
move the shoulder backward and forward, is able to raise and lower the shoulders
to certain degrees, and if such additional degrees of freedom are not modeled,
the pose results can become inaccurate or worthless. There is a need for an in-
teraction of computer vision and computer graphics: a realistic model is needed
to achieve accurate pose estimations, and, vice versa, accurate pose estimations
help to refine a realistic model. In this contribution we show how to use geomet-
ric algebra for adding surface morphing and joint deformation approaches into
surface modeling of a human being. We further show how to use this more com-
plex, but more realistic model in the theory of CGA for pose estimation. In this
contribution we are not dealing with the problem of recognizing or identifying

[R | t]
φ φ

1 n...

Shoulder (up)

Shoulder (back)

Wrist

Elbow

Fig. 1. Left: The pose scenario: the aim is to estimate the pose R, t and the joint
angles φi. Right: The names of the used joints

GA for Pose Estimation and Surface Morphing in Human Motion Estimation 585

a moving human. Instead we are dealing with the estimation of object-specific
parameters, like the pose and the joint angles.

We start this contribution with an introduction to silhouette based 2D-3D
pose estimation of free-form contours and free-form surfaces. We want to quote
Besl [3] for a definition: A free-form surface has a well defined surface that is con-
tinuous almost everywhere except at vertices, edges and cusps. Since we already
model the pose problem and surface representation in CGA, we will introduce
surface morphing in CGA in Section 3, so that we can directly use morphing
concepts in the pose scenario without changing our main algorithms. Section 4
presents some experimental results and Section 5 ends with a brief discussion.

2 Preliminary Work

Clifford or geometric algebras [21] can be used to deal with geometric aspects
of the pose problem. We only list a few properties which are important for
our studies. The elements in geometric algebras are called multivectors which
can be multiplied by using a geometric product. It allows a coordinate-free and
symbolic representation. We use conformal geometric algebra (CGA) for mod-
eling the pose problem. The CGA is build up on a conformal model which is
coupled with a homogeneous model to deal with kinematics and projective ge-
ometry simultaneously. In conclusion, we deal with the Euclidean, kinematic and
projective space in a uniform framework and can therefore cope with the pose
problem within one theory. In the equations we will use the inner product ·, the
outer product ∧, the commutator ×, and anticommutator × product, which can
be derived from the geometric product. Though we will also present equations
formulated in conformal geometric algebra, we only explain these symbolically
and want to refer to [19] for more detailed information.

2.1 Point Based Pose Estimation

For 2D-3D point based pose estimation we use constraint equations which com-
pare 2D image points with 3D object points. Assume an image point x and the
optical center O. These define a 3D projection ray Lx = e∧(O∧x) as a Plücker
line [17]. The motor M is defined as exponential of a twist Ψ , M = exp(− θ

2Ψ),
and formalizes the unknown rigid motion as a screw motion [17]. The motor M

is applied on an object point X as versor product, X ′ = MXM̃ , where M̃
represents the reverse of M . Then the rigidly transformed object point X ′ is
compared with the reconstructed line Lx by computing the error vector between
the point and the line. This specifies a constraint equation in geometric algebra:

(MXM̃) × (e ∧ (O ∧ x)) = 0

Note that we deal with a 3D formalization of the pose problem. The constraint
equations can be solved by linearization (i.e., solving the equations for the twist-
parameters which generate the screw motion) and by applying the Rodrigues
formula for a reconstruction of the group action [17]. Iteration leads to a gradient

586 B. Rosenhahn and R. Klette

descent method in 3D space. This is presented in [19] in more detail where similar
equations have been introduced to compare 3D points with 2D lines (3D planes),
and 3D lines with 2D lines (3D planes).

Joints along a kinematic chain can be modeled as special screws with no pitch.
In [19] we have shown that the twist then corresponds to a scaled Plücker line
Ψ = θL in 3D space, which gives the location of the general rotation. Because
of this relation it is simple to move joints in space, and they can be transformed
by a motor M in a similar way Ψ ′ = MΨM̃ such as plain points.

2.2 Contour-Based Pose Estimation

We now model free-form contours and discuss their role for solving the pose
problem. The pose estimation algorithm for surface models (as introduced in
this paper) relies onto a contour based method. Therefore, a brief recapitulation
of [19] on contour based pose estimation is of importance. The main idea is
to interpret a 1-parametric 3D closed curve as three separate 1D signals which
represent the projections of the curve along the x, y and z axis, respectively. Since
the curve is assumed to be closed, the signals are periodic and can be analyzed by
applying a 1D discrete Fourier transform (1D-DFT). The inverse discrete Fourier
transform (1D-IDFT) enables us to reconstruct low-pass approximations of each
signal. Subject to the sampling theorem, this leads to the representation of the
1-parametric 3D curve C(φ) as follows:

C(φ) =
3∑

m=1

N∑
k=−N

pm
k exp

(
2πkφ

2N + 1
lm

)
The parameter m represents each dimension and the vectors pm

k are phase
vectors obtained from the 1D-DFT acting on dimension m. In this equation we
have replaced the imaginary unit i =

√
−1 by three different rotation planes,

represented by the bivectors li, with li
2 = −1. Using only a low-index subset of

the Fourier coefficients results in a low-pass approximation of the object model
which is used to regularize the pose estimation algorithm. For pose estimation,
this model is then combined with a version of an ICP-algorithm [23].

2.3 Silhouette-Based Pose Estimation of Free-Form Surfaces

We assume a two-parametric surface [5] of the form

F (φ1, φ2) =
3∑

i=1

f i(φ1, φ2)ei

with three 2D functions f i(φ1, φ2) : IR2 → IR acting on the different Euclidean
base vectors ei (i = 1, . . . , 3). A two-parametric surface allows that two indepen-
dent parameters φ1 and φ2 are used for sampling a 2D surface in 3D space. For
a discrete number of sampled points, f i

n1,n2
, (n1 ∈ [−N1, N1];n2 ∈ [−N2, N2];

N1, N2 ∈ IN, i = 1, . . . , 3) on the surface, we can then interpolate the surface by

GA for Pose Estimation and Surface Morphing in Human Motion Estimation 587

using a 2D discrete Fourier transform (2D-DFT), and we apply an inverse 2D
discrete Fourier transform (2D-IDFT) for each base vector separately. Subject
to the sampling theorem, the surface can be written as a Fourier representation

F (φ1, φ2) =
3∑

i=1

N1∑
k1=−N1

N2∑
k2=−N2

pi
k1,k2

exp
(

2πk1φ1

2N1 + 1
li

)
exp

(
2πk2φ2

2N2 + 1
li

)

The complex Fourier coefficients are contained in the vectors pi
k1,k2

that lie
in the plane spanned by li. We will also call them phase vectors. These vectors
can be obtained by a 2D-DFT of the sample points f i

n1,n2
on the surface. We

now continue with the algorithm for silhouette-based pose estimation of surface
models.

We assume a properly extracted image contour of our object (i.e., in a frame
of the sequence). To compare points on the image silhouette with the 3D surface
model, we consider rim points on the surface (i.e., which are on an occluding
boundary of the object). This means we work with the 3D silhouette of the
surface model with respect to the camera. To ensure this, we project the 3D
surface on a virtual image. Then the contour is calculated and from the image
contour the 3D silhouette of the surface model is reconstructed. The contour
model is then applied within the contour-based pose estimation algorithm. Since
aspects of the surface model are changing during ICP-cycles, a new silhouette
will be estimated after each cycle to deal with occlusions within the surface
model. The algorithm for pose estimation of surface models is summarized in
Figure 2, and it is discussed in [20] in more detail.

2.4 Human Motion Estimation

We continue with our way how to couple kinematic chains within a surface
model. Then we present a pose estimation algorithm which estimates the pose
and angle configurations simultaneously.

A surface is given in terms of three 2-parametric functions with respect to
the parameters φ1 and φ2. Furthermore, we assume a set of joints Ji. By using
an extra function J (φ1, φ2) → [Ji|Ji : ith joint], we are able to give every node
a joint list along the kinematic chain. Note that we use [,] and not {, }, since

Reconstruct projection rays from image points
Surface based pose estimation

Apply contour based pose estimation algorithm

I
C
P

Increase low−pass approximation of the surface model

Project the low−pass object model in the virtual image
Estimate the 3D silhouette

Use correspondence set to estimate the contour pose
Transform the contour model

Transform the surface model

Estimate the nearest point on the 3D contour to each ray

Fig. 2. Left: The algorithm for pose estimation of surface models. Right: A few example
images of a tracked car model on a turn-table

588 B. Rosenhahn and R. Klette

the joints are given as an ordered sequence along the kinematic chain. Since the
arms contain two kinematic chains (i.e., for the left and right arm, separately), we
introduce a further index to separate the joints on the left arm from the ones on
the right arm. The joints themselves are represented as objects in an extra field in
form of a look-up table, and their parameters can be accessed immediately from
the joint index numbers. Furthermore, it is possible to transform the location of
the joints in space (as clarified in Section 2.1). For pose estimation of a point
Xn,in

attached to the nth joint along the kinematic chain, we generate constraint
equations of the form

(M(M1 . . .MnXn,in
M̃n . . .M̃1)M̃) × e ∧ (O ∧ xn,in

) = 0

To solve a set of such constraint equations we linearize the motor M with
respect to the unknown twist Ψ , and the motors M i with respect to the unknown
angles θi. The twists Ψi are known a priori.

The basic pose estimation algorithm is visualized in Figure 3. We start with
simple image processing steps to gain the silhouette information of the person
by using a color threshold and a Laplace operator. Then we project the surface
mesh in a virtual image and estimate its 3D contour. Each point on the 3D
contour carries a given joint index. Then we estimate the correspondences by
using an ICP-algorithm, generate the system of equations, solve them, transform
the object and its joints, and iterate this procedure. During iteration we start
with a low-pass object representation and refine it by using higher frequencies.
This helps to avoid local minima during iteration.

First results of the algorithm are shown on the left of Figure 4. The figure
contains two pose results; on each quadrant it shows the original image and
overlaid the projected 3D pose. The other two images show the estimated joint
angles in a virtual environment to visualize the error between the ground truth
and the estimated pose. The tracked image sequence contains 200 images. In
this sequence we use just three joints on each arm and neglect the shoulder
(back) joint. The right diagram of Figure 4 shows the estimated angles of the
joints during the image sequence. The angles can easily be identified with the
sequence. Since the movement of the body is continuous, the estimated curves
are also “relatively smooth”.

3 More Realistic Human Models

We are interested in using skinning approaches to model “more realistic” human
motions during pose estimation. The hypothesis at this stage is that the more
accurate the human being is modeled, the more accurate the pose result will be.
This requires two things in a first step, namely, to model joint transformations
and surface deformations during joint motions. So far, skin and muscle deforma-
tions are not yet modeled. Take, for example, the shoulder joint: If the shoulder
is moving, muscles are tensed and the skin is morphing. The task is to model
such deformations dependent on the joint angle. To achieve surface morphing,

GA for Pose Estimation and Surface Morphing in Human Motion Estimation 589

Tracking assumption Correspondence estimation Pose estimation

Iteration

Fig. 3. The basic algorithm: Iterative correspondence and pose estimation

0 20 40 60 80 100 120 140 160 180 200
−20

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200
−150

−100

−50

0

50

Left arm

Right arm

Frame Nr.

Frame Nr.

an
gl

e
(d

eg
re

e)
an

gl
e

(d
eg

re
e)

Wrist

Wrist

Shoulder (up)

Shoulder (up)

Elbow

Elbow

Fig. 4. Left: First pose results with a 6 DOF kinematic chain. Right: Angles of the left
and right arm during the tracked image sequence

we will express two known approaches for surface morphing in CGA. These are a
global approach and a local approach; the latter one uses radial basis functions.

3.1 Joint Motions

Joints along the kinematic chain can be modeled as screws with no pitch. We
already have shown that its twist then corresponds to a scaled Plücker line
Ψ = θL in space, which gives the location of the general rotation. Because of
this relation it is simple to move joints in space, and they can be transformed by a
motor M in a similar manner Ψ ′ = MΨM̃ as 3D points. To interpolate between
two given joint locations Ψ and Ψ ′, we can use a motor M = exp(−ρ

2Ξ), with
the property that for ρ = 2π it holds MΨM̃ = Ψ ′. Then M t = exp(− t2π

2 Ξ) for
t ∈ [0 . . . 1] leads to a motor which interpolates the joint location Ψ via M tΨM̃ t

towards Ψ ′.

590 B. Rosenhahn and R. Klette

3.2 Global Surface Interpolation

We assume two free-form surfaces given as two-parametric functions in CGA as
follows:

F1(φ1, φ2) =
3∑

i=1

f i
1(φ1, φ2)ei and F2(φ1, φ2) =

3∑
i=1

f i
2(φ1, φ2)ei

For a given parameter t ∈ [0 . . . 1], the surfaces can be linearly interpolated
by evaluating

Ft(φ1, φ2) =

(
3∑

i=1

f i
1(φ1, φ2)ei

)
t +

(
3∑

i=1

f i
2(φ1, φ2)ei

)
(1− t)

We perform a linear interpolation along the nodes, and this results in the
following:

Ft(φ1, φ2) =
{∑3

i=1 f i
1(φ1, φ2)ei = F1(φ1, φ2) , for t = 1∑3

i=1 f i
2(φ1, φ2)ei = F2(φ1, φ2) , for t = 0

Figure 5 shows examples of morphing a male into a female torso. Note that
we are only morphing surfaces with known and predefined topology. This means
that we have knowledge about the correspondences between the surfaces, and
morphing is realized by interpolating the corresponding nodes on the mesh.

The linear interpolation can be generalized by using an arbitrary function
ω(t) with the property

ω(t) =
{

0 , for t = 1
1 , for t = 0.

Then, an interpolation is still possible by using

Ft(φ1, φ2) =

(
3∑

i=1

f i
1(φ1, φ2)ei

)
ω(t) +

(
3∑

i=1

f i
2(φ1, φ2)ei

)
(1− ω(t))

Figure 6 shows different possible functions which result in different inter-
polation dynamics. and Figure 7 illustrates these different dynamics: using the
square root function for weighting leads to a faster morphing at the beginning,
which slows down at the end, whereas squared weighting leads to a slower start
and a faster ending. Therefore, we can use non-linear weighting functions to gain
a natural morphing behavior dependent on the joint dynamics.

Figure 8 shows a comparison of the non-modified model (right) with a mor-
phed joint-transformed model (left). As it can be seen, the shoulder joint is
moving down and in-wards during motion, and, simultaneously, does the surface
of the shoulder part morph. The amount of morphing and joint transformation is
steered through the angle of the shoulder (up) joint (left and right, respectively).
As can be seen, the left motion appears more natural than the right one.

GA for Pose Estimation and Surface Morphing in Human Motion Estimation 591

Fig. 5. Morphing of a male into a female torso

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f(x)=x
f(x)=sin((pi/2)*x)

f(x)=sqrt(x)
f(x)=x^2

Fig. 6. Different weighting functions during interpolation

3.3 Local Surface Morphing

The use of radial basis functions for local morphing is common practice for
modeling facial expressions.

The basic idea is as follows: we move a node on the surface mesh, and we
move the neighboring nodes in a similar manner, but decreasingly with increasing
distance to the initiating node. It is further possible to deform the radial basis
function to allow a realistic morphing in the presence of bones or ligaments. The
classic equation for a radial basis function is

r(x, y) = exp
(
− (x− cx)2

rx

)
exp

(
− (y − cy)2

ry

)

with the centre (cx, cy) and the radius (rx, ry). The values (cx, cy) = (0, 0) and
(rx, ry) = (1, 1) lead to the classic Gaussian form as shown on the left of Figure 9.

592 B. Rosenhahn and R. Klette

Fig. 7. Different interpolations. Left: square root, middle: linear and right: square
interpolation

The coupling of a radial basis function with the surface mesh leads to

FR(φ1, φ2) = T r

(
3∑

i=1

f i(φ1, φ2)ei

)
T̃ r

with

T r = 1 +
et

2
for t = e3r(φ1, φ2)

T is a translator which translates a node along an orientation, and the amount
of translation is steered through the value of the radial basis function. Note that
T is dependent on (φ1, φ2) and different for each node. In this case we model a
deformation along the e3-axes, but it can be any orientation, and the Gaussian
function can be arbitrarily scaled. For our human model we additionally steer the
amount of morphing through the joint angle θ1 of the shoulder (back) joint. This
means, if the shoulder is not moving forwards or backwards, we will not have
any morphing, but the more the arm is moving, the larger will be the amount
of morphing. With a scaling parameter λ, the morphing translator is completely
given as

GA for Pose Estimation and Surface Morphing in Human Motion Estimation 593

Fig. 8. Different arm positions of the morphed joint-transformed model (left) and non-
modified model (right)

T r = 1 +
et

2
with t = λθ1r(φ1, φ2)e3

In contrast to global morphing, local approaches have the advantage that
they can more easily be used in the context of multiple morphing patches. For
example, simultaneous shoulder morphing up/down and forwards/backwards is
hardly possible with a global approach, but simple with a local one.

Figure 9 shows on the left a typical radial basis function to realize local
surface morphing. The images on the right show a double morphing on the
shoulder: moving the arms up or down and forwards or backwards leads to
a suited deformation of the shoulder patch and a similar motion of the joint
locations.

4 Experiments

This section presents a few experiments using global and combined (i.e., global
and local) morphing methods. The implementation is done in C++ on a stan-
dard Linux PC (2.4 GHz) and we need 100ms for each frame, including image
processing, pose estimation and surface morphing.

The morphing effect during an image sequence can be seen in Figure 10.
A person is moving his arms down, and as it can be seen in the left images,
the shoulder is moving downwards, too. The pose result for the morphed/joint
transformed model is shown in the middle image, and the result for the non-
modified model is shown in the right image. As shown, the matching result of
the morphed/joint transformed object model is much better.

Figure 11 shows example images for a double-morphing in the shoulder area.
The shoulder is morphing downwards when the arms are moving down, and
forwards when the arms are moving forward. Both motions can occur simultane-
ously, leading to a more realistic motion behavior then using rigid joints. Since

594 B. Rosenhahn and R. Klette

Fig. 9. Left: A 2D-radial basis function. Right: Double surface morphing on the
shoulder

Fig. 10. Comparison of pose results for the morphed/joint transformed model and the
non-modified model

Fig. 11. Pose results using two shoulder morphing operators

the morphing effect can be seen more easily during the whole sequence (in con-
trast to a few snap shots), the reader is invited to see the sequence at http://
www.citr.auckland.ac.nz/∼bodo/DMorph.mpg.

GA for Pose Estimation and Surface Morphing in Human Motion Estimation 595

5 Discussion

This contribution presents an embedding of global and local morphing techniques
in CGA. The motivation for this paper was to show the applicability of geometric
algebras to model complex geometric problems. At first we recalled the 2D-
3D pose estimation problem for free-form surface models. Then we extended a
surface model by joints and used the human motion estimation problem as an
example scenario for discussing CGA. Due to the complexity of human motions,
we introduced local and global morphing approaches in CGA to gain a more
realistic human model. The amount of deformation is steered through a related
joint angle. It is further possible to deform (e.g., the shoulder patch) even with
non-linear weighting functions or as coupled local and global deformation. The
experiments showed the usefulness of this approach to obtain more accurate
tracking results for human motions.

Acknowledgments

This work has been supported by the EC Grant IST-2001-3422 (VISATEC) and
by the DFG grants RO 2497/1-1 and RO 2497/1-2.

References

1. Allen B., Curless B. and Popovic Z. Articulated body deformation from range
scan data. In Proceedings 29th Annual Conf. Computer Graphics and Interactive
Techniques, San Antonio, Texas, pp. 612 - 619, 2002.

2. Arbter K. and Burkhardt H. Ein Fourier-Verfahren zur Bestimmung von Merk-
malen und Schätzung der Lageparameter ebener Raumkurven. Informationstech-
nik, Vol. 33, No. 1, pp. 19-26, 1991.

3. Besl P.J. The free-form surface matching problem. Machine Vision for Three-
Dimensional Scenes, Freemann H. (Ed.), pp. 25-71, Academic Press, 1990.

4. Bregler C. and Malik J. Tracking people with twists and exponential maps. Conf.
on Computer Vision and Pattern Recognition, Santa Barbara, California, pp. 8-15,
1998.

5. Campbell R.J. and Flynn P.J. A survey of free-form object representation and
recognition techniques. Computer Vision and Image Understanding, Vol. 81, pp.
166-210, 2001.

6. Chadwick J.E., Haumann D.R. and Parent R.E. Layered construction for de-
formable animated characters Computer Graphics, Vol. 23, No. 3, pp. 243-252,
1989.

7. Dorst L. The inner products of geometric algebra. In Applied Geometric Algebras
for Computer Science and Engineering, Dorst L., Doran C. and Lasenby J. (Eds.),
Birkhäuser Verlag, pp. 35-46, 2001.

8. Dorst L. Honing geometric algebra for its use in the computer sciences. In [21],
pp. 127-152, 2001.

9. Fua P., Plänkers R., and Thalmann D. Tracking and modeling people in video
sequences. Computer Vision and Image Understanding, Vol. 81, No. 3, pp.285-
302, March 2001.

596 B. Rosenhahn and R. Klette

10. Gavrilla D.M. The visual analysis of human movement: A survey. Computer Vision
and Image Understanding, Vol. 73 No. 1, pp. 82-92, 1999.

11. Grimson W. E. L. Object Recognition by Computer. The MIT Press, Cambridge,
MA, 1990.

12. Hestenes D., Li H. and Rockwood A. New algebraic tools for classical geometry.
In [21], pp. 3-23, 2001.

13. Hestenes D. and Sobczyk G. Clifford Algebra to Geometric Calculus. D. Reidel
Publ. Comp., Dordrecht, 1984.

14. Homepages Clifford (geometric) algebra
http://www.ks.informatik.uni-kiel.de
http://www.clifford.org/
http://modelingnts.la.asu.edu/GC R&D.html
http://www.mrao.cam.ac.uk/∼clifford/
http://www.science.uva.nl/ga/
http://clifford.physik.uni-konstanz.de/∼fauser/P cl people.shtml
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/
Clifford.html

15. Li H., Hestenes D. and Rockwood A. Generalized homogeneous coordinates for
computational geometry. In [21], pp. 27-52, 2001.

16. Mikic I., Trivedi M, Hunter E, and Cosman P. Human body model acquisition and
tracking using voxel data Computer Vision , Vol. 53, Nr. 3, pp. 199–223, 2003.

17. Murray R.M., Li Z. and Sastry S.S. A Mathematical Introduction to Robotic Ma-
nipulation. CRC Press, 1994.

18. Perwass C. and Hildenbrand D. Aspects of Geometric Algebra in Euclidean,
Projective and Conformal Space. An Introductory Tutorial. Technical Report
0310, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Prak-
tische Mathematik, 2003.

19. Rosenhahn B. Pose Estimation Revisited. (PhD-Thesis) Technical Report 0308,
Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische
Mathematik, 2003. Available at www.ks.informatik.uni-kiel.de

20. Rosenhahn B., Perwass C. and Sommer G. Pose estimation of free-form surface
models. In Pattern Recognition, 25th DAGM Symposium, B. Michaelis and G.
Krell (Eds.), Springer, Berling, LNCS 2781, pp. 574-581, 2003.

21. Sommer G. (Ed.). Geometric Computing with Clifford Algebra. Springer, Berlin,
2001.

22. Theobalt C., Carranza J., Magnor A. and Seidel H-P. A parallel framework for
silhouette based human motion capture Proc. Vision, Modeling, Visualization
2003, Munich, Nov. 19-21, pp. 207-214, 2003.

23. Zang Z. Iterative point matching for registration of free-form curves and surfaces.
Computer Vision, Vol. 13, No. 2, pp. 119-152, 1999.

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 597–606, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Study on Supervised Classification of Remote Sensing
Satellite Image by Bayesian Algorithm Using

Average Fuzzy Intracluster Distance

Young-Joon Jeon, Jae-Gark Choi, and Jin-Il Kim

Department of Computer Engineering, Dongeui University,
San24, Gaya-dong, Busanjin-gu, Busan, 614-714, Korea
j4017@chol.com, {cjg, jikim}@deu.ac.kr

Abstract. This paper proposes a more effective supervised classification
algorithm of remote sensing satellite image that uses the average fuzzy
intracluster distance within the Bayesian algorithm. The suggested algorithm
establishes the initial cluster centers by selecting training samples from each
category. It executes the extended fuzzy c-means which calculates the average
fuzzy intracluster distance for each cluster. The membership value is updated
by the average intracluster distance and all the pixels are classified. The average
intracluster distance is the average value of the distance from each data to its
corresponding cluster center, and is proportional to the size and density of the
cluster. The Bayesian classification algorithm is performed after obtaining the
prior probability calculated by using the information of average intracluster
distance of each category. While the data from the interior of the average
intracluster distance is classified by fuzzy algorithm, the data from the exterior
of intracluster is classified by Bayesian classification algorithm. The testing of
the proposed algorithm by applying it to the multispectral remote sensing
satellite image resulted in showing more accurate classification than that of the
conventional maximum likelihood classification algorithm.

1 Introduction

Remote sensing is the science of gaining information about the earth's surface by
analyzing date acquired from a distance. Remote sensing has proved a powerful
technology for monitoring the earth’s surface and atmosphere at a global, regional,
and even local scale [1]. Since the first resource satellite was launched in 1972, the
remote sensing community has witnessed impressive progress in remotely sensed
imagery, in both quality and quantity. The greatest progress has been in the
improvement of the spectral and spatial resolutions. High spectral-resolution images
have hundreds of bands to monitor the earth's surface down to the molecular level.
High spatial-resolution images can be used essentially in a manner similar to large-
scale aerial photos. Up to the present, various methods have been developed for
extracting land use/cover information from remote sensing data by performing multi-
spectral classification on the electromagnetic spectrum of geometric registered remote
sensing data [2][3].

598 Y.-J. Jeon, J.-G. Choi and J.-I. Kim

There are many methodologies to apply remote sensing image classification, such
as fuzzy logic, neural network theory, etc. compared with the previous statistical
procedures. For instance, neural network can accomplish efficiently the classification
of the non-normal distributional category (which is hard to classify under pre-existing
statistical method) [4][5]. Zadeh introduced the concept of fuzzy sets in which
imprecise knowledge can be used to define an event [6]. Fuzzy logic provides useful
concepts and tools to deal with the uncertainty inherent in the remote sensing spectral
data. In fuzzy logic methods, a membership grade matrix is applied for each pixel and
proportions of component land use/cover classes in a pixel can be estimated from the
membership grades. The fuzzy c-means (FCM) algorithm has been extensively used
as an unsupervised clustering technique. Most analytic fuzzy clustering approaches
are derived from Bezdek’s fuzzy c-means (FCM) algorithm [7][8]. The FCM method
creates a membership grade to belong to the cluster using a fuzzy coefficient and it
also allocates pixels to the cluster. Statistical pattern recognition is the most widely
used approach for image classification. Statistical classifiers are based on some quite
sophisticated statistics and probability theories [1]. Bayesian classification is one of
the most extensively used techniques for the classification of such data [9][10][11].

This research proposes a supervised classification algorithm integrated by fuzzy
and Bayesian algorithms. The supervised classification algorithm of remote sensing
satellite image uses the average intracluster distance within the fuzzy and Bayesian
algorithm. Fuzzy Gustafson-Kessel (GK) algorithm [12] was used in the form
extended for the FCM algorithm. By using the training data, the supervised
classification algorithm establishes the initial cluster center and executes fuzzy
clustering algorithm without repeating. Then the algorithm calculates the average
intracluster distance. Bayesian classification method is performed after obtaining the
prior probability calculated by using the information of intraclusters. Then the
category is decided by comparing fuzzy membership value with likelihood rate. The
proposed method is applied by Landsat TM satellite image for the verifying test.

2 Bayesian Classification Algorithm

This section is an introduction of the concept of Bayesian maximum likelihood
classification algorithm. The maximum likelihood classification (MLC) algorithm is
the common decision rule for supervised classification. This decision rule is based on
the probability that a pixel belongs to a particular class [9][10][11]. It assumes that
these probabilities are equal for all classes, and that the input bands have normal
distributions. The maximum likelihood classification is performed according to the
following decision rule:

)|()|(if , xwPxwPwx jii >∈ for all ij ≠ (1)

where:

x : the position vector, a column vector of brightness values for the pixel;

iw : the spectral classes for an image, cwi ,,2,1= , where c is the total number

of classes

A Study on Supervised Classification of Remote Sensing Satellite Image 599

)|(xwP i : the conditional probabilities, which gives the likelihood that the correct

class is iw for a pixel at position x .

 The pixel at x belongs to class(category) iw , if)|(xwP i is the largest.

To obtain)|(xwP i in (1), a probability distribution)|(iwxP can be estimated

from training data for each ground cover type. The desired)|(xwP i in (1) and

available)|(iwxP are related by Bayes rule:

)(

)()|(
)|(

xP

wPwxP
xwP ii

i = (2)

where)|(iwxP is the class conditional probability that a feature vector x occurs in a

given class iw ,)(iwP is the prior probability. The probability for any pixel to belong

to the class iw irrespective to its feature, and)(xP is the unconditional probability

that the pixel x occurs in the image.
Supervised classification estimates these prior probability using training samples

from the data. The maximum likelihood decision rule assumes that the probability
distributions for the classes are of the form of multivariate normal models, therefore,

() ()−−−= −−−
ii

T
ii

N

i mxmxwxP 12

1

2

2

1
exp)2()|(π (3)

where im and
i

are the mean vector and covariance matrix of the data in class

iw .

Resulting from applying natural logarithm to (3) and mathematical simplifications
the discriminant function for the Bayesian maximum likelihood classifier is :

() () ()ii
T

iiii mxmxwPxD −−−−= −1

2

1
ln

2

1
)(ln)((4)

where:

)(iwP : the probability that class iw occurs in the image (equal for all classes, or

is entered from a priori knowledge);

i
 : determinant of ;

−1

i
: inverse of ;

ln : natural logarithm function;
T : transposition function.

 The pixel is assigned to the class iw , for which discriminant)(xDi is the largest.

600 Y.-J. Jeon, J.-G. Choi and J.-I. Kim

3 Proposed Algorithm

This paper proposes supervised classification algorithm of remote sensing satellite
image by using the average intracluster distance within the fuzzy GK and Bayesian
algorithm. The suggested algorithm uses the fuzzy GK algorithm in the form extended
for the FCM. Different cluster distributions and sizes usually lead to sub optimal
results with FCM. In order to adopt to different structures in data, GK algorithm used
the covariance matrix to capture ellipsoidal properties of cluster. It makes
classification of the remote sensing satellite image with multidimensional data
possible. Fuzzy algorithm generally iterates the execution until there is almost no
change in membership value. However, this research does not iterate the execution
due to the usage of training data as initial and central value. This algorithm classifies
the input image by performing fuzzy GK algorithm once from the training data that
was selected from each category by the analyst. Giving consideration to the
membership value of each category, the fuzzy GK algorithm is again performed and
the average intracluster distance is calculated for each category. The membership
value is updated by the average intracluster distance and all the pixels are classified.
The prior probability is obtained by using the information of pixels placed in the
intracluster of each category, and Bayesian classification algorithm is executed. The
final classification category is determined by comparing Bayesian and fuzzy
algorithms.

The suggested classification method is where the analyst first decides the category
for classification and then selects the training area according to each category from
the input image. Training areas are selected from the image such that pixels within
that geographic area are representative of the spectral response pattern of a particular
information category(class). For the classification to be accurate, the training data for
each information class must capture the variability within objects in the class. When a
classification is run, the computer uses the training data to form decision boundaries,
and then assigns unknown pixels into information classes based on these established

boundaries. We establish the initial cluster center)(0
iv of fuzzy GK algorithm by

calculating average value from each selected training sample. Using the selected
training sample from each category, covariance matrix is calculated.

()()

=

=

−−

=
N

j

m
ij

TM

j
ibijbibijb

m
ij

i

VXVX

F

1

1

μ

μ

=

=

−•−

=
N

j

m
ij

T

iN

i

i

ijN

ij

ij
M

j

iN

i

i

ijN

ij

ij

m
ij

v

v

v

x

x

x

v

v

v

x

x

x

1

2

1

2

1

1

2

1

2

1

μ

μ

(5)

where iF is covariance matrix of classification category iw , b is the number of bands,

} , ,1{ ci = is the category number of category(class) iw and),,(1 cvvV = is a

vector of cluster centers. ijμ establishes every pixel as 1.

A Study on Supervised Classification of Remote Sensing Satellite Image 601

The prototypes are typically selected to be idealized geometric forms such as linear
varieties or points. When point prototypes are used, the general form of the distance
measure is given by

() ()iji
T

ijij vxAvxd −−=2 (6)

where the norm matrix iA is a positive definite symmetric matrix. The FCM algorithm

uses Euclidian distance measure, while the fuzzy GK algorithm uses the Mahalanobis
distance. Covariance matrix(iF) is used when calculating Maharanobis distance. For

every pixel of the input image, 2
ijd is calculated.

() ()ibijbibi
T

ibijbij VXFFVXd −⋅−= −1
1

2 (7)

where 2
ijd represents Maharanobis distance from the center of category iw to pixel j.

1−
iF is inverse matrix of iF . For every pixel in the input image, membership value(ijμ)

of each category is calculated using 2
ijd . Membership value of each category is updated

using

Njck
d

d
u

c

k

m

jk

ij
ij ≤≤≤≤=

−

=

−
1;1,

1

1

1

2

2

2

 (8)

 The class(category) centers is updated using

=

⋅

=
N

j

m
ij

N

j
j

m
ij

i

x

v

1

μ

μ
 (9)

The process of fuzzy GK algorithm is again performed from formula (5) to (9) using
updated iv and ijμ . In this case, iF uses the classified result of each category by the first

process of fuzzy GK algorithm. iF is obtained giving consideration to its position, and

then Maharanobis distance 2
ijd from center iv and jth pixel of updated category is

calculated. Membership values and class(category) centers is newly updated from the
result of the fuzzy GK algorithm that is again performed. And then all pixels of the
input image are classified by each category through the membership value ijμ . Average

intracluster distance is obtained for each category according to the result of
classification. The average intracluster distance is the average value of all the distance

602 Y.-J. Jeon, J.-G. Choi and J.-I. Kim

from each data to its corresponding cluster center, and is proportional to the size and
density of the cluster. The average fuzzy intracluster distance(iη) is calculated using a

formula (10) from PCM(possibilistic clustering algorithms) suggested by
Krishanapuram [13]. Typically K is chosen to be 1.

=

==
n

j

m
ij

n

j
ij

m
ij

i

d

K

1

1

2

μ

μ

η , K=1 (10)

 The memberships of PCM are updated as follows

1

1

1

1

−
+

=
m

i

ik

ij

d

η

μ
(11)

 The value of iη determines the distance at which the membership value of pixel in a

cluster becomes 0.5. Every pixel of the image is classified according to membership
value. The group of data belonging within the interior of average intracluster distance is
called intracluster. Intracluster is referred to the pixels of 5.0≥ijμ .

�

Fig. 1. The average intracluster distance of each category and the distance relationship between
intracluster and pixel

 Fig.1 shows the average intracluster distance of each category and the distance
relationship between intracluster and pixel. X1 is a pixel located in the interior of
average intracluster distance while being overlapped with clusters C1 and C2. X2 is a
pixel located in the exterior of average intracluster distance of each category. Pixels X3
and X4 are located in the interior of average intracluster distance and are not overlapped

A Study on Supervised Classification of Remote Sensing Satellite Image 603

within two clusters. X3 and X4 are classified into C1 and C2 according to the fuzzy
algorithm. The categories of pixels X1 and X2 are determined after comparing
membership value of fuzzy algorithm with the likelihood rate of Bayesian classification.
That is, the pixels belonging to the overlapped area of clusters and the pixels from

5.0<ijμ are determined into final classified category after comparing the result of

Bayesian classification and fuzzy classification. The classification categories for X1 and
X2 pixels are decided and allocated to the corresponding category when the results of
classification by fuzzy algorithm and Bayesian algorithm belong to the same item. If the
distribution result of two algorithms belongs to the different item, the data in the interior
of intracluster is allocated by the distance to the center of cluster and the data in the
exterior of intracluster by Bayesian algorithm.

Supervised Bayesian classification algorithm is performed after obtaining the prior
probability calculated by using the information of intraclusters.

() ()ibijbbi
T

ibijbiii VXFFVXF
n

wPxD −⋅−−−−= −1
1

2

1
ln

2

1
2ln

2
)(ln)(π (12)

pixelser intraclust all ofnumber total

 category from pixelser intraclust ofnumber
)(i

i
w

wP =

iF is covariance matrix of the pixels belonging to the intracluster of the category iw .

ijX is pixels to belong to the intracluster of the category iw .)(iwP is the a prior

probability. The probability for any pixels to belong to the intracluster of the category

iw . That is,)(iwP is a ratio of intracluster pixels from each category to the intracluster

pixels of all categories. Because the data of intracluster shows a normal distribution,
intracluster can be used in calculating covariance matrix and maharanobis distance, both
of which are then applied to Bayesian algorithm. The pixel is assigned to the
category iw , for which)(xDi is largest. The data in intracluster executes the

classification by fuzzy algorithm. The data outside the average intracluster distance
determines the classification category after performing Bayesian classification and
comparing it with its result. Bayesian classification uses the intracluster information as
prior probability.

4 Experiments and Results

The proposed classifier is applied to both areas in Seoul, Korea, from the satellite
Landsat TM image and in Busan, Korea, from the satellite IKONOS image.
 Landsat TM satellite image records 7 bands of multispectral data at 30m resolution.
The selected bands were two, four, and seven. The four classification categories were
forest, water, crop and urban areas. As for the training data, four areas were chosen from
each of four classification categories from input image. This research tested if the area
selected by training data of each category from the satellite image is categorized exactly
into the same category after completing the classification when classifying using
proposed algorithm. This experiment produced a result that was averaged after

604 Y.-J. Jeon, J.-G. Choi and J.-I. Kim

repeatedly testing for 40 times. As a result, the overall accuracy of the conventional
maximum likelihood algorithm, FCM algorithm, and proposed algorithm were 92.50%,
90.22%, and 93.92% respectively. The proposed algorithm from Landsat TM satellite
image showed better results than conventional maximum likelihood classification and
FCM algorithm. Table 1 shows the classification results by proposed algorithm,
conventional maximum likelihood classification algorithm and FCM algorithm from
Landsat TM satellite image. Fig. 2 shows classification result images of maximum
likelihood algorithm and proposed algorithm using Landsat TM satellite image.

Table 1. The classification results by proposed algorithm and conventional maximum likelihood
and FCM algorithm from Landsat TM satellite image

Category Forest Water Crop Urban
0verall

accuracy
Number of training pixels 1024 1024 1024 1024 4096

Maximum
likelihood

90.43% 98.05% 92.48% 89.06% 92.50%

FCM 85.15% 97.46% 85.83% 92.45% 90.22%
Classification

methods
Proposed
method

91.25% 98.53% 93.45% 92.45% 93.92%

(a) Original image (b) MLC algorithm (c) Proposed algorithm

Fig. 2. Classification result images of maximum likelihood algorithm (MLC) and proposed
algorithm using Landsat TM satellite image

 The following is the same experiment as before, using IKONOS image satellite to
confirm if it is possible to apply proposed algorithm to the high resolution satellite
image. IKONOS satellite image is high resolution satellite image that records 4 bands of
multispectral data at 4m resolution and one panchromatic band with one meter
resolution. The image size used for the experiment is 1000 by 1000 pixels and it is
consisted of 4 bands. Forest, water, soil, urban areas were selected as four classification
categories. In the input image, two to four areas were chosen as training data from each
classification category. Table 2 show the classification results by proposed algorithm,
FCM and conventional maximum likelihood classification method from IKONOS high
resolution satellite image. IKONOS high resolution satellite image also shows a better
classification result than conventional maximum likelihood classification method. This
result showed that it is possible to apply proposed algorithm effectively to the

A Study on Supervised Classification of Remote Sensing Satellite Image 605

classification of high resolution satellite image. Fig. 3 show classification result images
of maximum likelihood algorithm and proposed algorithm using IKONOS satellite
image.

Table 2. The classification results by proposed algorithm, conventional maximum likelihood and
FCM algorithm from IKONOS high resolution satellite image

Category Forest Water Soil Urban
Overall

accuracy
Number of training pixels 9249 11323 13785 19426 53783

Maximum
likelihood

9110 11285 12753 18080 95.94%

FCM 8820 10951 12896 17094 93.42%
Classification

method
Proposed
method

9235 11291 13127 18586 97.62%

 (a) Original image (b) MLC algorithm (c) Proposed algorithm

Fig. 3. Classification result images of maximum likelihood (MLC) and proposed algorithm from
IKONOS satellite image

As a result of the experiment using Landsat TM satellite image and IKONOS high
resolution satellite image, it shows that the proposed method could improve
performance of classification rather than the conventional maximum likelihood
classification method. This result improved the classification result of the proposed
algorithm with giving a positive effect to the classification of Bayesian algorithm that
used a prior probability of the information obtained from the execution of fuzzy GK
algorithm in which the information of the pixels within the calculated average
intracluster distance had a normal distribution.

5 Conclusions

In this research, a supervised classification algorithm of remote sensing satellite image
was proposed by using the average intracluster distance within the fuzzy and Bayesian
algorithms. Fuzzy GK algorithm was used in the form extended for the FCM algorithm.
By using the training data, it establishes the initial cluster center and executes fuzzy
clustering algorithm. The prior probability is obtained by using the information of pixels
placed in the average intracluster distance of each category, and then the Bayesian
classification algorithm is executed.

606 Y.-J. Jeon, J.-G. Choi and J.-I. Kim

The proposed algorithm was tested by applying it to the Landsat TM and IKONOS
remote sensing satellite images. As a result, the overall accuracy showed a better
outcome than the FCM algorithm or the conventional maximum likelihood
classification algorithm. Average intracluster distance is the average value of the
distance from each data to the cluster center and is in ratio to the size and density of
cluster. The information of the pixels within the average intracluster distance has a
positive normal distribution, and the whole classification result was improved by giving
a positive effect to the classification of Bayesian algorithm that used the information as
prior probability. The proposed algorithm proved to be practical and effective applied to
the high resolution image satellite as shown in the classification result of IKONOS
image satellite. The next research task will be the solution of pixels for urban and
shadow portions in classification.

References

1. John A. Richards : Remote Sensing Digital Image Analysis : An Introduction, Second,
Revised and Enlarged Edition, Springer-Verlag (1994) 229-262,

2. J. M. Cloutis : Hyperspectral geological remote sensing: Evaluation of analytical techniques,
International Journal of Remote Sensing, 17(12) (1996) 2215~2242,.

3. David Landgrebe : Information Extraction Principles and Methods for Multispectral and
Hyperspectral Image Data, Chapter 1 of Information Processing for Remote Sensing, edited
by C. H. Chen, published by the World Scientific Publishing Co., Inc (1999) 1-30.

4. Mehmet I Saglam, Bingul Yazgan, Okan K Ersoy : Classification of Satellite Images by
using Self-organizing map and Linear Support Vector Machine Decision tree,
GISdevelopment Conference Proceedings of Map Asia (2003).

5. Zhaocong Wu : Research on remote sensing image classification using neural network based
on rough sets, Info-tech and Info-net, 2001. Proceedings. ICII 2001-Beijing. 2001
International Conferences on, Vol. 1 (2001) 279-28429.

6. L.A.Zadeh : Fuzzy sets as a basis for theory of possibility, Fuzzy sets and Systems, Vol. 35
(1978) 3-28.

7. N.R. Pal and J.C. Bezdek : On cluster validity for the fuzzy c-means model, IEEE
Transactions on Fuzzy Systems, Vol. 3, No. 3 (1995) 370-379.

8. Melgani, F., Hashemy B.A.R. and Taha S.M.R. : An explicit fuzzy supervised classification
method for multispectral remote sensing images, Geoscience and Remote Sensing, IEEE
Transactions on, Vol. 38, Issue 1 Part 1 (2000) 287-295.

9. B.Gorte and A. Stein : Bayesian classification and class area estimation of satellite images
using stratification, IEEE Trans. On Geoscience and Remote Sensing, Vol.36, No.3 (1998)
803-812.

10. Amal S. Perera, Masum H. Serazi, William Perrizo : Performance Improvement for Bayesian
Classification on Spatial Data with P-Trees, 15th International Conference on Computer
Applications in Industry and Engineering (2002).

11. Qilian Liang, : MPEG VBR video traffic classification using Bayesian and nearest neighbor
classifiers, Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on,
Vol. 2 (2002) II-77-II-80.

12. D.Gustafson and W.Kessel : Fuzzy clustering with a fuzzy covariance matrix, In Proc. IEEE
CDC, San Diego, USA, (1979) 761-766.

13. R. Krishnapuram and J. M. Keller : A possibilistic approach to clustering, IEEE Trans. on
Fuzzy Systems, Vol. 1, No. 2 (1993) 98-110.

Tree Species Recognition with Fuzzy Texture
Parameters

Ralf Reulke1 and Norbert Haala2

1 Institut für Informatik, Computer Vision, Humboldt-Universität zu Berlin,
10099 Berlin, Deutschland

reulke@informatik.hu-berlin.de
http://www.informatik.hu-berlin.de/reulke

2 Institut für Photogrammetrie (ifp), Universität Stuttgart,
70174 Stuttgart, Deutschland

norbert.haala@ifp.uni.stuttgart.de
http://www.ifp.uni-stuttgart.de/institut/staff/haala.htm

Abstract. The management and planning of forests presumes the avail-
ability of up-to-date information on their current state. The relevant pa-
rameters like tree species, diameter of the bowl in defined heights, tree
heights and positions are usually represented by a forest inventory. In
order to allow the collection of these inventory parameters, an approach
aiming at the integration of a terrestrial laser scanner and a high reso-
lution panoramic camera has been developed. The integration of these
sensors provides geometric information from distance measurement and
high resolution texture information from the panoramic images. In or-
der to enable a combined evaluation, in the first processing step a co-
registration of both data sets is required. Afterwards geometric quanti-
ties like position and diameter of trees can be derived from the LIDAR
data, whereas texture parameters are derived from the high resolution
panoramic imagery. A fuzzy approach was used to detect trees and dif-
ferentiate tree species.

1 Introduction

The development of tools allowing for an automatic collection of information re-
quired to build up conventional forest inventories is one of the main objectives of
the NATSCAN project (see [1]). This project provides the framework for the ap-
proaches presented in this paper. Forest inventory parameters of interest are tree
species, tree height and diameter at breast height (DBH) or crown projection
area. Additionally, information about the numbers and types of wood quality
features and the length of the branch free bowl have to be provided, since these
parameters determine the value of the timber products. Due to the recent de-
velopment of tools for automatic data collection, traditional manual approaches
can be replaced and thus the individual influence of human measurement can be
eliminated. Within the NATSCAN project, the automatic feature collection is

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 607–620, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

608 R. Reulke and N. Haala

carried out by the application of LIDAR measurements from airborne and terres-
trial platforms, respectively ([3],[10]). This paper describes an approach aiming
at the further improvement of the LIDAR based data collection from a terrestrial
platform by the application of a panoramic camera. This camera additionally
captures high resolution color images, which can be used as a complementary
source of information and thus support the analysis of the range images from LI-
DAR measurement. In the following section the sensor system, i.e. the terrestrial
laser scanner and the panoramic camera, is described. The coregistration of the
collected data sets, which is a prerequisite for further processing, is presented
in section 3. In section 4 approaches aiming at the collection of the required in-
ventory parameters based on a combined data interpretation are shown. Finally,
the tree recognition with fuzzy texture parameters is discussed in section 5.

2 Data Collection

Within the project, the IMAGER 5003 system from Zoller+Fröhlich was used
for the collection of the terrestrial laser scanning data. This sensor utilizes phase
difference measurements to capture the required distance information, which
limits the maximum range of the system to 53.5 m. For longer distances an
ambiguity problem for phase analysis exists. The main advantages of the system
are the high speed of data collection and the large field of view, which allows
the realization of 360◦ horizontal and 310◦ vertical turns during measurements.
For the IMAGER 5003, the divergence of the laser beam of 0.3 mrad results in
a spot size of the laser footprint of 1.9 cm at a distance of 50 m.

Fig. 1. Range image captured from LIDAR scanner

Fig. 1 presents the range image of the test area close to the city of Freiburg
(Germany), which was collected by the LIDAR sensor. In this example, the pixel
coordinates of the image are defined by the horizontal and vertical direction of
the laser beam, respectively. The size of the image is 5000 pixels in height and
8400 pixels in width. Fig. 2 depicts a reflectance image of the same measurement.
This image can be additionally captured based on the intensity measurement
of the respective laser foot-prints. The spectral information as provided from
this reflectivity image is limited to the wavelength of the laser beam, which is

Tree Species Recognition with Fuzzy Texture Parameters 609

Fig. 2. Reflectivity image captured from LIDAR scanner

in the near infrared spectrum. The spacing is exactly the same for range and
intensity image, since they relate to the same point measurements. Thus, the
main advantage of the intensity measurement is the exact coregistration of both
data sets. This is demonstrated in Fig. 3, which shows a 3D view of a tree
trunk generated from the range and reflectance image as provided from the laser
scanner.

Fig. 3. 3D view of a tree surface. The texture is from the reflectivity image of LIDAR
measurement

One general problem of LIDAR measurements is the limited spatial resolu-
tion as compared to digital images of good quality. This resolution is sufficient

610 R. Reulke and N. Haala

for the collection of geometric parameters like tree position or diameter at breast
height. Nevertheless, the discrimination of different tree types, which i.e. requires
an analysis of the tree bark’s structure, is only feasible if an increased spatial
resolution is available. Thus, for our investigations, a panoramic camera is ad-
ditionally applied in order to collect high resolution color imagery.

Fig. 4. EYESCAN camera

Fig. 4 depicts the panoramic camera EYESCAN, which was used in our
project. The camera was developed by the KST GmbH in a cooperation with
the German Aerospace Center (DLR). Image collection is realized with a CCD
line, which is mounted parallel to the rotation axis of a turntable [7]. Thus, the
height of the panoramic image is determined by the number of detector elements
of the CCD line, resulting in an image height of 10,200 pixels. A 360◦ turn of
the camera, which is performed to collect a full panorama, results in an image
width of 43868 columns. Since the CCD is a RGB triplet, true color images are
captured. The radiometric resolution of each color channel is 14 bit, the focal
length of the camera is 60 mm and the pixel size is 7 μm. This, for example,
results in a sampling distance of 6 mm at a distance of 50 m for the collected
imagery.

3 Data Coregistration

As a first processing step, range data and high resolution panoramic imagery
have to be coregistrated to allow for the subsequent combined processing of
both data sets. This coregistration can be achieved similar to a standard or-
thoimage generation by mapping the panoramic image to the surface from the
LIDAR measurement. In order to perform this process, information on the full
geometric model of the camera, which is described by [8], is required. In addition
to the interior orientation, the exterior orientation of the camera has to be de-
termined i.e. by a spatial resection based on control point measurements. In our

Tree Species Recognition with Fuzzy Texture Parameters 611

configuration, both data sets were collected from the same position. Addition-
ally, since laser scanner and panoramic camera are rotating on turntables, both
data sets can be represented in a cylindrical coordinate system. For these rea-
sons, the coregistration process could be simplified considerably by mapping the
panoramic image to the range and reflectivity images from LIDAR measurement
using a second order polynomial.

Fig. 5. Measurement of corresponding points in panoramic (top) and reflectance image
(bottom)

The parameters of this polynomial can be determined easily from correspond-
ing points in the respective data sets. Since no signalized points were available,
natural points were selected for this purpose. Measurement and coregistration
was realized within the software ERDAS, which is normally used for remote
sensing applications. As it is depicted in fig. 5, for point measurement the re-
flectivity image of the LIDAR data was applied. By these means, the manual
identification of corresponding points could be simplified since the reflectance
data is more similar to the panoramic image than the corresponding range mea-
surements. Still, the identification and exact measurement of points in a forest
environment is relatively difficult. Problems can, for example, occur due to wind
movement of the tree branches. For our data sets additional problems resulted
from the relatively large time difference (4 months) between the collection of
panoramic image and LIDAR data. These problems resulted in remaining differ-
ences between the corresponding points after mapping in the order of 10 pixels
(RMSE).

612 R. Reulke and N. Haala

Nevertheless, for our applications these differences were acceptable, as is ex-
emplarily demonstrated in Fig. 6. The 3D view of this tree trunk was already
presented in Fig. 3. Whereas in this figure the reflectance image of the laser scan-
ner is used for texture mapping, in Fig. 6 the high resolution color image is used
for the same purpose. Since the panoramic image was collected at a different
epoch, the signalized point, which is depicted in Fig. 3, is no longer available.

Fig. 6. 3D view of tree surface, texture from high resolution panoramic image

For our investigations, the range data and the high resolution panoramic im-
age were captured by different instruments. If, similar to airborne applications,
both sensors are integrated into a single system, data processing can be sim-
plified considerably. This integration is realized in airborne systems e.g. for the
simultaneous acquisition of range and image data. In this configuration, the dif-
ferences in position and orientation between both sensors are exactly calibrated.
Thus, the different data sets can be exactly coregistrated without any additional
tie-point measurement.

In addition to a potential increase of the mapping accuracy by a more rigorous
transformation using the full geometric model of the camera, the availability
of a fully integrated system would optimize the process of data coregistration.
If an exact calibration of the differences in position and orientation between
laser scanner and panoramic camera is available, tie-point measurement is no
longer required. Thus, a much simpler and faster data collection would become
possible.

Tree Species Recognition with Fuzzy Texture Parameters 613

4 Data Interpretation

After the coregistration of the range data and the high resolution panoramic
image, a combined evaluation can be performed in order to collect the required
forest inventory parameters. In this context, the LIDAR measurement is very well
suited for the collection of geometric properties like the automatic localization of
trees and the computation of tree diameters. This can, for example, be realized
by the application of a Hough-Transform, which detects circular structures in
the 3D point clouds derived from range measurement [9].

Fig. 7. Fundamental surface types by mean and Gaussian curvature signs

A similar type of information can be extracted from range image analysis by
the application of curvature based segmentation. Fig. 7 depicts different surface
types which can be derived from range data based on the sign of the mean
curvature H and Gaussian curvature K [2].

The translation and rotation invariant values are calculated in a local coordi-
nate system based on the first and second fundamental form of a parameterized
surface

K =
eg − f2

EG− F 2 H =
1
2
· eG− 2fF + gE

EG− F 2 (1)

Since the surface measured by the laser scanner can be described by the
function z = f(x, y) a simple parameterization is feasible by⎛⎝ u

v
f(u, v)

⎞⎠

614 R. Reulke and N. Haala

The partial derivatives of this surface are defined by

xu =

⎛⎝ 1
0
fu

⎞⎠ and xv =

⎛⎝ 0
1
fv

⎞⎠
In order to obtain the coefficients E = 1 + f2

u , F = fufv, G = 1 + f2
v and

e = fuu

s , f = fuv

s , g = fvv

s with s :=
√

f2
u + f2

v + 1 the derivatives of the surface
have to be calculated. This can be achieved by a convolution of the surface image
with the discrete masks

Du =
1
8

⎛⎝−1 0 1
−2 0 2
−1 0 1

⎞⎠ , Duu =
1
4

⎛⎝1 −2 1
2 4 2
1 −2 1

⎞⎠ , Duv =
1
8

⎛⎝−1 0 1
0 0 0
1 0 −1

⎞⎠ , etc.

Alternative approaches are based on the least-squares estimation of local
bivariate polynomials, where the derivatives used are defined by the estimated
polynomial coefficients [4].

If the mean and Gaussian curvature H and K are calculated, according to
Fig. 7 the respective surface type is defined for each pixel of the range image.
Thus, regions can be generated easily by combining neighbored pixels of corre-
sponding surface type.

Fig. 10 gives an example of this surface type analysis, which was used to
classify cylindrical objects (type Ridge K = 0, H < 0) in order to localize tree
trunks.

Fig. 8. Result of curvature based segmentation

Complementary to the analysis of the range data for the collection of geomet-
ric features, the high resolution panoramic images can be applied for a texture
based classification. By these means, the structure of the respective tree bark is
analyzed in order to discriminate between different types of trees in a subsequent
step.

Tree Species Recognition with Fuzzy Texture Parameters 615

5 Tree Recognition with Fuzzy Texture Parameters

The main goal when processing the tree bark textures is to find suitable pa-
rameters that describe each texture to a certain degree and allow for separating
it from others. For analysis, 6 different trees (a . . . f) and 12 texture samples
(400x400 pixels size) per tree have been chosen. The tree categories are marked
with symbols (+, ∗,�,�,× and bg). For analysis of these samples there are many
approaches of texture evaluation available, which are often either statistical or
structural approaches [6].

Statistical methods for feature extraction are based on the investigation of
the gray level values for each single pixel. In first order statistics, only the pixel
itself is measured. If also neighboring pixels (in a certain distance and direction)
are taken into consideration the approach is said to be of second order. Working
examples for the latter are color co-occurrence approaches where second order
statistics on the color histogram reveal information on a texture [11]. Structural
texture analysis extracts elements and determines their shapes, striving to find
placement rules to describe how these elements are occurring, e.g. their density,
spatial distance and regularity of layout [6].

Fig. 9. Tree bark texture samples (12 patches each)

Fuzzy set theory provides another way of seeing images and textures. When
dealing with images as arrays of gray values, often information losses are accepted
just in order to get ”crisp” results. Fuzzy approaches try to avoid the loss of
information by giving uncertainty a place. In the first step of ”fuzzyfying” an
image, it is converted from an array of gray values to an array of ”membership”.
A priori knowledge of the context could be brought into the process by choosing
and parameterization of the membership function. The conversion from gray
value images to the fuzzyfied version can be as simple as directly mapping gray
values to the range [0, 1] thus expressing the property of brightness of each pixel.
Depending on the application, one can parameterize the membership function
to enhance particular features in the image.

616 R. Reulke and N. Haala

For our demands, we simply fuzzified the bark texture images by using
Zadeh’s S-Function [12] to get brightness membership values

μ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 x ≤ a,

2
(

x−a
c−a

)2
a < x ≤ b,

1− 2
(

x−c
c−a

)2
b < x ≤ c,

1 x > c.

(2)

which is 0 until the gray values reach a, then rising in an S-form to 1, which it
reaches right when approaching c. b = (a+ c)/2 lies right in the middle between
a and c and is the point of inflection, where the functions curvature changes
sign. Furthermore, when reaching b, the membership value μ(b) = 0.5.

Fig. 10. Plot of Zadeh’s S-function

The limit of its first derivative is 0 when approaching the lower and the
top end of the gray scale (a and c respectively), producing little change in
”brightness-membership” there. The maximum of change is right at its inflection
point b.

The conversion from gray values to brightness membership doesn’t directly
lead to the discrimination of tree species. There exist several fuzzy measures
though, that can now be calculated for the image, namely area, perimeter, com-
pactness and logarithmic entropy [5].

a(X) =
∑
m

∑
n

μmn =
∑

l

μ(l)h(l) (3)

The area, as a measure of how many pixels belong to what extent to the set
of ”bright” pixels, or how much ”brightness membership” can be found in the
image, simply sums up all membership values. An image half black, half of it
white can not be distinguished from an all gray alternative by only using the
area-parameter. It’s value can grow arbitrarily for larger images.

p(X) =
M∑

m=1

N−1∑
n=1

|μmn − μm,n+1|+
N∑

n=1

M−1∑
m=1

|μmn − μm+1,n| (4)

Tree Species Recognition with Fuzzy Texture Parameters 617

The perimeter is the sum-up of all membership changes between neighbors
in 4-neighborhoods, i.e. pixels that are horizontally or vertically connected. By
summing up membership differences to the adjacent pixels to the right and
bottom sides, the whole neighborhood is accounted for. Like the area parameter,
the perimeter’s limit is given only by the size of the image. We cannot directly
compare perimeters between image samples of different sizes. It is a measure
for the rate of change between neighboring memberships, therefor a measure of
”contrast” in the image. Remarkably, images of only one constant brightness,
regardless of value, would always yield a 0 perimeter.

comp(X) =
a(X)
p2(X)

(5)

The compactness, aggregating area and perimeter, provides us with a measure
that doesn’t change for smaller or bigger images, i.e. while the area and perimeter
of a texture grow boundless for larger images, the compactness just wouldn’t
change.

To calculate the entropy, a function is needed for the evaluation of member-
ship values in terms of ”vagueness” or ”uncertainty”. The function Te(l) assigns a
vagueness value according to its distance to the ”certain” bounds 0 and 1. Mem-
bership in the middle of the interval [0, 1] yield the highest vagueness value,
which is ln(2) for that function.

Te(l) = −μ(l)lnμ(l)− (1− μ(l))ln(1− μ(l)) (6)

Fig. 11. The “vagueness” or ”uncertainty” of membership in the range [0,1]

Fig. 11 shows the plot: the more the memberships are displaced from the 0
and 1 margins, the more their vagueness increase.

H(X) =
1

MN ln2

∑
l

Te(l)h(l) (7)

The sum of all vagueness values in the image, normalized to the size of the
image and the maximum of Te, is called its entropy. It serves as a measure for
the overall uncertainty found in the image.

Now the fuzzy parameters of all tree bark textures can be calculated and
compared for different trees.

618 R. Reulke and N. Haala

Fig. 12. Entropy values calculated for all texture categories

Fig. 13. Compactness values calculated for all texture categories

The entropy-plot in Fig. 12 shows that this feature alone allows distinguishing
between some but not all samples, e.g. it would not be possible to tell textures
from trees d and e apart, since they are much too close in terms of entropy
values. As mentioned at the beginning of this section, the selection of suitable
parameters is most important to find a way of classifying patterns. The solution
in this approach is to use a two-dimensional feature space incorporating entropy
and one (well-chosen) other parameter. The area parameter is out of the question,
because it can be computed from entropy. In Fig. 13 it can be seen that tree
texture parameters cluster differently (e.g. trees d and e are easily discriminated
in that form).

When taking the compactness as the second feature classifier and bringing
both into a two-dimensional plot, one can see that entropy and compactness of
each texture make it possible to tell different trees apart. The plotted symbols
are referring to the texture samples in Fig. 9.

Tree Species Recognition with Fuzzy Texture Parameters 619

Fig. 14. Texture parameter 2-D feature space

The next step would be to find a suitable decision boundary to bring the
model to practice and decide to which category an unknown texture sample
most likely belongs. It can be clearly seen that all tree textures are clustering
very well and possibly allow further processing of the data to obtain reliable
classification decisions.

6 Conclusion

This paper described the combined evaluation of high resolution imagery from
a panoramic camera and LIDAR data from a terrestrial laser scanner. Data
collection based on these types of sensors has already been demonstrated for
applications like virtual city modelling or heritage documentation. In contrast,
the presented application on the automated collection and determination of tree
parameters required for forest inventories is a novel approach and thus demon-
strates the potential of this type of integrated sensor configuration and combined
data evaluation also for natural environments. The LIDAR system is suited very
well to detect tree trunks when using the shown curvature segmentation ap-
proach. Since that method is not sensitive to leaves occluding the trunk, it of-
ten should be preferred to camera approaches. Finally, fuzzification of the bark
textures and selection of appropriate fuzzy parameters make it possible to dis-
tinguish tree species from each other.

620 R. Reulke and N. Haala

Acknowledgement

We thank the Institute for Forest Growth, Universität Freiburg for the provision
of the LIDAR data used for our investigations. The authors would also like
to thank Frederik Meysel for his valuable assistance with the analysis and the
formulation.

References

[1] Web: http://www.natscan.de/ger/welcome.php.
[2] P.J. Besl. Segmentation through variable order surface fitting. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 10(2):167–192, 1988.
[3] Koch B. Friedlaender, H. First experience in the application of laserscanner data

for the assessment of vertical and horizontal forest structures. IAPRS, XXXIII,
Part B7:693–700, 2000.

[4] R.M. Haralick. Digital step edges from zero-crossings of second directional deriva-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
6(1):58–68, 1984.

[5] Pal S.K. Kundu, M.K. Automatic selection of object enhancement operator with
quantitative justification based on fuzzy set theoretic measures. Pattern Recogni-
tion Letters, 11:811–829, 1990.

[6] M. K. (Ed.) Pietikainen. Texture Analysis in Machine Vision. World Scientific
Publishing Company, 2000.

[7] Korsitzky H.-Reulke R. Scheele M. Solbrig M. Scheibe, K. EYESCAN - a high
resolution digital panoramic camera. RobVis 2001, pages 77–83, 2001.

[8] Maas H.-G. Schneider, D. Geometric modelling and calibration of a high resolution
panoramic camera. Optical 3-D Measurement Techniques VI, II:122–129, 2003.

[9] Aschoff T.-Spiecker H. Thies M. Simonse, M. Automatic determination of forest
inventory parameters using terrestrial laserscanning. Proceedings of the Scand-
Laser Scientific Workshop on Airborne Laser Scanning of Forests, pages 251–257,
2003.

[10] Aschoff T.-Spiecker H. Thies, M. Terrestrische laserscanner im forst - für forstliche
inventur und wissenschaftliche datenerfassung. AFZ/Der Wald 58, 22:1126–1129,
2003.

[11] G. Gimel’farb Yu, L. Image retrieval using colour co-occurrence histograms. Image
and Vision Computing New Zealand 2003, Palmerston North, New Zealand, pages
42–47, 2003.

[12] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and
Systems, 1:3–28, 1978.

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 621–630, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Fast Segmentation of High-Resolution Satellite Images
Using Watershed Transform Combined with an

Efficient Region Merging Approach

Qiuxiao Chen1,2, Chenghu Zhou1, Jiancheng Luo1, and Dongping Ming1

1 The State Key Lab of Resources & Environmental Information System,
Chinese Academy of Sciences, Datun Road, Anwai, Beijing, 100101, China

{chenqx, zhouch, luojc, mingdp}@lreis.ac.cn
2 Dept. of Regional and Urban Planning, Yuquan Campus, Zhejiang University,

38 Zheda Road, Hangzhou, 310027, China
chen_qiuxiao@zju.edu.cn

Abstract. High-resolution satellite images like Quickbird images have been
applied into many fields. However, researches on segmenting such kind of
images are rather insufficient partly due to the complexity and large size of such
images. In this study, a fast and accurate segmentation approach was proposed.
First, a homogeneity gradient image was produced. Then, an efficient watershed
transform was employed to gain the initial segments. Finally, an improved
region merging approach was proposed to merge the initial segments by taking
a strategy to minimize the overall heterogeneity increased within segments at
each merging step, and the final segments were obtained. Compared with the
segmentation approach of a commercial software eCognition, the proposed one
was a bit faster and a bit more accurate when applied to the Quickbird images.

1 Introduction

Although being a key research field in various domains, image segmentation is still on
its research stage and is a bit far from wide application. It is particularly a truth in the
remote sensing field. Being an increasing important information source, remote sensing
images are playing an increasing role in many fields like environment monitoring,
resource investigation, precision agriculture, urban planning and management, etc. In
order to improve remote sensing images processing ability and extend and expand
further their application fields, researches on segmenting this kind of image are
necessary and urgent.
 Among recent limited studies on remote sensing images segmentation, much
attention has been paid to segment SAR (Synthetic Aperture Radar) images
[6][8][9][13][14] and the medium resolution remote sensing images, say TM or SPOT
images [1][5][11][15]. The relevant researches [16][17] on high-resolution remote
sensing images, say IKONOS or QuickBird images, are rather insufficient.
 Using region based segmentation approaches to partition images is a very natural
thing since the target of a segmentation task is to obtain meaningful regions. Region
based approaches like region growing and watershed transform have been employed to

622 Q. Chen et al.

segment the remote sensing images for years. However they are mainly applied to
medium or coarse resolution remote sensing images, the counterpart studies on high
resolution images are seldom conducted. Due to the large application potential of high-
resolution satellite images, such studies will probably attract more attention in the near
future. In consideration of the difficulty to judge whether two neighboring pixels belong
to the same region and when to stop the region growing process if we utilize region
growing approach to segment images, we will focus only on the watershed transform
approach in this study.
 The premise of watershed transform is to construct a suitable gradient image. To
high-resolution satellite images like QuickBird images, the optimum gradient should
incorporate both spectral and texture features. A simply way to produce a gradient
feature named H for multiband images was proposed in [12]. The higher/lower H is, the
more likely the relevant pixel locates at regions boundary/center. Therefore, it is more
suitable to use watershed approach than region growing method [12] to segment H
feature image.
 We should keep in mind some drawback of the watershed transform approach. It
always produces over-segmentation results, its implementation is not as fast as we have
expected when applied to remote sensing images. In order to overcome the above
shortcoming, both the pro- and post-processing are needed, and some relevant
modifications are also necessary. Another thing we should pay attention to is the fake
basins produced by watershed transform probably due to images noise. In order to
remove these fake basins, two thresholds are pre-defined. To reduce the segments
number further, a region merging process is utilized as a post-processing operation.
Generally, the conventional region merging approach is relatively too slow. During its
implementation, much time has been wasted on searching, removing and sorting. By
utilizing another data structure proposed by us, the computing cost of region merging is
reduced greatly, and the implementation speed of region merging is raised substantially.
 The content of this paper is organized as follows: in section one some background is
introduced and the reasons why we study the method proposed are addressed, the
methodology is presented in section two, the sample image is introduced in section
three, segmentation results and some discussion are included in section four, and
conclusions and future research advice are made and proposed in the last section.

2 Methodology

The methodology of the current work can be described as follows, first a homogeneity
gradient image (H-image) was produced; then watershed transform was applied to the
gradient image, the initial segmentation results were obtained. Finally, an improved
region growing method was utilized to obtain the final segments. To validate the
accuracy and efficiency of the proposed approach, a comparison with the segmentation
approach of a commercial software named eCognition was also conducted.

2.1 Local Homogeneity Gradient Extraction

So far there are many texture models developed. However, the majority of them are not
suitable for performing segmentation of remote sensing images because of their
relatively poor implementation efficiency, which is, for a large extent, due to the
complexity and large size of remote sensing images On the other hand, most of these

Fast Segmentation of High-Resolution Satellite Images 623

texture models just aim at one band image. In [12], a rather simply homogeneous index
– H index for multiband images was proposed. In the current study, we will utilize it
directly.
 By calculating each pixel’s H value, an H-image can be obtained. The dark and
bright areas in the H-image actually represent the region centers and region boundaries
respectively. In fact, H is a gradient feature, so watershed approach is more suitable to
segment H-image when compared with region growing approach utilized in [7][12].

2.2 Watershed Transform

In mathematical morphology, an image is usually considered as a topographical
surface where the grey level of each pixel corresponds to an altitude, the grey value
can be gradient, spectral intensity or other features, and generally it refers to the
former. To search for contours in images, it is quite straightforward to estimate the
crest lines on the gradient image. Watershed transformation is just a way of extracting
these lines from the modulus of the gradient image [13]. In general, region boundaries
correspond to watershed lines (with high gradient), and region interior (with low
gradient) being the catchment basin.
 So far, there are several watershed transform algorithms developed. Among them,
the floating point based rainfalling watershed algorithm [19] is perhaps the most
efficient one. In the current study, we will use it to obtain the initial segmentation
results.
 Though being easy to implement, the rainfalling approach also produces over-
segmentation (too many segments), and to conduct subsequent image processing or
analyses based on a large quantity of segments becomes very difficult and inefficient,
which will obviously prevent its further application. Therefore, some form of pre- and
post-processing are required in order to produce a segmentation that better reflects the
arrangement of objects within the image. An easy way to prevent producing too many
catchment basins is to set a threshold -- h-threshold for the local minimum, that is, to
set all the pixels with a gradient value lower than this threshold as a local minimum.
We can also set another threshold -- size-threshold to remove small basins probably
caused by image noise. As to post-processing approaches, the commonly used one is
region merging, which will be discussed in the next subsection.

2.3 Region Merging

RAG is the commonly used data structure for representing partitions [3][21].
However, it is rather slow to implement the region merging process based on such
data structure [10]. In order to improve the implementation efficiency, we made some
modifications on the RAG. The modified RAG (MRAG) consists of three parts—V,
E, N. Though being the nodes set like that of the general RAG, here V utilizes a
different data structure – a two-dimensional dynamic array to record the region
information. Because each node (region) probably has the different number of
adjacency regions and such number of a certain node may increase or decrease after
each merging step, we should allocate sufficient memory for each node in order to
prevent the overflow if we use a static array, which means a considerable waste of
memory. Thus, we utilize a two-dimensional dynamic data structure, through which,
it is very convenient to add or remove adjacency regions, and memory is saved as

624 Q. Chen et al.

well. E has the same meaning as that of the general RAG, only records the pseudo-
address of each edge. N is a cost matrix recording the merging cost of each pair of
regions, the cost of non-adjacency region pairs is set to an infinite value. For each
region merged into other regions, its region label will be changed and all relevant
edges are set to be dead edges (their cost in N is set to an infinite value).
 Based on MRAG, the region merging process (Fig. 2.) can be described as follows,

• Search in E for the miniCostEdge (the edge with the minimum merging costs)
and remove those dead edges in E according to the cost matrix N, set
miniCostEdge to be dead edge in N and remove it from the E;

• Assume the relevant nodes (regions) of the miniCostEdge are p and q, let q be
a region merged into p, then execute the following step: (1) read the neighbor
information of q from V; (2) set q to be dead edge; (3) update the region
information of p in V – features needed for calculating merging cost and add
p’s new neighbors (from q) in V; (4) update the cost of edges relevant to p in
N; (5) insert new edges of p into E.

Region set
(V)

Edge
queue (E)

Serach
MiniCostEdge,

Remove dead link
End

New/dead
edges

Update region info

Add edges

Update edge cost

Add/remove neighbor regions

Yes

No

CostMatrix
 (N) MiniCost

< Threshold

MiniCost
Edge

Fig. 1. The flow chart of region merging process

 By using MRAG, the information and adjacency regions of a certain region can be
obtained quickly. Except for searching the miniCostEdge, no other search will be
needed. Since edges with a merging cost larger than merging threshold will never
happen, such edges can be skipped.
 At each merging step, we wish that the most similar adjacency region pair is
merged. There are several approaches to calculate the similarity of two segments, to
compute the Euclidean Distance of their feature vector is probably the simplest one.
Generally, we wish that a segmentation routine maximizes the overall homogeneity
within segments while maximizing the overall heterogeneity among segments. To
maximize the overall homogeneity within segments is the same thing as to minimize
the overall heterogeneity. Generally, feature variation can be regarded as the
heterogeneity, so we can fulfill the above target if we minimize the variation
increased at each merging step. Assume there are two adjacency regions A and B, and
C being the new region if A and B is merged, the cost to merge A and B can be
calculated as follows,

===

⋅+−⋅+⋅=
k

j
jBA

k

j
jb

k

j
jA CSSBSASt

1

2
.

1

2
.

1

2
.)(cos , (1)

Fast Segmentation of High-Resolution Satellite Images 625

here, SA and SB are the size of the segment A and B respectively, k denotes the feature
dimension,

jA.
,

jB.
, and

jC.
is the mean of the feature value in the jth dimension of A,

B and C respectively. Since C is more heterogeneous than A or B, with the merging
cost increasing, the homogeneity of the new formed region will not be ensured. So,
we set a threshold of merging cost in advance. If the minimum merging cost exceeds
the threshold, the merging process will be stopped. Through this mechanism, we can
ensure the homogeneity of each segment and the overall homogeneity of all image
segments as well.

2.4 Segmentation Approach of eCognition

eCognition is a software for satellite image classification developed by Definiens
Imaging GmbH in Germany. At least in remote sensing community, it is the first
commercially available product for object-oriented image analysis. Due to its unique
contribution, Definiens Imaging GmbH was awarded the 2002 European 1st Prize,
which was organized by the European Council of Applied Sciences and Engineering
(Euro-CASE). So far, this product has been utilized by several government agencies,
universities and corporations for various application purposes like forest management,
land cover/use mapping, agriculture observation and mapping, etc.
 In eCognition, the patented multi-resolution segmentation technique is perhaps one
of the most critical components since it aims at object-oriented image analysis. It can
be used for many kinds of earth observation data (either optical or radar). Utilizing it,
image objects can be founded even in textured data like SAR images, high-resolution
satellite data or airborne data (for more detail, please refer to [2]). Since we aim at
segmenting high-resolution satellite images, it is natural to take multi-resolution
segmentation technique for comparison. In the current study, the eCognition 4.0 trial
version (with the same functions as eCognition 4.0 Professional except for image size
limitation) is used.

3 Experimental Data

To evaluate the performance of the proposed segmentation approach, a QuickBird
image was utilized in the present work. Such image data has five bands -- a pan band
with a spatial resolution 0.7 meters and four multispectral bands with a spatial
resolution 2.8 meters. The satellite image used here was acquired on Oct. 10, 2003
covering the part of Taizhong County in Taiwan Province, China. Since the
eCognition trial version can only handle the image with a size not larger than
1024*1024, the sample image cut down from the whole image was 1000 rows by
1000 columns, and only multispectral bands will be used. To facilitate the visual
inspection of segmentation results, each multispectral band was fused with the pan
band using Erdas Imagine 8.4, thus the final spatial resolution of the test image was
70cm by 70cm.

626 Q. Chen et al.

Fig. 2. A false color image composite (4,2,1)
of the test image

Fig. 3. The homogeneity gradient image --
H-image

4 Results and Discussions

Utilizing the H index proposed in [12], an H-image was produced after normalization
(Fig. 3.). Due to the large size of the test image and its complexity, there will be too
many segments produced if we employ watershed transform without other operations.
In order to alleviate the computing cost, an h-threshold was adopted, pixels with its H
value below the h-threshold were considered from valleys, and basins were to be
formed through these pixels. Because of unavoidable noise in the image, there existed
a considerable amount of small fake basins. A basin with its size smaller than a preset
value--size-threshold was considered to be such fake basin and was to be merged into
the neighboring big basins. Based on these two thresholds, segments obtained after
watershed transform were reduced greatly. In this study, we took h-threshold and
size-threshold as 39 and 30 respectively. An initial segmentation based on watershed
transform was shown in Fig.4., 3619 segments were obtained.
 In remote sensing images, a segment with a large size means a real geo-object, we
should be very careful about the merging between these segments. Otherwise, the
merging process will be out of control, and the final segmentation result will be far
from satisfactory. In this study, a segment with a size larger than 600 pixels was
considered as a big segment, a merging between big segments occurs only when the
corresponding merging cost was rather small when compared with the merging cost
threshold (the former being smaller than 5% of the latter). By utilizing the proposed
merging process, the final segmentation results with 499 segments were obtained
(Fig. 5.), and the merging cost threshold used was 2000.0.

Because of its high resolution character of the test image, we can check the
segmentation results by visual inspection easily. From Fig. 5., we can see that the
agricultural patches with relatively uniform color features (mainly distributed on the
left part and the upper right corner of the image, generally being red, grey or a bit
bright when naked, and being dark blue when immersing with the water) were

Fast Segmentation of High-Resolution Satellite Images 627

Fig. 4. Initial results (3619 segments) with h-threshold being 39 and size-threshold being 30

segmented successfully even in the condition when existing textures or spectral value
variation in them. Man-made constructions with a relative high radiation (being light
blue or white) were also segmented quite well. The segmentation result of green areas
(being red with texture features) was also quite good.
 In all, both the segmentation approaches obtained quite good results. However,
with a more detail comparison, we can learn that boundaries of segments in Fig. 5.
were a bit more accurate than those in Fig. 6. and Fig. 7. In Fig. 5., geo-objects with a

Fig. 5. Final results (499 segments) with merging threshold being 2000

628 Q. Chen et al.

large size were segmented as well as those with a relative small size. Using a
notebook with an Intel P4-M processor with 1.8 GHz and a 384 MB memory, it only
took 25 seconds for the proposed approach to segment the sample image in the
Microsoft Windows XP operating system environment, about 12 seconds for watershed
transform and about 13 seconds for region merging. While using eCognition, to
obtain segmentation results shown in Fig. 6. or Fig. 7., 35 seconds were spent. It
seemed that the improved region merging approach proposed in this study was very
efficient.

Fig. 6. Segmentation results using eCognition (510 segments) with scale parameter being 100

 Fig. 7. Segmentation results using eCognition (276 segments) with scale parameter being 150

Fast Segmentation of High-Resolution Satellite Images 629

 However, it should be pointed out that road segments extracted were not so
satisfying, and segmentation results were a bit sensitive to the watershed transform
parameters, say, h-threshold, size-threshold and the merging cost threshold.

5 Conclusions

In all, the segmentation approach was well adapted to the unique character of high
resolution satellite images. On the one hand, the quick implementation was realized
through the easy extraction of multiband gradient feature and the efficient rainfalling
watershed transform algo-rithm. By utilizing h-threshold and size-threshold, small
basins were removed which accelerated the merging process. Utilizing a two
dimensional dynamic array assisted by the cost matrix, a modified RAG was
proposed, through which it was very convenient to locate each region, obtain/update
its information and neighbor regions, and remove unused edges (dead edges).
Experiments showed that the proposed approach had a quick implementation, and the
segmentation result was rather promising when compared with the segmentation
approach of a commercial software.
 In order to improve segmentation accuracy further, we will focus our future work
on the following aspects: (1) to incorporate the shape index in segmentation routine to
extract objects with regular shape (e.g. road, building); (2) to find an automatic way to
set a suitable value for parameters like merging cost threshold, h-threshold and size-
threshold.

Acknowledgements

This study is supported partially by the National Natural Science Foundation of China
under Grant No. 40301030 and by High Tech Research and Development (863)
Program under Grant No. 2002AA716101.

References

1. M. Acharyya, R.K. De and M.K. Kundu. Segmentation of Remotely Sensed Images Using
Wavelet Features and Their Evaluation in Soft Computing Framework. IEEE Transactions
on Geoscience and Remote Sensing, 41(12):2900-2905, 2003.

2. M. Baatz and A. Schäpe. Multiresolution Segmentation – an optimization approach for
high quality multi-scale image segmentation. In: Strobl, J. et al. (eds.): Angewandte
Geographische Infor-mationsverarbeitung XII. Wichmann, Heidelberg, 12-23, 2000.

3. D. Ballard and C. Brown, Computer Vision. Englewood Cliffs, NJ: Prentice-Hall, 1982.
4. S. Beucher and F. Meyer. The Morphological Approach to Segmentation: the Watershed

Transformation. In Mathematical Morphology and its Applications to Image Processing,
E.R. Dougherty, Ed. New York: Marcel Dekker, 433–481, 1993.

5. J. Bosworth, T. Koshimizu and S.T. Acton. Multi-resolution Segmentation of Soil
Moisture Imagery by Watershed Pyramids with Region Merging. Int. J. Remote Sensing,
24(4):741–760, 2003.

630 Q. Chen et al.

6. P.B.G. Dammert; J.I.H. Askne and S. Kuhlmann. Unsupervised Segmentation of
Multitemporal Interferometric SAR Images. IEEE Transactions on Geoscience and
Remote Sensing, 37(5): 2259 – 2271, 1999.

7. Y. Deng, B.S. Manjunath and H. Shin. Color Image Segmentation. Proc. of IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition, CVPR’99, 2:446-
451, 1999.

8. Y. Dong, B.C. Forester, and A.K. Milne. Segmentation of Radar Imagery Using the
Gaussian Markov Random Field Model. Int. J. Remote Sensing, 120(8):1617-1639, 1999.

9. Y. Dong, B.C. Forster and A.K. Milne. Comparison of Radar Image Segmentation by
Gaussian- and Gamma-Markov Random Field Models. Int. J. Remote Sensing, 24(4):711–
722, 2003.

10. K. Haris, S. Efstratiadis, N. Maglaveras and A. Katsaggelos. Hybrid Image Segmentation
Using Watersheds and Fast Region Merging. IEEE Trans. Image Process., 7(12):1684-
1699, 1998.

11. R.A. Hill. Image Segmentation for Humid Tropical Forest Classification in Landsat TM
Data. Int. J. Remote Sensing, 20(5):1039-1044, 1999.

12. F. Jing, M.J. Li, H.J. Zhang and B. Zhang. Unsupervised Image Segmentation Using Local
Homogeneity Analysis. Proc. IEEE International Symposium on Circuits and Systems,
2003.

13. W. Li, G.B. B•ni• and D.C. He, et al. Watershed-based Hierarchical SAR Image
Segmentation. Int. J. Remote Sensing, 20(17): 3377-3390, 1999.

14. J. Lira and L. Frulla. An Automated Region Growing Algorithm for Segmentation of
Texture Regions in SAR Images. Int. J. Remote Sensing, 19(18):3595-3606, 1998.

15. S.K. Pal, A. Ghosh and B.U. Shankar. Segmentation of Remotely Sensed Images with
Fuzzy Thresholding, and Quantitative Evaluation. Int. J. Remote sensing, 21(11):2269–
2300, 2000.

16. M. Pesaresi and J.A. Benediktsson. A New Approach for the Morphological Segmentation
of High-resolution Satellite Imagery. IEEE Transactions on Geoscience and Remote
Sensing, 39(2): 309-320, 2001.

17. A. Pekkarinen. A Method for the Segmentation of Very High Spatial Resolution Images of
Forested Landscapes. Int. J. Remote Sensing, 23(14):2817-2836, 2002.

18. D. Raucoules and K.P.B. Thomson. Adaptation of the Hierarchical Stepwise Segmentation
Algorithm for Automatic Segmentation of a SAR Mosaic. Int. J. Remote Sensing,
20(10):2111-2116, 1999.

19. P.D. Smet and R.L. Pires. Implementation and analysis of an optimized rainfalling
watershed algorithm. Proc. SPIE, 3974:759-766, Image and Video Communications and
Processing, 2000

20. L. Vincent and P. Soille. Watershed in Digital Spaces: an Efficient Algorithm Based on
Immersion Simulation. IEEE T ransactions on Pattern Analysis and Machine Intelligence,
13:583 - 598, 1991.

21. X. Wu. Adaptive Split-and-merge Segmentation Based on Piecewise Least-square
Approximation. IEEE Trans. Pattern Anal. Machine Intell., 15:808-815, 1993.

Joint Non-rigid Motion Estimation
and Segmentation

Boris Flach1 and Radim Sara2

1 Dresden University of Technology
2 Czech Technical University Prague

Abstract. Usually object segmentation and motion estimation are con-
sidered (and modelled) as different tasks. For motion estimation this
leads to problems arising especially at the boundary of an object mov-
ing in front of another if e.g. prior assumptions about continuity of the
motion field are made. Thus we expect that a good segmentation will
improve the motion estimation and vice versa. To demonstrate this we
consider the simple task of joint segmentation and motion estimation
of an arbitrary (non-rigid) object moving in front of a still background.
We propose a statistical model which represents the moving object as
a triangular (hexagonal) mesh of pairs of corresponding points and in-
troduce an provably correct iterative scheme, which simultaneously finds
the optimal segmentation and corresponding motion field.

1 Introduction

Even though motion estimation is a thoroughly investigated problem of image
processing, which had attracted attention for decades, we should admit, that
at least a handful crucial open problems remain on the agenda. One of them
are object boundaries and occlusions (imagine e.g. an object moving in front
of a background: If motion estimation is considered as a separate task, then
usually some continuity or smoothness prior assumptions for the motion field are
modelled [1, 2], which regularise and thus improve the result almost everywhere
but not at boundaries and partial occlusions. Thus we can expect that a good
segmentation will improve the motion estimation and vice versa. In case of strict
a-priori knowledge – e.g. rigid body motion – this segmentation can be modelled
directly in terms of admissible motion fields [3]. In case of more general situations
like non-rigid motion this is not possible. To overcome this problem, we propose
a joint motion estimation and segmentation model. To start with, we consider
this task for the simple situation of an arbitrary (non-rigid) object moving in
front of a still background.

We propose a statistical model, which represents both, the moving foreground
object and the background in terms of labelling vertices of a triangular /hexago-
nal) mesh. The state (label) of each vertex is a segment label and a displacement
vector. This allows to incorporate prior assumptions for the objects shape and
the motion field by either hard or statistical restrictions. For instance, to avoid

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 631–638, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

632 B. Flach and R. Sara

motion fields which do not preserve the topology of the object (given by the
segmentation), we require coherent orientations for the displacement states of
elementary triangles of the lattice in the foreground segment. Image similarity as
well as consistency with some colour models for the segments are modelled in a
statistical way. Consequently, we obtain a statistical model for the (hidden) state
field and the images, which is a Gibbs probability distribution of higher order in
our case. This allows to pose the joint segmentation and motion estimation as a
Bayes task with respect to a certain loss function.

2 The Model

Consider non-rigidly moving object against stationary background. The object
can have holes but must not self-occlude during the motion. There are two images
and the task is to segment the moving object and estimate the motion field.

Let R be a set of vertices associated with some subset of image pixels chosen
in a regular way. We consider a hexagonal lattice on these vertices (see Fig. 1).
Its edges are denoted by e ∈ E, where E1 denotes the subset of edges forming
the rectangular sub-lattice. The elementary triangles of the hexagonal lattice are
denoted by t ∈ T . Each vertex r ∈ R has a compound label

(
x(r), v(r)

)
, where

x(r) ∈ {0, 1} is a segment label and v(r) ∈ V is an integer-valued displacement
vector. A complete labelling is thus a pair of mappings x : R→ {0, 1}, v : R→ V
and defines a simultaneous segmentation and motion field.

Fig. 1. Hexagonal lattice and segmentation

We consider a prior statistical model for such labellings which favours com-
pact foreground segments and continuous displacement fields and preserves the
topology of the foreground segment:

p(x, v) =
1
Z

exp
[
−β

∑
(r,r′)∈E1

‖x(r)− x(r′)‖2 −
∑
t∈T

Ht

(
x(t), v(t)

)
−
∑
e∈E1

Hc

(
x(e), v(e)

)
−
∑
r∈R

Hb

(
x(r), v(r)

)]
(1)

The first sum is over all edges in E1 and represents a Potts model for segmen-
tation. The second sum is over all elementary triangles of the hexagonal lattice.

Joint Non-rigid Motion Estimation and Segmentation 633

The function Ht is infinity if all three vertices r ∈ t are labelled as foreground
and their displacements reverse the orientation of that triangle. It is zero in all
other cases. Hence, this term zeroes the probability for displacement fields which
do not preserve the topology of the foreground segment. The third sum is over
all edges in E1. The function Hc is infinity if both vertices are labelled by fore-
ground and their displacement vectors differ more than a predefined value. It is
zero in all other cases. Hence, this term zeroes the probability of non-continuous
displacement fields for the foreground segment. The last sum is over all vertices
and Hb is infinity in case a vertex marked background has an nonzero displace-
ment vector and is zero otherwise. Hence, this term reflects our assumption of a
still background. Combining all together, we get a third order Gibbs probability
distribution aka Markov Random Field.

Our measurement model is as follows. Let y, ỹ be two feature fields taken
from two consecutive images of the scene i.e. y, ỹ : R → F , where F is the
set of feature values (which might be a set of colours in the simplest case). To
express the conditional probability of obtaining y and ỹ given segmentation x and
displacement field v, we introduce the following subsets of vertices. Let S(x) ⊆ R
denote the subset of vertices labelled as foreground, S(x) = {r ∈ R | x(r) = 1}.
All vertices labelled as background are divided into two sets: O(x) represents
those which are occluded by foreground in the second image and B(x) are those
which are visible in both images:

O(x) =
{
r ∈ R | x(r) = 0, ∃ r′ : x(r′) = 1, r = r′ + v(r′)

}
, (2)

B(x) = R \
(
S(x) ∪O(x)

)
. (3)

Using these sets, the conditional probability is as simple as

p(y, ỹ | x, v) = exp

⎡⎣ ∑
r∈S(x)

qf

(
y(r), ỹ

(
r + v(r)

))
+

+
∑

r∈B(x)

qb

(
y(r), ỹ(r)

)
+

∑
r∈O(x)

q̄b

(
y(r)

)⎤⎦ ,

(4)

where qf (f, f ′) and qb(f, f ′) are the log-likelihoods to obtain feature values f
and f ′ for corresponding image points in foreground and background, respec-
tively and where q̄b is the log-likelihood to obtain the feature value f for a back-
ground image point. These probabilities can be easily estimated from foreground
and background feature distributions if a simple independent noise model is as-
sumed for the camera. It is worth noting that the second and third sum in (4)
are non-local: occlusion of a vertex r depends on the states of all vertices which
might occlude r.

Having a complete statistical model for quadruples (y, ỹ, x, v), we formulate
the recognition task as Bayes decision with respect to the following loss function

C(y, ỹ, x, v) =
∑

r

[
μ1 1{x(r) �= x′(r)}+ μ2 ‖v(r)− v′(r)‖2

]
, (5)

634 B. Flach and R. Sara

which is locally additive. Each local term penalises wrong decisions with respect
to segmentation and displacement vectors, respectively. Minimising the average
loss (i.e. the risk) gives the following Bayes decision [6]

x∗(r) = arg max
k

pr(x(r) = k | y, ỹ), (6)

v∗(r) =
∑

v

v · pr(v(r) = v | y, ỹ), (7)

where pr(x(r) | y, ỹ) and pr(v(r) | y, ỹ) are the marginal posterior probabilities
for segment label and displacement vector, respectively:

pr(x(r) = k | y, ỹ) =
∑

x : x(r)=k

∑
v

p(x, v | y, ỹ) (8)

and similarly for pr(v(r) = v | y, ỹ). Hence, we need this probability for the
Bayes decision. Note that the (7) gives non-integer decisions for the displacement
vectors, though the states are considered as integer-valued vectors.

We do not know how to perform the sums in (7) and (8) over all state
fields explicitly and in polynomial time. Nevertheless, it is possible to estimate
the needed probabilities using a Gibbs sampler [5]. In one sampling step, one
chooses a vertex r, fixes the states in all other vertices and randomly gener-
ates a new state according to its posterior conditional probability p(x(r), v(r) |
x(R \ {r}), v(R \ {r}), y, ỹ) given the fixed states x(R \ {r}), v(R \ {r}) in all
other vertices. According to [5] the relative state frequencies observed during the
sampling process converge to the needed marginal probabilities.

3 Experiments

In this section we show results on three image pairs: rect, hand and ball, see
Figs. 2, 3 and 4, respectively. The rect are prepared artificially and have size
100× 100 The size of the hand images is 580× 500 pixels, and the ball images
253×256 pixels. Both pairs are JPEG images shot by a standard compact digital
camera.

The motion in the rect pair is a combination of a translation and a projective
transform. In this dataset, the segmentaion itself is not as simple, but being
combined with motion estimation, the result is fairly good.

The motion in the hand pair is almost uniform in the direction towards the
lower-left image corner. It is rather non-uniform in the ball pair, although the
dominant motion is translation, again towards the lower left corner of the image,
the additional components are in-plane counter-clockwise rotation due to wrist
rotation and out-of plane rotation due to closing the hand towards the forearm.
The ball moves rigidly but the wrist does not.

In the first natural dataset, the segmentation task itself is relatively easy,
based on the foreground-background colour difference but the motion is hard
to estimate due to the lack of sufficiently strong features in the skin region in

Joint Non-rigid Motion Estimation and Segmentation 635

sub-quantised low-resolution images. In the second dataset, however, the motion
estimation task is more easy based on rich colour structure (up to highlights
and uniform-colour patches) but the segmentation would be more difficult on
the colour alone.

The hand images are re-quantised to 32 levels per colour channel and the ball
images to 16 levels. The image features f were the re-quantised RGB triples. The
log-likelihoods qf , qb and q̄b are estimated from the re-quantised images based
on rough manual pre-segmentation (although their automatic estimation from
data is possible, see e.g. [4], it is not the focus of the present paper).

The spacing of the regular lattice was four pixels in the hand pair and three
pixels in the ball pair. In the hand pair, the expected motion range was −24±12
pixels in the horizontal direction and ±12 pixels in the vertical direction; in the
ball pair, the corresponding ranges were −18 ± 6 pixels and 11 ± 4 pixels,

Fig. 2. Results on the rect pair. Top row: input images. Bottom row: segmentation in
the first frame and the deformed triangular mesh in the second frame, both overlaid
over the corresponding images

636 B. Flach and R. Sara

respectively. The initial estimate for the field x were based on local (vertex-
wise) decisions using the log-likelihoods qf and qb. The initial estimate for the
motion field v was zero.

Results for the hand pair are shown in Fig. 3. The bottom left overlay shows
those vertices of the hexagonal lattice that are labelled as foreground (in red).
The bottom right overlay shows the lattice after displacement by estimated mo-
tion field. The moving boundary at the lower edge of the wrist is captured,
although it is fuzzy because of body hair seen against the background.

Results for the ball pair are shown in Fig. 4. We used a stronger β for
the Potts model compared to the hand pair, due to the more complex colour
structure. Again, the bottom left overlay shows in red those vertices of the
hexagonal lattice that are labelled as foreground. The bottom right overlay shows
the vertices displaced by the motion field as blue dots and the residual motion
field after subtracting the mean motion vector v̄ = (−20.5, 11.0) to see the other
modes of the motion.

Fig. 3. Results on the hand pair. Top row: input images and their overlay. Bottom row:
segmentation in the first frame and the deformed triangular mesh in the second frame,
both overlaid over the corresponding images

Joint Non-rigid Motion Estimation and Segmentation 637

Fig. 4. Results on the ball pair. Top row: input images and their overlay. Bottom row:
segmentation in the first frame and the residual motion field after subtracting mean
motion vector

4 Conclusions

In this paper we present our preliminary results on a simplified version for joint
segmentation and motion estimation. Though these results seem to promising,
there are some open problems:

1. The segmentation model is too simple.
2. the model is not symmetric with respect to time reversal.
3. The topology preservation condition does not enforce the boundary to be a

Jordan-curve.
4. Self occlusions of the foreground are not allowed.

We believe these can be addressed in our future work.

References

1. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. In Proc. of the 7. Intl. Conf. on Computer Vision, volume 1, pages
377–384, 1999.

638 B. Flach and R. Sara

2. Thomes Brox, Andres Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy
optical flow estimation based on a theory for warping. In T. Pajdla and J. Matas,
editors, Computer Vision, volume 3024 of Lecture Notes in Computer Science, pages
25–36. Springer, 2004. Proc. of ECCV2004.

3. Daniel Cremers and Christoph Schnörr. Motion competition: Variational integration
of motion segmentation and shape recognition. In Luc van Gool, editor, Pattern
Recognition, volume 2449 of Lecture Notes in Computer Science, pages 472–480.
Springer, 2002. Proc. of DAGM2002.

4. Boris Flach, Eeri Kask, Dmitrij Schlesinger, and Andriy Skulish. Unifying registra-
tion and segmentation for multi-sensor images. In Luc Van Gool, editor, Pattern
Recognition, volume 2449 of Lecture Notes in Computer Science, pages 190–197.
Springer Verlag, 2002.

5. Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions and
the bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6(6):721–741, 1984.

6. Michail I. Schlesinger and Vaclav Hlavač. Ten Lectures on Statistical and Struc-
tural Pattern Recognition, volume 24 of Computational Imaging and Vision. Kluwer
Academic Press, 2002.

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 639–645, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Sequential Probabilistic Grass Field Segmentation of
Soccer Video Images

Kaveh Kangarloo1,2 and Ehsanollah Kabir3

1 Dept. of Electrical Eng., Azad University, Central Tehran Branch, Tehran, Iran
2 Dept. of Electrical Eng., Azad University, Science and Research unit, Tehran, Iran

kangarloo@iauctb.org
3 Dept. of Electrical Eng., Tarbiat Modarres University, Tehran, Iran

kabir@modares.ac.ir

Abstract. In this paper, we present a method for segmentation of grass field of
soccer video images. Since the grass field is observed as a green and nearly soft
region, the hue and a feature representing the color dispersion in horizontal and
vertical directions are used to model the grass field as a mixture of Gaussian
components. At first, the grass field is roughly segmented. On the base of grass
field model, the probability density function of non-grass field is estimated. Fi-
nally using the Bayes theory, in a recurrent process the grass field is finally
segmented.

Keywords: Football, Grass-Field, Color, Texture, Gaussian Mixture Model,
Bayes theory, Segmentation.

1 Introduction

Segmentation is the process of partitioning an image to homogeneous regions. By this
manner similar regions must be categorized into the same group. Mainly the similarity
is defined based on color, shape or texture [1,2].

In surveillance, tracking or traffic control systems, image segmentation is based on
motion [3]. Differential methods and background modeling are the most important
techniques used to estimate the motion vectors. On the other hand in applications such
as face recognition, image segmentation is based on color similarity. Color space
clustering is an efficient method applied in this respect [4]. K-means, FCM, Bayesian
approaches and neural network based methods as SOM are known as the most impor-
tant clustering techniques [5].

In Graph based segmentation, key points in the feature space are considered as dis-
tinct nodes. The similarity of two nodes is specified by an edge, which connects them
as an arm. The goal is to partition the set of vertices into disjoint sets, based on a pre-
defined similarity measure. By this manner the main image is segmented into ho-
mogenous regions [6].

Grass field Segmentation plays a fundamental role in detection and tracking of
players, deep compression and content-based football image retrieval. Seo et al. [7]
proposed a thresholding motion and color histogram technique for tracking the

640 K. Kangarloo and E. Kabir

players. In other words, static and green pixels are labeled as grass. In another paper,
at first by thresholding color histogram, the green pixels are segmented. Considering
motion and edge density in the resulting region, players are detected [8].

Similar methods are proposed to analyze the baseball or tennis video. At first, ap-
plying a threshold value on color histogram, the land is segmented. Then considering
the camera movement, tennis serve or baseball pitch is detected [9,10].

In another paper, the predominant color in random selection of frames is selected as
grass color. By thresholding color histogram, the grass field is segmented [11].

In this paper, we propose a probabilistic method in which the grass field could be
segmented in a highly accurate manner. For this purpose, at first based on color and its
dispersion, the grass field is roughly segmented. In the second step, using a recurrent
algorithm based on the Bayes theory, grass field is finally segmented. This paper is
organized as follow. Section 2 introduces the applied features for grass field model-
ing. In section 3, based on the clusters related to grass and non-grass samples, the
classification method is selected. Section 4, provides the experimental results and
draws the conclusion.

2 Grass Field Modeling

Manily the grass field is observed as a solid, green and soft region. In this regard,
color and texture features, are suitable for modeling and segmentation. Tracking,
virtual reality, guarding system and image retrieval are samples of machine vision
applications in which color segmentation plays the main role. Cameras, produce RGB
signal that is sensitive to the scene illumination and gamma coefficient changes.

Mainly in dynamic scenes different color spaces such as normalized RGB, CIE-
Luv, CIE-Lab, YUV and HSI are utilized [12,13]. Based on the application, it was
decided to use the HSI color space. H, S and I stand for hue, saturation and intensity
respectively. By this manner, the ‘green color’ is in the range of 0.1<hue<0.35.

In this research, the texture analysis is based on color dispersion estimation [14].
For this purpose, a window by the size of N is utilized to estimate the color dispersion
in horizontal and vertical directions (Eq.1-4). The obtained feature is used to represent
the image texture (Fig. 1).

M1 =â
i

â
j

A ´ HhHi , jL- MeanWL i, j Î W

M1 =â
i

â
j

A ´ HhHi , jL- MeanWL i, j Î W

Mean W = 1�N2 â
i

â
j

hHi , jL
 ÈM1 - M2È

M1 + M2

M1 + M2 ¹ 0

0 M1+ M2 = 0

f = {

(1)

(2)

(3)

(4)

Sequential Probabilistic Grass Field Segmentation of Soccer Video Images 641

Where A and B are masks used to estimate the color dispersion in horizontal and
vertical directions (table 1). Meanw is the mean of hue inside the window. M1 and M2
are the color dispersions in horizontal and vertical directions respectively.

Table 1. The 7*7 sample masks applied to estimate the color dispersions in horizontal and
vertical directions (A,B)

0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0

0 0 0 0 0 0 0

 (a) (b)

Fig. 1. (a) Main image, (b) Color dispersion ()

As a result, the two features, hue and , should be small values in the grass field.
Considering two-dimensional color-texture histogram, the grass field appears as a
Gaussian dispersion form (Fig. 3).

3 Grass Field Segmentation

In this paper grass field segmentation is implemented in two phases. First, using a
multi-layer perceptron (MLP) classifier, the grass field is roughly segmented. In the
next stage based on the probability density function of non-grass field, the grass field
is segmented in a highly accurate manner.

For learning the applied 2-3-5-1 MLP classifier, 700 samples have been selected.
The network learns and would be able to classify samples as grass or non-grass sets.
Table 2, shows the classification results according to the different sizes of windows.
Considering the results, we decided to apply the 7*7 masks for color dispersion analy-
sis.

In order to partition an image to grass and non-grass field, thresholding of the MLP
output should be made. But selecting the optimal threshold value is an important fac-
tor that influences the segmentation accuracy (Fig. 2).

642 K. Kangarloo and E. Kabir

Table 2. The classification results according to the mask size

Window Size 5*5 7*7 9*9 11*11

Non-
Grass

%96 %98 %93 %83 Recognition
Rate

Grass %97 %99 %95 %84

Fig. 2. The grass field segmentation regarding to a threshold value applied to the MLP output.
First row: main image and the MLP output (The probability of belonging to grass-field).
Second row, left to right: grass field segmentation based on applying the threshold values of 0.7
and 0.5 respectively

To select the optimal threshold value, we have applied a Bayesian approach [15].
Regarding to the grass and non-grass field models, the probability of belonging to
grass field is:

P HGÈxL= PHxÈGL.PHGL
P HxÈGL.PHGL+ PHxÈnGL.PHnGL (5)

Where P(G) and P(nG) are the probability of grass and non-grass field observa-
tion(P(G)+P(nG)=1). P(x|G) and P(x|nG) are the probability density function of grass
and non-grass field respectively.

Since the grass field appears as a Gaussian dispersion form, on the 2D hue- histo-
gram, it is modeled as a mixture of Gaussian components (Fig 3). The specifications
of these components can be calculated applying grass field samples selected from
football images. On this basis, the probability density function of grass field is:

P HxÈGL= â
i=1

n

ai Pi HxÈGiL

(6)

P HxÈGiL= 1
2 p HÈÚiÈL1�2 e- 1�2 Hx- miLT Úi- 1Hx- miL

(7)

Sequential Probabilistic Grass Field Segmentation of Soccer Video Images 643

Where μi and i are the corresponding parameters of the ith component and i is

the conditional probability that observation x belongs to ith components. If the number

of desired components that define the grass field model is known, the unknown pa-
rameters could be calculated based on the well known, EM1 algorithm [16].

In this paper the grass field is modeled based on three Gaussian components. For
this purpose, 350 grass samples of soccer images have been selected. The said two
features, hue and , have been calculated and applied for grass field modeling.

Fig. 3. Two-dimensional color-texture histogram, Left column): main images, Right column):
two-dimensioned histograms, Horizontal and vertical axes are bases on hue and

The probability density function of non-grass field, P(x|nG), and the probability of
grass field observation are not known. In order to estimate the probability density
function of non-grass field, it is recommended that region covered with grass, be
roughly segmented. The color-texture histogram of remaining portion of image can be
used as an estimation of probability density function of non-grass field.

For this purpose the output of the MLP classifier is compared with a threshold
value of +0.7. The zones exceeding this threshold value are labeled as grass. Then this
region is cut and the color-texture histogram of the remaining portion of image is used
to approximate the probability density function of non-grass field. In order to estimate
the other unknown variable, P(G), it is assumed that the probability of grass and non-
grass field observation are proportional to their size in the image.

 By this manner, the grass field is segmented and the sizes of obtained regions are
estimated. If the calculated grass-field region size is different grossly from that as
presupposed, the process is repeated. The new calculated value, P(G), is used as ob-
servation probability and the findings are calculated again. The process is repeated
until the difference between the two successive grass-field region size (observation
probability) be less than a predetermined value of %1 (Fig. 4).

1 Expectation Maximization

644 K. Kangarloo and E. Kabir

4 Conclusion

This paper presents a method by which the grass field in football images could be
segmented. As mentioned, the hue and color dispersion in horizontal and vertical
directions used as features for grass field modeling. By this manner, the grass field is
segmented in two phases. At first utilizing an MLP classifier the grass field is roughly
segmented and then based on the Bayes theory a fine segmentation is performed.

It goes without say that if we are able to segment the grass field, we would be able
to send a large portion of football images only by a flag as grass. By this manner, we
could be able to compress the football images to great amount. For this purpose, based
on the proposed algorithm, grass field is segmented. The main image is divided into
8*8 blocks, those located in grass field are sent with just a flag and the non-grass field
as foreground, is encoded in MPEG [17]. The proposed algorithm was applied to
some related sequences. Considering the size of background and final encoded se-
quences, an average compression ratio, 99/5 percent was obtained.

 (a) (b)

Fig. 4. (a) The grass field segmentation result after 15 iteration. (b) The error and grass field
observation probability during 15 iteration

References

1. Pal, N.R, Pal, S.K: A Review on Image Segmentation Techniques. Pattern Recognition
Letters, Vol. 26, no. 9, (1993) 1277-1294.

2. Southall, B., Buxton, B., Marchant, J. and Hague, T.: On the Performance Character- iza-
tion of Image Segmentation Algorithms: A Case Study, ECCV00, Vol. 2. (2000) 351-365

3. Stiller, C. and Konrad, J: Estimating motion in image sequences. IEEE Signal Processing
Magazine, vol. 16. (1999) 70-91

4. Cheng, H. D., Jiang, X. H, Sun, Y. and Wang, J.: Color image segmentation: advances and
prospects. Pattern Recognition, vol.34. (2001) 2259-2281

5. Fraley, C. and Raftery, A. E.: How many clusters? Which clustering method? Answers via
model-based cluster analysis. Technical Report 329, Department of Statistic University of
Washington, (1998)

6. Jianbo, S and Malik, J.: Normalized cuts and image segmentation. IEEE Transaction on
Pattern analysis and Machine Intelligence, Vol. 22, (2000) 888-905

7. Seo, Y., Choi, S., Kim, H. and Hong, K.S.: Where are the ball and players?: Soccer Game
Analysis with Color-based Tracking and Image Mosaic. Proceedings of Int. Conference on
Image Analysis and Processing (ICIAP), (1997) 196-203

Sequential Probabilistic Grass Field Segmentation of Soccer Video Images 645

8. Utsumi, O., Miura, K., Ide, I., Sakai, S. and Tanaka, H.: An Object Detection Method for
Describing Soccer Games from Video. Proceedings of IEEE Int. Conference on Multime-
dia and Expo. (ICME), vol. 1, (2002) 45-48

9. Sudhir, G., Lee, J. C. M., Jain, A. K.: Automatic Classification of Tennis Video for High-
level Content-based Retrieval. International Workshop on Content-Based Access of Image
and Video Databases (CAIVD), (1998) 81-90

10. Hua, W., Han, M. and Gong, Y.: Baseball Scene Classification Using Multimedia Fea-
tures. Proceedings of IEEE International Conference on Multimedia and Expo., Vol. 1,
(2002) 821-824

11. Xu, P., Xie, L., Chang, S.F., Divakaran, A., Vetro, A. and Sun, H.: Algorithms and System
for Segmentation and Structure Analysis in Soccer Video. Proceedings of IEEE Int. Con-
ference on Multimedia and Expo.(ICME), (2001) 928-931

12. Raja, Y., McKenna, S. and Gong, S.: Color model selection and adaptation in dynamic
scenes. In 5th European Conference on Computer Vision, (1998) 460–474

13. Liu, J. G. and Moore, J. M.: Hue image RGB color composition. A simple technique to
suppress shadow and enhance spectral signature. International Journal of Remote Sensing,
vol. 1, (1990) 1521–1530

14. Materka, A. and Strzelecki, M.: Texture analysis methods – A review. Technical Report,
University of Lodz, Institute of Electronics, COST B11 Technical Report, Brussels 1998.

15. Williams, C.K.I. and Barber, D.: Bayesian classification with Gaussian processes, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol.20, (1998) 1342-1352

16. McLachlan and Krishnan, T.: The EM algorithm and extensions. Wiley, (1997)
17. ISO-13818-2: Generic Coding of moving pictures and associated audio (MPEG-2).

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 646–655, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Adaptive Local Binarization Method for Recognition
of Vehicle License Plates

Byeong Rae Lee1, Kyungsoo Park2, Hyunchul Kang2, Haksoo Kim3, and
Chungkyue Kim4

1 Dept. of Computer Science, Korea National Open University,
169 Dongsung-Dong, Chongro-Ku, Seoul, 110-791, Korea

brlee@knou.ac.kr
2 Dept. of Information and Telecommunication Engineering, University of Incheon,

177 Dowha-Dong, Nam-Gu, Incheon, 402-749, Korea
{kspark, hckang}@incheon.ac.kr

3 Dept. of Information and Telecommunication Engineering, Sungkonghoe University,
1-1 Hang-Dong, Kuro-Ku, Seoul, 152-716, Korea

hskim@mail.skhu.ac.kr
4 Dept. of Computer Science and Engineering, University of Incheon,

177 Dowha-Dong, Nam-Gu, Incheon, 402-749, Korea
ckkim@incheon.ac.kr

Abstract. A vehicle license-plate recognition system is commonly composed of
three essential parts: detecting license-plate region in the acquired images, ex-
tracting individual characters, and recognizing the extracted characters. But in
the process, the problems like damage of license-plate and unequal light effect
make it difficult to detect accurate vehicle license-plate region and to extract
letters in that region. In this paper, to extract characters accurately in the li-
cense-plate region, a local adaptive binarization method which is robust under
non-uniform lighting environment is proposed. To get better binary images, re-
gion-based threshold correction based on a prior knowledge of character ar-
rangement in the license-plate is applied. With the proposed binarization
method, 96% of 650 sample vehicle license-plates images are correctly recog-
nized. Compared to existing local threshold selection methods, about 5% of
improvement in recognition rate is obtained with the same recognition module
based on LVQ.

1 Introduction

Recently the traffic density has been rapidly increased. On this account, the research
regarding the automatic vehicle identification system on the road for managing the
roads, inspecting the vehicles automatically and investigating the abnormal vehicles
has been actively advance. This automatic number recognition system is composed
largely with image capturing, number plate and character extracting and recognizing
departments. A vehicle license-plate recognition system is commonly composed of
three essential parts: detecting license-plate region in the acquired images, extracting
individual characters, and recognizing the extracted characters.

Adaptive Local Binarization Method for Recognition of Vehicle License Plates 647

Several methods for detecting license-plate region have been proposed.
First, a template matching method describes a collection of standard template of the

license-plate region previously and then extracts the license-plate region from images by
comparing the images with the predefined set of prototypes. This method shows high
recognition rate when the license-plate is similar to a template in the predefined collec-
tion. This method, however, has some problems. It needs large number of templates to
accept diverse types of vehicles and accordingly requires much recognition time.

Second, in the method using Hough transform, edges in the input images are detected
first. Then Hough transform is applied to detect the license-plate regions. This method,
however, has difficulty in extracting license-plate region when the boundary of the li-
cense-plate is not clear or the images contain lots of vertical and horizontal edges around
the radiator grilles, and takes long processing time.

For the last, there is a method which uses brightness change in the image. This method
is based on the property that the brightness change in the license-plate region is more
remarkable and more frequent than the other region. Since this method does not depend
on the edge of license-plate boundary, this method can be applied to the image with
unclear license-plate boundary and can be implemented simple and fast algorithm. The
correct license-plate extraction rate is relatively high compared to the former methods.

To recognize the numbers and letters in the license-plate region, the individual charac-
ters should be extracted. Some of the images taken from the roads, however, contain
damaged license-plates that cause incorrect segmentation. Since this can lead to incorrect
recognition, a robust segmentation algorithm is vital for vehicle license-plate recognition
systems.

Several studies have been done to binarize vehicle license-plate images, including
global threshold selection methods and local binarization methods which use local
threshold selection techniques.

In this paper, we suggest a robust binarization method which operates individual char-
acter level, and refines the result based on a priori knowledge about approximate posi-
tion and size of each character regions.

This paper consists of four chapters: the recognition process of the vehicle license-
plate is discussed in chapter 2, the existing methods and the proposed method to binarize
license-plate images and to extract individual characters are described in chapter 3, ex-
perimental results are provided in chapter 4, and finally conclusions are in chapter 5.

2 Recognition of the Vehicle License Plate

The system for recognizing the vehicle license plate consists of four parts, those are
taking the images with cameras, segmenting the license-plate region, extracting the
individual characters, and recognizing the extracted characters.

2.1 Extraction of the Vehicle License Plate

To recognize the vehicle license from its front images taken on the roads, the first
thing to do is to extract the license-plate regions in the images. A 256-level gray-scale
image is captured as input to the recognition system. The components that have char-
acteristic features of license-plate in the image are detected and the similarity measure

648 B.R. Lee et al.

such as size of the component, relation between components, and concentration of the
components is examined. The characteristic attributes of the license-plate used in this
study is as follows.

1. More than 4 numeric characters are included in the license-plate region.
2. These numeric characters have relatively little damage. The difference of bright-

ness between the numeric characters and background is relatively large.
3. The regions of the numeric characters are separated each other and have sizes

within a certain range.
4. The numeric-character regions are close to each other.
5. The border of the license-plate contains horizontal and vertical edge components,

and exists within a certain distance from the numeric character region.

These features are considerably robust. Damages can make the license-plate region
not be extracted. But partial failure of detecting one or two character regions can be
restored by inferring the lost region based on the regions of the neighboring characters.

To make this method effective, it is needed to minimize the influence of brightness
variation. To do this, we perform license-plate extraction with an image that is ob-
tained by removing low frequency components from the original image. The entire
flow of the algorithm extracting the license plate is shown in Figure 1.

After sub-sampling as pre-processing, candidate regions for license plate are ex-
tracted from the car images. The low frequency images are obtained by applying a
7×7 smoothing filter on the original images.

These images are binarized with multiple thresholds to cope with uneven brightness
distribution. The license-plates regions are searched in these binary images. Then the
candidate regions for license-plate are sent to a recognizer. The recognizer generates
license string by extracting the individual characters and identifying each characters.

�

Fig. 1. Extracting license plate region

2.2 Recognition of the License Plate

The license plate image extracted from the input image is sent to character recognition
module. Figure.2 shows a brief flow of the recognition process. A binary image is

Adaptive Local Binarization Method for Recognition of Vehicle License Plates 649

obtained from the extracted license plate image. Then individual characters are seg-
mented and recognized.

Fig. 2. Character recognition in license plate

2.3 The Recognition Module

To obtain individual character region from extracted license plate images, character
and number regions in plate are segmented through adaptive binarization. The seg-
mented characters are delivered to the recognition module that is implemented using a
neural network based on LVQ (Learning Vector Quantizer).

The structure of LVQ neural network is shown in Figure 3. Each of the neurons in
the competitive layer forms a reference vector representing a subset of training sam-
ples during the learning process.

Fig. 3. Structure of LVQ neural network

3 Recognition of the Vehicle License Plate

It is necessary to binarize the images to distinguish between the character and back-
ground of the vehicle license plate as a pre-processing. To binarize the images of
license plate, the binarization within individual character region is proposed in this
paper.

650 B.R. Lee et al.

3.1 The Established Binarization Methods

3.1.1 Global Binarization
Global binarization is a method that has single threshold T for entire image. The pixels
with gray level greater than T are labeled as ‘1’, while the others are labeled as ‘0’.
Therefore the result of global binarization depends on single threshold T.

In the existing methods, the threshold is selected according to histogram analysis,
complexity of images, and edges. In some extreme cases, users select thresholds
manually. All of those methods, however, have problems when the brightness distribu-
tion in the image is not uniform. In that case, objects cannot be separated from the
background with single threshold.

If an image is taken in a uniform lighting environment and the license plate is in good
condition, global binarization can be an efficient method. In many cases, however, one
threshold cannot produce proper result because of physical damages or uneven lighting
conditions. Figure 4 shows an example with an uneven lighting environment. No single
threshold can clearly discriminate all the characters from the background.

�

Fig. 4. License plate image with uneven lighting environment

3.1.2 Local Binarization
The brightness distribution of various positions in a license plate image may vary
because of the condition of the plate and the effect of lighting environment. Since the
binarization with one global threshold cannot produce useful results in such cases,
local binarization methods are widely used. In many local binarization methods, an
image is divided into m×n blocks and a threshold is chosen for each block. Figure.5
shows an example obtained using a local threshold method with block size 64×16.

The block level local binarization method can make better result than global binari-
zation methods. This method, however, has problem caused by the discontinuity be-
tween adjacent blocks. As shown in Figure 6, one character can be placed on more
than 2 adjacent blocks. If the difference in the thresholds between two adjacent blocks
is too large, the binary shape of the character can be deformed and has considerable
difference compared to training patterns. Consequently it is possible to decrease rec-
ognition rate.

Adaptive Local Binarization Method for Recognition of Vehicle License Plates 651

Fig. 5. Images of global and local binarization

�

Fig. 6. Problem of local threshold

3.2 Proposed Binarization Method

Even though local binarization method can improve the problems in global methods, it
still has problems in applying each threshold among blocks. To minimize the effect of
discontinuity between adjacent blocks, a revised local binarization method which
determines a threshold for each character region is proposed.

3.2.1 Adaptive Local Processing
As stated before, local binarazation methods which select thresholds for a given image
divided into same size blocks can cause blocking effects, especially when a character
is placed in more than 2 blocks. In this case, defining a block as each character region
can be a effective method to handle this problem. Figure 7 shows a comparison of the
shapes of blocks in existing local threshold binarization method and proposing adap-
tive local binarization method.

�

Fig. 7. Comparison of block-shapes in local binarization methods

In the proposed method, positions and sizes of rectangles that contain characters in
a license plate must be determined first. For this purpose, histograms of pixel numbers
corresponding to the characters in horizontal and vertical direction are examined.

652 B.R. Lee et al.

To minimize the influence of noise, binarized edge image is used in horizontal and
vertical projection. Figure 8 shows the pixel cumulation in horizontal direction to
separate the rows of strings. The histogram is obtained by counting the pixels whose
values are ‘1’ along each horizontal line. The boundary region is defined as the point
where the pixel cumulation is minimum within 1/4 to 3/4 of the vertical range.

Fig. 8. Region separation

The character region is searched to separate the characters in each row. For some Ko-
rean characters, two separate regions form one character region. In this case the two
adjacent regions are merged into one region. This operation is based on the information
such as average character width and type of character (Korean character or numeric
character) at that location. Figure 9 is region segmentation result for the image in Figure
8. The character regions are segmented for upper and lower row respectively.

�

Fig. 9. Character region segmentation

Thresholds are determined for the regions respectively. Then each region is bi-
narized with its own threshold value. Sometimes small meaningless regions can be
detected. These regions are regarded as background if the sizes of the regions are
small compared to normal characters.

3.2.2 Adaptive Region Split
Even in a region for one character, the brightness can vary due to physical bent license
plate. Non-uniform illumination environment can cause similar effect, too. In majority
of those cases, brightness change occurs mainly in vertical direction. The result of this
problem is usually given in the form of partially missing region or broken region. To
cope with such a problem, horizontal pixel cumulation histogram in a character region

Adaptive Local Binarization Method for Recognition of Vehicle License Plates 653

is checked to find out if there is split or missing in character region. If one character is
divided into two parts or part of it is missing, the region is split into two regions and
thresholds are determined for these regions respectively.

Figure 10 shows the results of binarization of a license plate image whose lower
part is slightly bent. In Figure 10(a), four numeric characters in the second row are
partially removed because the brightness of lower part is darker than upper part due to
reduced light. Figure 10(b) is the result of proposed method. It can be seen that the
missing parts of the characters are restored.

�

Fig. 10. Result of binarization after region split

4 Experiment and Effect

The experiment has been performed to evaluate the efficiency of modified local bi-
narization which is presented in this paper with car images taken in tollgates. The size
of the images is 1300×1024 and the algorithm is implemented using Visual C++6.0 on
P-IV 2.4GHz, Windows-XP. Global binarization method, local binarization method
and modified local binarization method proposed in this paper is applied to license
plates images respectively to obtain binary images.

Figure 11 is an example showing the improvement of proposed method compared
to other methods. Figure 11(b) shows the result of global binarization, and the right
part of the binary image is not obtained properly. Figure 11(c) is the result of local
binarization using uniform grid that divide the image. It can be noticed that part of the
characters in the upper row are missing. Improved result obtained using proposed
method is shown in Figure 11(d).

650 license plates images are used to evaluate the performance improvement. In
Table 1, correct recognition rates obtained using the binary images obtained using
local binarization method and proposed binarization method are shown. 96.76% of the
license plates are successfully recognized with proposed method. More than 5% of
correct recognition rate is obtained with the method.

There are some recognition failures in the experiment. The old version license
plates with thin font are sensitive to noise. In spite of improvement in proposed
method, significant physical damage on license plates make binarization and character
extraction extremely difficult and cause recognition failure.

654 B.R. Lee et al.

�

Fig. 11. Results of binarization with noisy license plate image

Table 1. Comparison of recognition rate

Established Binarization

Processing
Proposed method Improvement

No. of total
license plates

650

Recognized
license plates

596 629

Success rate 91.69% 96.76

5%

5 Conclusion

In this paper, modified region-based local binarization method for license plate recog-
nition system is proposed. Thresholds are chosen for character region in a license
plate image.

Using the proposed method, improved binarization result can be obtained. As a re-
sult, characters in license plates can be accurately extracted, and recognition rate can
be raised. Since the proposed method is based on detecting character region, the proc-
ess needed to remove noise and border line of license plates is simplified. 96% of 650
license plate images are correctly recognized, and more than 5% of improvement is
achieved compared to existing binarization methods.

Even though the recognition performance is improved, more effort is needed to ex-
tract license plate regions accurately in the images. Recognition algorithm should be
improved too so that it is more robust in noisy environment.

References

1. D. Gao and J. Zhou.: Car License Plate Detection from Complex Scene. In Proceedings of
International Conference on Signal Processing (2000) 1409-1414

Adaptive Local Binarization Method for Recognition of Vehicle License Plates 655

2. J. Rosa and T. Pavlidis.: A Shape Analysis Model with Applications to Character Recogni-
tion System. IEEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI-16 (1994) 393-404

3. N. A. Khan et. Al.: Synthetic Patttern Recognizer for Vehicle License Plates. IEEE Trans-
action on Vehicular Technology, Vol. 4, No. 4 (1995) 790-799

4. H. A. Hrgt, et. Al.: A high Performance License Plate Recognition System. Proc. IEEE intl.
Conf. On System, Man and Cybernetics, Vol. 5 (1998) 4357-4362

5. Rafael C. Gonzales, Richard E. Woods.: Digital Image Procesing, 2nd Ed., Prentice Hall
(1992)

6. Martin T. Hagan, Howard B. Demuth, Mark Beal.: Neural Network Design, Chapman &
Hall (1996) 14_16-14_23

7. J. Ohya, A. Shio and S. Akamatsu.: Recognizing characters in scene images, IEEE Trans.,
Vol. PAMI-16 (1994) 214-220.

8. N. Otsu.: A Threshold Selection Method from Gray-scale histogram, IEEE Trans. On Sys-
tem, Man, and Cyberetics, SMC-8 (1978) 62-66.

Blur Identification and Image Restoration Based
on Evolutionary Multiple Object Segmentation

for Digital Auto-focusing�

Jeongho Shin, Sunghyun Hwang, Kiman Kim, Jinyoung Kang,
Seongwon Lee, and Joonki Paik

Image Processing and Intelligent Systems Lab,
Department of Image Engineering,

Graduate School of Advanced Imaging Science, Multimedia, and Film,
Chung-Ang University,

221 Huksuk-Dong, Tongjak-Ku, Seoul 156-756, Korea
paikj@cau.ac.kr

http://ipis.cau.ac.kr

Abstract. This paper presents a digital auto-focusing algorithm based
on evolutionary multiple object segmentation method. Robust object seg-
mentation can be conducted by the evolutionary algorithm on an image
that has several differently out-of-focused objects. After segmentation is
completed, point spread functions (PSFs) are estimated at differently
out-of-focused objects and spatially adaptive image restorations are ap-
plied according to the estimated PSFs. Experimental results show that
the proposed auto-focusing algorithm can efficiently remove the space-
variant out-of-focus blur from the image with multiple, blurred objects.

1 Introduction

A demand for digital multi-focusing techniques is rapidly increasing in many vi-
sual applications, such as camcorders, digital cameras, and video surveillance sys-
tems. Multi-focusing refers to a digital image processing technique that restores
multiple, differently out-of-focused objects in an image. Conventional focusing
techniques, such as manual focusing, infra-red auto-focusing (IRAF), through
the lens auto-focusing (TTLAF), and semi-digital auto-focusing (SDAF), can-
not inherently deal with multi-focusing function. Multi-focusing can be realized
with fully digital auto-focusing (FDAF) based on PSF estimation and restora-
tion. However, it additionally requires robust segmentation of multiple objects
to estimate their individual PSFs.

� This work was supported in part by Korean Ministry of Science and Technology
under the National Research Lab. Project, in part by Korean Ministry of Education
under Brain Korea 21 Project, and in part by grant No.R08-2004-000-10626-0 from
the Basic Research Program of the Korea Science & Engineering Foundation.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 656–668, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Blur Identification and Image Restoration 657

Given multiple objects at different distances from a camera, target objects
are well-focused and the others are out-of-focus. The other objects are blurred in
different degrees depending on their distances from the camera [1]. The amount
of out-of-focus blur also depends on camera parameters such as lens position
with respect to the image detector, focal length of the lens, and diameter of
the camera aperture [1, 2]. Thus it is impractical to make all objects to be well-
focused, when cameras have fixed focal lens or shallow depth of field.

In this paper, we propose a novel digital auto-focusing algorithm based on
evolutionary multiple objects segmentation, which can restore all differently
out-of-focused objects, simultaneously. The robust segmentation method of out-
of-focused objects is one of the essential parts of the digital auto-focusing
algorithm because the objects are distorted by out-of-focus blur. The existing
algorithms such as Snake [3] or modified active contour models [6] do not have
enough robustness with real image because they rely on the detection of the
local gradient and can be easily distracted by noise or edges on the background.
We adopt an evolutionary algorithm for segmenting differently out-of-focused
objects.

Evolutionary algorithms [5, 6] solely depend on the survival of the fittest indi-
viduals which will replace their parents. Once the segmentation is completed, the
restoration of the objects is performed by the PSF estimated with the segmented
objects. In this paper, the PSF estimation technique is the modified version of
Kim’s algorithm [7], which has the improved accuracy of the estimated PSF
using an isotropic PSF model and least-squares optimization. A block diagram
of the proposed digital auto-focusing based on evolutionary multiple object seg-
mentation algorithm is shown in Fig. 1.

This paper is organized as follows: In section 2, we explain the technique
for segmenting multiple objects using evolutionary algorithm. In section 3, the
corresponding isotropic PSFs in the image formation system are respectively
identified according to each segmented region or objects, which can be consid-
ered as the estimation process in blind image restoration [7, 8, 9, 10]. Section 4
presents the spatially adaptive image restoration scheme that combines object
segmentation and PSF estimation for restoring multiple objects. Experimental
results and conclusions are given in section 5 and 6, respectively.

Fig. 1. A block diagram of the proposed digital auto-focusing based on evolutionary
multiple object segmentation algorithm

658 J. Shin et al.

2 Object Segmentation Using Evolutionary Algorithm

In this section, the object segmentation using the evolutionary algorithm is pre-
sented. To extract the precise boundaries of objects, the extracted initial bound-
aries can be used as a parent in the following evolutionary algorithm-based object
segmentation.

The evolutionary algorithms are stochastic search methods, which incorpo-
rate aspects of natural selection or survival of the fittest. In other words, an
evolutionary algorithm maintains a population of structures (i.e., it is usu-
ally randomly generated initially) that evolves according to rules of selection,
crossover, mutation and survival, referred to as genetic operators. A shared
’environment’, determines the fittest or performance of each individual in the
population. The fittest individuals are more likely to be selected for reproduc-
tion (i.e., retention or duplication), while crossover and mutation modify those
individuals, yielding potentially superior ones.

From the extracted initial boundary, the precise boundary can be obtained
by the proposed evolutionary segmentation algorithm to be presented in this
section. Starting from an initial population of feasible boundaries, the object
boundary evolves throughout crossover and mutation operations that induce
gradually better solution. The selection is performed by evaluating the fitness
of the solutions. For example, Fig. 2 shows an example of the evolutionary algo-
rithm using a synthetic noisy and bumpy image. The latter image was simulated
using 10dB zero-mean Gaussian noise. For the experiment 1,000 initial popula-
tions were generated and 100 iterations were performed. The more complicated a
shape becomes, the more number of initial populations and iterations are needed.

We will show the main components of the evolutionary algorithm for object
segmentation in the remainder of this section. The proposed object segmentation
based on evolutionary algorithm is summarized in Algorithm 1.

2.1 Initial Population

In order to start the evolutionary algorithm, we first generate an initial popu-
lation of boundaries at random. The initial population can be generated under

(a) (b) (c) (d)

Fig. 2. Example of boundary extraction by evolutionary algorithm using a bumpy
shape: (a) a bumpy shape with 10dB Gaussian noise, (b) magnified and reduced con-
tours for initial population, (c) the initial contour, and (d) the detected contour of (a)

Blur Identification and Image Restoration 659

Algorithm 1 Evolutionary Object Segmentation.
1. Given an initial boundary, denoted as x, generate both magnified and reduced

versions of x by 20%, denoted as xR and xM , respectively.
2. Take a random boundary in the range bounded by xR and xM . Repeat this step

until the initial population size becomes N .
3. Crossover: Randomly choose a pair of boundaries, and choose one location and

swap edge points on the corresponding location. Repeat this step N times.
4. Mutation: Choose an edge point from the first boundary, and perform mutation

on it. Repeat this step for all N shapes.
5. Among 3N shapes, produced by steps 3, 4, and 5, choose N best shapes based on

a fitting criterion.
6. Repeat steps 3 to 6 until the best fitted shape converges to the desired one.

assumption that any feasible boundary should be near the boundary of target
object. The initial population represents a coarse boundary which can be ap-
proximated by some vertices. The vertex of the boundary is denoted as a two
dimensional vector whose elements represent the position of the vertex.

In our algorithm the initial population can be obtained by generating random
shapes between magnified and reduced versions of the initial boundary. As shown
in Fig. 2b, a vertex can move along the line connecting the vertex of the inner
contour and the corresponding vertex of the outer contour. The jth vertex of
the ith contour can be generated by

vj
i (s) = vj

inner(s) + Rand(s){vj
outer(s)− vj

inner(s)}, (1)

where vj
i (s), v

j
outer(s), and vj

inner(s) respectively denote the jth vertex of the ith
contour, and the jth vertices of outer and inner contours. In Eq. (1), Rand(s)
generates a uniformly-distributed random number in the range (0 < x < 1), with
regard to the position of s. As a result, the initial population can be created,
which usually consists of a large number of shapes. The appropriate number of
the initial population depends on a specific application. The better the initial
population, the easier and faster the search for the optimal boundary.

2.2 Crossover and Mutation

Crossover in biological terms refers to the blending of chromosomes from the
parents to produce new chromosomes for the offspring. The analogy carries over
to crossover in evolutionary algorithms. The evolutionary algorithm selects two
shapes at random from the mating pool. Whether the selected boundaries are
different or identical does not matter. We randomly choose one location and pro-
duce new boundaries by swapping all edge points on the corresponding location.

Mutation randomly changes an edge point of the boundaries of the popula-
tion from time to time. The main reason for mutation is the fact that some local
configurations of edge points of the boundaries of the population can be totally

660 J. Shin et al.

lost as a result of reproduction and crossover operations. Mutation protects
evolutionary algorithms against such irrecoverable loss of good solution features.

2.3 Fitness and Selection

An evolutionary algorithm performs a selection process in which the ”most fit”
members of the population survive, and the ”least fit” members are eliminated.
As a result, the selected shapes are allowed to mate at random, creating off-
spring which is subject to crossover and mutation with constant probabilities.
The evaluation of the degree of fitness depends on the value of the objective
function.

In the proposed object segmentation algorithm, the selection criterion de-
scribes how close it is from the optimal boundary. The fitness of each population
as a contour can be evaluated as

f(ci) =
N∑

j=0

[3∑
k=−3

3∑
l=−3

|∇I(xj
i + k, yj

i + l)|2 − |vj−1
i − 2vj

i + vj+1
i |2

]
, (2)

where the vertex vj
i = [xj

i , y
j
i]

T , and I(m,n) and ci respectively represent the
intensity at the position of (m,n) and ith contour. In Eq. (2), the first term of
the ri ght side makes the contour be placed at the features such as edge and line,
and the other term retains continuity between vertices.

3 Isotropic Blur Identification

In this section we present an isotropic PSF model and estimation algorithm
without any recursive procedure or iterative optimization [8–10]. By considering
a two dimensional (2D) isotropic PSF as a discrete model with a finite number of
free coefficients, which determine a set of concentric circles, we can systematically
estimate the PSF by solving a linear equation. The number of equations, that is
constraints, must be equal to or larger than that of different coefficients to avoid
underdetermined condition. It is highly desirable to have more measurements
than the number of unknown coefficients to obtain reliable estimation results
under noise-prone condition.

3.1 2D Isotropic PSF Model

The discrete approximation of an isotropic PSF is shown in Fig. 3. As shown in
Fig. 3, many pixels are located off concentric circles within the region defined as

SR =
{
(m,n)|

√
m2 + n2

}
, (3)

where R is the radius of the PSF. Each pixel within the support is located
either on the concentric circles or not. The pixels on a concentric circle are
straightforwardly represented as the PSF coefficients. On the other hand, pixels

Blur Identification and Image Restoration 661

Fig. 3. The geometrical representation of a 2D isotropic discrete PSF: The gray rect-
angles represent inner pixels of the PSF and the empty ones are outer pixels of the
PSF

off a concentric circle are not described by those. So these pixels should be
interpolated by using adjacent pixel on the concentric circle as

h̃(m,n) =
{
αar + βar+1, if(m,n) ∈ SR,
0, elsewhere, (4)

where ar and ar+1 respectively represent the rth and the r + 1st entries of the
PSF coefficient vector. In Eq. (4), index r is determined as

r =
⌊√

m2 + n2
⌋
, (5)

where #·$ is the truncation operator to integer. Based on Fig. 3, α and β are
determined as

α = r − 1 +
√

m2 + n2, and β = 1− α. (6)

This approximation of 2D discrete PSF is available to the popular isotropic
blurs, such as Gaussian out-of-focus blur, uniform out-of-focus blur, and x-ray
scattering.

3.2 Estimation of the PSF Coefficients

In order to estimate all PSF coefficients, we call the fundamental relationship
between 2D PSF and 1D step response [1]. Now, let assume that an original image
is same as simple pattern image fP (k, l), shown in Fig. 4a, can be represented as

fP (k, l) =
{
iL, if 0 ≤ k < N, and 0 ≤ l < t,
iH , if 0 ≤ k < N, and t ≤ l < N,

(7)

662 J. Shin et al.

(a) (b) (c) (d)

Fig. 4. The pattern images and its edges: (a) original simple pattern image, (b) blurred
pattern image, (c) edges of (a), and (d) edges of (b)

where the constant t is a boundary of left and right of the pattern image. The
blurred pattern image gP (k, l), shown in 4b, is obtained by convolving Eq. (7)
and Eq. (4) as

gP (k, l) =
{ iL, if 0 ≤ k < N, and 0 ≤ l < t−R,
s(i), if 0 ≤ k < N, and t−R ≤ l ≤ t + R,
iH , if 0 ≤ k < N, and t + R < l < N,

(8)

where R is the radius of the PSF, and the sequence s(i) represents the 1D
step response and s(i) = {s0, s1, . . . , s2R} . Each observed 1D step response
corresponds to partial summation of the PSF as

si = iH

[R∑
m=−R

−R+i∑
n=−R

h̃(m,n)
]

+ il, 0 ≤ i < 2R. (9)

Unpacking the summation in Eq. (9) yields the following linear simultaneous
equations:

s0 = iH
{
h̃(0,−R) + 2

[
h̃(1,−R) + · · ·+ h̃(R,−R)]

}
+ il,

s1 = iH
{
h̃(0,−R + 1) + 2

[
h̃(1,−R + 1) + · · ·+ h̃(R,−R + 1)]

}
+ s0,

...
s2R = iH

{
h̃(0, R) + 2

[
h̃(1, R) + · · ·+ h̃(R,R)]

}
+ s2R−1.

(10)

Furthermore, using the discrete approximation, we can substitute all PSF
elements into linear combination of free coefficients of the PSF as derived in
Eq. (4). For examples, first and last equations in Eq. (10) always become

s0 = iHaR + iL, and s2R = ihaR + s2R−1. (11)

Eq. (10) can be rewritten in a compact matrix-vector form as

s = Da, (12)

where s is a R + 1 dimensional vector defined as

s ≡ 1
iH

[
s0 − iL s1 − iL · · · s2R − iL

]T
, (13)

Blur Identification and Image Restoration 663

and a is a R + 1 dimensional PSF coefficients vector. The matrix D is not
specified in a closed form, but has a form of

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

× 0 · · · 0

× × . . . 0
...

...
. . . 0

× × × ×
...

...
...

...
× × × ×

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

where ×’s denote arbitrary nonzero entries. In equation uncorrupted data should
be contaminated by the noise which was added to the degradation process. If s
contains measurement error, then the corrupted version can be represented as

ŝ = Da. (15)

Because the measurement error e is unknown, the best we can then do is
to choose an estimator â that minimizes the effect of the errors in some sense.
For mathematical convenience, a natural choice is to consider the least-squares
criterion,

εLS =
1
2
‖e‖2 =

1
2
(
ŝ−Da

)T (
ŝ−Da

)
(16)

Minimization of the least-squares error in Eq. (16) with respect to the un-
known coefficients a leads to so-called normal equations [11](

DT D
)

= âLS = DT ŝ, (17)

which determines the least-squares estimate of a. Note that the shape of the
observation matrix D guarantees its columns to be independent. Thus, the (R+
1)×(R+1) Grammian matrix DT D is positive-definite [11] and we can explicitly
solve the normal equations by rewriting Eq. (17) as

âLS =
(
DT D

)−1
DT ŝ = D+ŝ, (18)

where D+ =
(
DT D

)−1
DT is the pseudoinverse of D . The optimal coefficients

are used in constructing PSF which was modeled in Eq. (4).

4 Spatially Adaptive Image Restoration

Iterative image restoration is the most suitable for multi-focusing because: (i)
There is no needto determine or implement the inverse of an operator, (ii) knowl-
edge about the solution can be incorporated into the restoration process, (iii)
the solution process can be monitored as it progresses, and (iv) constraints can
be used to control the effects of noise [12].

664 J. Shin et al.

The image degradation model is given as

y = Hx, (19)

where y, H, and x respectively represent the observed image, the degradation
operator, and the original image. A general image restoration process based on
the constrained optimization approach is to find x̂ which minimizes

‖Cx̂‖2, (20)

subject to
‖y−Hx̂‖2 ≤ ε2, (21)

where x̂, C, and ε2 respectively represent the restored image, a high-pass filter
for incorporating a priori smoothness constraint, and an upper bound of error
residual of the restored image. The constrained optimization problem, described
in Eq. (20) and Eq. (21), can be solved by minimizing the following functional

x̂ =
arg min

x f(x), (22)

where
f(x) = ‖y−Hx‖2 + ‖Cx‖2. (23)

In Eq. (23), C represents a high-pass filter, and ‖Cx‖ represents a stabilizing
functional whose minimization suppresses high frequency components due to
noise amplification. The regularization parameter λ controls the fidelity to the
original image and smoothness of the restored image. The argument x that
minimizes the functional f(x) is given by the following expression [13](

HT H + λCT C
)
x = HT y. (24)

The operator
(
HT H + λCT C

)
has a continuous inverse [13] or it is a better

conditional matrix than H or HT H, assuming that the matrix C has been
chosen properly. The regularized solution given by Eq. (24) can be successively
approximated by means of the iteration

x0 = 0,
xk+1 = xk + β

[
HT y−

(
HT H + λCT C

)
xk

]
,

(25)

where β is a multiplier that can be constant or it can depend on the iteration
index.

In order to remove the space-variant out-of-focus blur, Eq. (25) should be
modified, for each pixel x(p) which is included in the segmented region denoted
by s, as

xk+1(p) = xk(p)+β
(
eT

p Hsy− eT
p Tsxk(p)

)
, for p = (i−1)M+j, 0 < s ≤ L−1,

(26)

where Hs represents the degradation matrix for the segment containing x(p),
ep the pth unit vector, L the number of different segmented regions, and finally
Ts = HT H + λCT C.

Blur Identification and Image Restoration 665

5 Experimental Results

In order to demonstrate the performance of the proposed algorithm, we used
a set of real images with one or more differently out-of-focused objects from
background. We also present the results of both the evolutionary segmentation
algorithm and snake [3] for comparing the performance of contour extraction.

5.1 Simultaneously Digital Auto-focusing for an Object and
Background

In the first experiment, we used a real image captured by using a Nikon-D100
digital still camera. The image has an object differently out-of-focused from
background, as shown in Fig. 5a. The initial populations are randomly produced
within the user defined region which is determined as the inner and outer circles
with a priori knowledge. In this experiment, 3,000 initial populations are pro-
duced for boundary extraction. The user defined region and an extracted contour
are depicted in Fig. 5b and Fig. 5d, respectively. The contour is approximated by
combining 30 points by nature. For the comparison purpose, snake is performed
for the same image, and the result is shown in Fig. 5c with of α = 0.2 and
β = 1.2 for internal force and γ = 3 for image force [3]. It takes a little long time
to accomplish boundary extraction with evolutionary algorithm, but this algo-
rithm gives more acceptable result than the gradient-based contour extraction
techniques. Then the object can be segmented by applying the morphological
processing of the region filling [12] to the contour. The seed point is determined
as the mean position of all contour points. The segmented result is shown in
Fig. 5e. Next, blurs are estimated in the object and background, separately. The
method proposed in section 3 were used for estimating each blur. The restored
version of the original blurred image is obtained by using the method proposed
in section 4. The restored image is shown in Fig. 5f.

5.2 Digital Auto-focusing for Two or More Objects

In this experiment, we used an image that has two differently out-of-focused
objects. The image is also captured by the same digital camera used in previous
subsection and is shown in Fig. 6a.

The evolutionary contour extraction algorithm adjusts to the image contain-
ing two objects. We assume that the location of each object is given a priori
without loss of practical applicability. The contours extracted by the evolution-
ary algorithm are shown in Fig. 6b. Two objects are segmented by the morpho-
logical region filling with each seed chosen by the same method in the previous
subsection. The result of this segmentation is shown in Fig. 6c where different
gray values distinguish two objects. The restored image is shown in Fig. 6d.

6 Conclusions

We proposed a fully digital auto-focusing algorithm for restoring the image with
multiple, differently out-of-focused objects, which is based on evolutionary mul-

666 J. Shin et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. The results of contour extraction and restoration for simultaneously digital
auto-focusing with a real captured image: (a) Original clock image in which a clock is
differently out-of-focus from background, (b) the user defined region, (c) the extracted
contour by using snake, (d) the extracted contour using the evolutionary algorithm,
(e) the segmented object from (d), and (f) the in-focused image by using the proposed
restoration algorithm

Blur Identification and Image Restoration 667

(a) (b)

(c) (d)

Fig. 6. The results of contour extraction and restoration for simultaneously digital
auto-focusing with a real captured image involving two differently blurred objects: (a)
Original image with two differently blurred objects, (b) the extracted contours using
the evolutionary algorithm, (c) the segmented objects, and (d) the in-focused image
by using the proposed restoration algorithm

tiple object segmentation. The proposed algorithm can be developed by ob-
ject based image segmentation and an adaptive image restoration algorithm.
For space-variant image restoration, the input image should be segmented into
differently out-of-focused objects or background. In order to obtain robustly
segmented objects, evolutionary algorithms are applied to the proposed object
segmentation algorithm. In the experimental results, we showed that the pro-
posed restoration algorithm can efficiently remove the space-variant out-of-focus
blur from the image with multiple blurred objects. In addition, it is possible to
apply the proposed digital auto-focusing algorithms to the surveillance video for
human tracking if the methods of deformable contour extraction, such as active
shape model, can be combined efficiently.

668 J. Shin et al.

References

1. Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice-Hall New Jersey
(1977)

2. Subbarao, M., Tyan, J.K.: Selecting the optimal focus measure for autofocusing
and depth-from-focus. IEEE Trans. Pattern Analysis and Machine Intelligence 20
(1998) 864–870

3. Kass, M., Witzkin, A., Terzopoulos, D.: Snake: Active contour model. International
Journal of Computer Vision (1988) 321–331

4. Blake, A., Isard, M.: Active Contours. Springer-Verlag, Berlin Heidelberg New
York (1998)

5. Goldberg, D.: Genetic Algorithm in Search, Optimization and Machine Learning.
Addision-Wesley (1989)

6. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision.
PWS Publishing (1999)

7. Kim, S.K., Park, S.R., Paik, J.K.: Simultaneous out-of-focus blur estimation and
restoration for digital auto-focusing system. IEEE Trans. Consumer Electronics 34
(1998) 1071–1075

8. Lagendijk, R.L., Biemond, J., Boekee, D.E.: Identification and restoration of noisy
blurred image using the expectation-maximization algorithm. IEEE Trans. Acous-
tic, Speech and Signal Processing 38 (1990) 1180–1191

9. Reeves, S.J., Mersereau, M.R.: Blue identification by the method of generalized
cross-validation. IEEE Trans. Image Processing 1 (1992) 301–311

10. Lun, D.P.K., Chan, T.C.L., Hsung, T.C., Feng, D.D., Chan, Y.H.: Efficient blind
restoration using discrete periodic radon transform. IEEE Trans. Image Processing
13 (2004) 188–200

11. Noble, B., Daniel, J.: Applied Linear Algebra. Prentice Hall (1988)
12. Katsaggelos, A.K.: Iterative image restoration algorithms. Optical Engineering 287

(1989) 735-748
13. Miller, K.: Least-squares method for ill-posed problems with a prescribed bound.

SIAM J. Math. Anal. 1 (1970) 52-57
14. Pratt, W. K., Digital Image Processing. 2nd Ed. John Wiley (1991)

Performance Evaluation of Binarizations of
Scanned Insect Footprints

Young W. Woo

Division of Computer & Visual Engineering,
College of Engineering, Dongeui University,

San 24, Gaya-Dong, Pusanjin-Gu, Pusan, 614-714, Korea

Abstract. The paper compares six conventional binarization methods
for the special purpose of subsequent analysis of scanned insect foot-
prints. We introduce a new performance criterion for performance evalu-
ation. The six different binarization methods are selected from different
methodologically categories, and the proposed performance criterion is
related to the specific characteristics of insect footprints having a very
small percentage of object areas. The results indicate that a higher-order
entropy binarization algorithm, such as proposed by Abutaleb, offers best
results for further pattern recognition application steps for the analysis
of scanned insect footprints.

Keywords: binarization, insect footprints, pattern recognition.

1 Introduction

In order to obtain accurate pattern recognition results using binarized images,
it is obviously important to choose a suitable binarization algorithm. There
exists a wide variety of binarization algorithms [1], and there is no “generally
best” binarization algorithm for all kinds of gray level images. Some binarization
algorithms are good for certain types of grey images but bad for other types of
grey images. The project of interest (at CITR Auckland) is the classification of
insects based on scanned tracks. Insects walk across a preinked card (as produced
by Connovation Ltd., New Zealand), and leave a track on a white card which
will be scanned on a standard flatbed scanner. The generated pictures are of
very large scale due to the required resolution. Applications are related to, for
example, pest control, environment protection, or monitoring of insect numbers.

We compared six representative binarization algorithms for binarizing scanned
insect footprints, which have a relatively small object area compared to the non-
object area, and selected the best binarization algorithm for pattern recognition
for this particular application using a new performance criterion. The proposed
binarization performance criterion is based on characteristics of insect footprints.
In Section 2, we detail methods and formulas of six binarization algorithms.
In Section 3, the proposed binarization performance criterion is presented. In
Section 4, test images for experiments are shown and experimental results are
presented. Finally we provide conclusions in Section 5.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 669–678, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

670 Y.W. Woo

2 Six Binarization Algorithms

Research on binarization of gray images dates back for more than thirty years.
The paper [1] compares 40 binarization algorithms by two kinds of test data set.
The first test data set is the set of 40 NDT (Non Destructive Testing) images, and
the second test data set is the set of 40 document images. Binarization evaluation
ranking tables in [1] show that the performance of each algorithm is different
when different types of test data sets are applied. Only the binarization algorithm
by Kittler and Illingworth [4] is best for both kinds of test data sets. So, as a
first conclusion we know that conventional binarization algorithms’ performance
highly depends on the kind of gray images used in a particular application. In
our case we have to binarize scanned insect footprints. We selected six different
binarization algorithms(three global binarization algorithms and three dynamic
binarization algorithms) that behaved “relatively good” for the two kinds of
test data set in [1]. We chose three global binarization algorithms because they
have advantage in processing time. If a certain global binarization algorithm has
enough good performance on scanned insect footprints, the recognition system
using the global binarization algorithm will have a merit in computing time. The
selected six algorithms are as follows:

– Rosenfeld’s convex hull binarization algorithm [2],
– Otsu’s clustering binarization algorithm [3],
– Kittler and Illingworth’s minimum error binarization algorithm [4],
– Kapur’s entropic binarization algorithm [5],
– Abutaleb’s higher-order entropy binarization algorithm [6], and
– Bernsen’s local contrast binarization algorithm [7].

For a brief explanation of each algorithm, we use the following notation. The
histogram and the probability mass function (PMF) of the image are indicated,
respectively, by h(g) and p(g), for g = 0 . . . Gmax, where Gmax is the maximum
gray level in the image (which is typically 255). If the gray level range is not
explicitly limited to a subinterval [gmin, gmax], it will be assumed to be from 0
to Gmax. The cumulative probability function is defined as

P (g) =
g∑

i=0

p(i) (1)

The object (or foreground) and non-object (or background) PMFs are ex-
pressed as Pf (g), for 0 ≤ g ≤ T , and Pb(g), for T + 1 ≤ g ≤ G, respectively,
where T is the threshold value. The object and non-object area probabilities are
calculated as follows:

Pf (T) = Pf =
T∑

g=0

p(g) and Pb(T) = Pb =
G∑

g=T+1

p(g) (2)

Performance Evaluation of Binarizations of Scanned Insect Footprints 671

The Shannon entropy, parametrically dependent on the threshold value T for
foreground and background, is formulated as follows:

Hf (T) = −
T∑

g=0

pf (g) log pf (g) and Hb(T) = −
G∑

g=T+1

pb(g) log pb(g) (3)

The mean and variance of the foreground and background as functions of the
thresholding level T are denoted as follows:

mf (T) =
T∑

g=0

g · p(g) and σ2
f (T) =

T∑
g=0

[g −mf (T)]2p(g)

mb(T) =
G∑

g=T+1

g · p(g) and σ2
b (T) =

G∑
g=T+1

[g −mb(T)]2p(g) (4)

2.1 Rosenfeld’s Convex Hull Binarization Algorithm

This algorithm is based on analyzing the concavities of the histogram h(g) de-
fined by its convex hull, H(g); that is the set-theoretic difference |H(g)− p(g)|.
When the convex hull of the histogram is calculated, the “deepest” concavity
points become candidates for a threshold. In case of competing concavities, some
object attribute feedback, such as low busyness of the edges of the thresholded
image, can be used to select one of them. In this algorithm, the following equation
is used for finding an optimal threshold value:

Topt = arg max{[p(g)−H(g)]} (5)

2.2 Otsu’s Clustering Binarization Algorithm

This algorithm is to minimize the weighted sum of within-class variances of
the foreground and background pixels to establish an optimum threshold. Recall
that minimization of within-class variances is tantamount to the maximization of
between-class scatter. This method gives satisfactory results when the numbers
of pixels in each class are close to each other. The Otsu’s algorithm is today one
of the most referenced binarization algorithms. In this algorithm, the following
equation is used for finding optimal threshold value:

Topt = arg max{P (T)[1− P (T)][mf (T)−mb(T)]2

P (T)σ2
f (T) + [1− P (T)]σ2

b (T)
} (6)

2.3 Kittler and Illingworth’s Minimum Error Binarization
Algorithm

This algorithm assumes that the image can be characterized by a mixture distri-
bution of foreground and background pixels: p(g)=P (T)·pf (g)+[1−P (T)]·pb(g).

672 Y.W. Woo

Kittler and Illingworth’s algorithm does not need the assumption that the fore-
ground and background distribution function is an equal variance Gaussian den-
sity function and, in essence, addresses a minimum error Gaussian density-fitting
problem. In this algorithm, the following equation is used for finding optimal
threshold value:

Topt = arg min{P (T) log σf (T) + [1− P (T)] log σb(T)

−P (T) logP (T)− [1− P (T)] log[1− P (T)]}
(7)

where {σf (T), σb(T)} are foreground and background standard deviations.

2.4 Kapur’s Entropic Binarization Algorithm

This algorithm assumes the image foreground and background as two different
signal sources, so that when the sum of the two class entropies reaches its maxi-
mum, the image is said to be optimally binarized. In this algorithm, the following
equation is used for finding an optimal threshold value:

Topt = arg max[Hf (T) + Hb(T)] with (8)

Hf (T) = −
T∑

g=0

p(g)
P (T)

log
p(g)
P (T)

and Hb(T) = −
G∑

g=T+1

p(g)
P (T)

log
p(g)
P (T)

2.5 Abutaleb’s Higher-Order Entropy Binarization Algorithm

This algorithm assumes the joint entropy of two related random variables, namely,
the image gray level g at a pixel, and the average gray level ḡ of a neighborhood
centered at that pixel. Using the 2-D histogram p(g, ḡ), for any threshold pair
(T ,T̄), one can calculate the cumulative distribution P (T , T̄), and then define
the foreground entropy as

Hf = −
T∑

i=1

T̄∑
j=1

p(g, ḡ)
P (T, T̄)

log
p(g, ḡ)
P (T, T̄)

(9)

Similarly, one can define the background region’s second order entropy. Under
the assumption that the off-diagonal terms (i.e., the quadrants [(0, T), (T̄ ,G)]
and [(T , G), (0, T̄)]) are negligible and contain elements only due to image
edges and noise, the optimal pair (T , T̄) can be found as the minimizing value
of the 2-D entropy functional. In this algorithm, the following equation is used
for finding an optimal threshold value:

(Topt, T̄opt) = arg min{log[P (T, T̄)[1−P (T, T̄)]]+Hf/P (T, T̄)+Hb/[1−P (T, T̄)]}

where Hf = −
T∑

i=1

T̄∑
j=1

p(g,ḡ)
P (T,T̄) log p(g,ḡ)

P (T,T̄) and

Hb = −
G∑

i=T+1

G∑
j=T̄+1

p(g, ḡ)
1− P (T, T̄)

log
p(g, ḡ)

1− P (T, T̄)
(10)

Performance Evaluation of Binarizations of Scanned Insect Footprints 673

2.6 Bernsen’s Local Contrast Binarization Algorithm

In the local binarization algorithm of Bernsen, the gray value of a pixel is com-
pared with the average of the gray values in some neighborhood(50×50 window
suggested) about the pixel, chosen by footprint size. Then, the threshold is set at
the midrange value, which is the mean of the minimum Ilow(i, j) and maximum
Ihigh(i, j) gray values in the local window of suggested size w =50. However, if
the contrast C(i, j) = Ihigh(i, j) − Ilow(i, j) is below a certain threshold (this
contrast threshold was 50), then that neighborhood is said to consist only of
background. In this algorithm, the following equation is used for finding an op-
timal threshold value:

T (i, j) = 0.5{max
w

[I(i + m, j + n)] + min
w

[I(i + m.j + n)]} (11)

where w = 50, provided contrast C(i, j) = Ihigh(i, j)− Ilow(i, j) ≥ 50.
In order to find an appropriate binarization algorithm for scanned insect foot-

prints, the above 6 binarization algorithms have been implemented and their per-
formances are evaluated using the proposed binarization performance criterion
discussed in the next section.

3 The Proposed Binarization Performance Criterion

There are various conventional performance criteria for evaluation of binarization
algorithms. In [1], five performance criteria are used for evaluating conventional
binarization algorithms. In these criteria, only NU(region NUniformity) needs
no ground-truth images for comparison. In case of scanned insect footprints, it
is almost impossible to acquire ground-truth images because nobody can de-
cide easily which area is foreground or background. Because of this difficulty,
we decided to use the NU criterion. The criterion NU measure is defined as
follows:

NU =
|FT |

|FT + BT |
σ2

f

σ2 (12)

where σ2 represents the variance of the whole image, σ2
f represents the fore-

ground variance, FT , and BT denote the areas of foreground and background

Fig. 1. A sample image

674 Y.W. Woo

Fig. 2. The binarized images of Fig. 1 for threshold value = (a)230, (b)180, (c)130

pixels in the test image, and |.| is the cardinality of the set. It is expected that
a well-segmented image will have a nonuniformity measure close to 0, while
the worst case of NU=1 corresponds to an image for which background and
foreground are indistinguishable up to second order moments [1]. However we
found that there is a problem when this criterion is applied to scanned insect
footprints’ binarizations. The problem is that the value of this criterion goes
nearer and nearer to 0 when a threshold value goes smaller and smaller. To show
this result we have chosen some area from a randomly selected insect footprint.
The chosen area is shown as Figure 1. The binarized images at several threshold
values are shown in Figure 2.

We evaluated the NU values using the sample image of Figure 1, varying
threshold values from 130 to 230. The result is shown in Table 1. In this ta-
ble, we can see that the threshold value goes smaller, the NU value becomes
smaller, or, in other words, “better”. But when we closely look at the above
three binarized images, Figure 2(b) is better than Figure 2(c). So the perfor-
mance criterion of NU could not give an appropriate result on the scanned insect
footprints.

We propose a new binarization performance criterion named Minimum Num-
ber of Foreground Segments (MNFS). In Figure 2(a), it is decided that too many
background noise area pixels are converted to 0 (i.e., foreground spots). In con-
trast, it is decided that too many foreground spots’ area pixels are converted

Table 1. NU values for the sample image of Figure 1

Threshold NU
230 0.521458
220 0.227144
210 0.153669
200 0.103933
190 0.068894
180 0.044197
170 0.025973
160 0.013889
150 0.006888
140 0.003250
130 0.001024

Performance Evaluation of Binarizations of Scanned Insect Footprints 675

Fig. 3. Three cases of threshold line for binarization

to 255 (background area) in Figure 2(c). In these results, we can assume that
“good” binarized images have a small number of disconnected regions but a large
number of foreground pixels to be converted to 0 (foreground) in case of insect
footprints. We illustrate the concept of this idea in Figure 3.

In Figure 3, B is the assumed optimal threshold line that can produce the
best binarized image because the only two “real spots” (one is a “clear spot”
but another is a “dim spot”) are converted to foreground objects. A is the
threshold line that converts lots of background noise area to foreground ob-
jects because the threshold value is too high. C is the threshold line that misses
the dim spot because the threshold value is too low. In case of the sample
image of Figure 1, A means Figure 2(a), B is similiar with Figure 2(b) (be-
cause B means, in fact, locally adaptive binarization method) and C means
Figure 2(c).

How can we choose a threshold method like B? The key idea for the choice of
an optimal threshold value or locally adaptive binarization method is to compare
the number of disconnected segments (NDS) with the number of foreground pix-
els (|FT |) and to compare the variance of background area. If the ratio of the two
numbers (NDS/|FT |) is smaller (i.e., threshold value becomes smaller than A)
and the normalized variance of background area (σ2

b (T)/σ2(T)) is smaller (i.e.,
threshold value becomes lager than C), the threshold value can be considered
to be “better”. So we can consider the binarization as the best for binarization
of scanned insect footprints if we achieve a minimum value of the product of
ratio and normalized variance. The proposed binarization performance criterion
is defined as follows:

MNFS =
NDS

|FT |
· σ

2
b (T)

σ2(T)
(13)

where NDS indicates the number of disconnected foreground segments. For ex-
ample, let us evaluate the MNFS values using the sample image of Figure 1,
varying threshold values from 130 to 230. The result is shown in Table 2. We
knew that the MNFS values are not linearly increasing or decreasing as in the
criterion NU. In this sample image, the global threshold value of 218 has the
minimum MNFS value when only global threshold values are applied.

676 Y.W. Woo

Table 2. The MNFS values for the sample image of Figure 1

Threshold MNFS
230 0.00289038
220 0.000359181
218∗ 0.000342245
210 0.000554109
200 0.000790112
190 0.00146493
180 0.00299014
170 0.00541835
160 0.00717066
150 0.0113167
140 0.018377
130 0.0265409

4 Test Images and Experimental Results

Our test images consisted of a variety of 16 images of American Cockroach, 30
images of Black Cockroach, and 25 images of Native Bush Cockroach. All im-
ages are scanned by 1200 DPI in 8-bit gray image format. Several test images
are shown in Figure 4. The two images on the left are American Cockroaches,
the two images in the middle are Black Cockroaches, and the two images on the
right are Native Bush Cockroaches.

Fig. 4. Six sample images for testing

Results are shown in Figures 5 and 6 for the sample image of Figure 1. A
number in parenthesis in the caption is the calculated global threshold value for
the algorithm. Rosenfeld’s, Abutaleb’s, and Bernsen’s algorithms do not have
global threshold values because they are locally adaptive algorithms.

Performance Evaluation of Binarizations of Scanned Insect Footprints 677

Fig. 5. Binarized images using Rosenfeld’s, Otsu’s[198] and Kittler’s[222] algorithm

Fig. 6. Binarized images using Kapur’s[214], Abutaleb’s and Bernsen’s algorithm

Table 3. Average MNFS values

Algorithm Rosenfeld Otsu Kittler Kapur Abutaleb Bernsen
MNFS 0.005607 0.004225 0.005145 0.004982 0.004034 0.007406

The average MNFS values are given in Table 3 using 71 test images. In the
experiment, we found that no global threshold value could get better MNFS val-
ues than the MNFS values of the Abutaleb’s algorithm. In several test images,
Otsu’s and Kittler’s algorithms result in incorrect threshold values (often too
large threshold values). “Incorrect threshold value” means the binarized image
by the value is not considered as a normal insect foorprints when a human ex-
pert looks into the image. Otsu’s algorithm produced incorrect threshold values
on 6 test images, Kittler’s algorithm produced incorrect threshold values on 13
test images. The MNFS values shown in Table 3 correspond to these incorrectly
binarized images. We concluded that Otsu’s and Kittler’s algorithms are inad-
equate regardless of the MNFS value, and Abutaleb’s algorithm is (in general)
best for binarization of scanned insect footprints. A binarized test image using
Abutaleb’s algorithm is shown in Figure 7. An incorrectly binarized test image
using Kittler’s algorithm is shown in Figure 8.

Fig. 7. Binarized test image using Abutaleb’s algorithm

678 Y.W. Woo

Fig. 8. Incorrectly binarized test image using Kittler’s algorithm

5 Conclusions

We compared six different binarization algorithms and proposed a new binariza-
tion performance criterion to analyze the best performance for scanned insect
footprints. The experimental results showed that Abutaleb’s binarization method
based on higher-order entropy produced (in general) the best binarized images.
Binarized footprints have been further used in projects at CITR for property
calculation, geometric modelling, and towards insect recognition. Results will be
reported in forthcoming reports.

Acknowledgment. The reported binarization evaluation is part of an insect
track recognition project at CITR, initiated and supported by Connovation Ltd.,
Auckland. The support of CITR, especially by Reinhard Klette, and of Connova-
tion Ltd., especially by Warren Agnew, is very much appreciated by the author
during his sabbatical stay at CITR.

References

1. M. Sezgin and B. Sankur. Survey over image thresholding techniques and quan-
titative performance evaluation. Journal of Electronic Imaging 13: 146-165, Jan,
2004.

2. A. Rosenfeld and P. De la Torre. Histogram concavity analysis as an aid in threshold
selection. IEEE Trans. on System, Man and Cybernetics SMC-13: 231–235, 1983.

3. N. Otsu. A threshold selection method from gray level histograms. IEEE Trans. on
System, Man and Cybernetics SMC-9: 62–66, 1979.

4. J. Kittler and J. Illingworth. Minimum error thresholding. Pattern Recognition, 19:
41–47, 1986.

5. J.N. Kapur, P.K. Sahoo, and A.K.C. Wong. A new method for gray-level picture
thresholding using the entropy of the histogram. Graphics Models Image Processing,
29: 273–285, 1985.

6. A.S. Abutaleb. Automatic thresholding of gray-level pictures using two-dimensional
entropy. Computer Vision Graphics Image Processing, 47: 22–32, 1989.

7. J. Bernsen. Dynamic thresholding of gray level images. In Proc. of ICPR’86, pages
1251–1255, 1986.

2D Shape Recognition Using Discrete Wavelet
Descriptor Under Similitude Transform

Kimcheng Kith and El-hadi Zahzah

Université de La Rochelle,
Laboratoire d’Informatique, Images, Interactions,
Avenue M Crepeau La Rochelle 17042 , France

(kkimchen, ezahzah)@univ-lr.fr

Abstract. The aim of this paper is to propose a 2D shape recognition
method under similitude transforms using the Discrete Dyadic Wavelet
Transform with decimation (DWT). We propose four technics to fix
the starting point necessary to obtain the same object representation in
the framework of objects retrieval system. These representations are ob-
tained by applying the DWT on the contour signature. We also propose
a method to select a decomposition level of the DWT . These different
solutions are assessed and compared using 1400 2D objects extracted
from the MPEG7 database.

1 Introduction

Object recognition is a main problem in computer vision. Several works were led
on this field. These works belong to two main categories : contour- based and
region-based methods. The criterion used to classify a method to one category or
another is to see if the descriptors are calculated on the contour or on the region.
For a good overview of the various representations, description and recognition
techniques see Zhang and Lu. 2004. In this paper only 2D shape are considered
in the framework of image retrieval using a large database. The technic used,
build up an object representation based on the application of DWT on the con-
tour signature. The DWT choice rather than Fourier Transform for instance,
is motivated by the differences existing between Fourier analysis and wavelets.
Fourier basis functions are localized in frequency but not in time. Small fre-
quency changes in the Fourier transform will produce changes everywhere in the
time domain. Wavelets are local in both frequency/scale (via dilatation) and in
time (via translation). This localization is an advantage in many cases. Another
advantage is that many classes of functions can be represented by wavelets in
a more compact way. For example, functions with discontinuities and functions
with sharp spikes usually take substantially fewer wavelet basis function than
sine-cosine basis function to achieve a comparable approximation. In addition,
the epithet “Fast” for Fourier transform can, in most cases be substituted by
“Faster” for the wavelets. It is well known that the computational complexity
of the FFT is O(N log2(N)), for the DWT the computational complexity goes

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 679–689, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

680 K. Kith and E.-h. Zahzah

down to O(N). Finally the DWT enables to change the basis functions, and
users are free to create their own basis functions adapted to their application.

The implementation of the DWT proposed by Mallat in Mallat 1989, suf-
fers of its non time-invariance to translation contrary to the continuous wavelet
transform, and this is why the DWT is not frequently used specially in com-
puter vision. Yang et al., in Hee Soo Yang and Lee 1998, proposed a solution to
resolve this problem, but the implementation is relatively complex.

Khalil and Bayoumi 2002 Tieng and Boles 1997 proposed another solution
used it in pattern recognition which is the non decimated version of the DWT
called the SWT for (Stationary Wavelet Transform) in Misiti et al. 2003 which
has been proposed at the first time by Mallat in Mallat 1991. The use of the
SWT needs always a post-processing step consisting in an algorithm to match
the query and the model descriptor for object retrieval. This step is a big time
consuming, furthermore the complexity of the SWT is of O(N log2(N)) greater
than the DWT complexity. In this paper, we propose four simple solutions to
resolve the problem of the non-invariance to translation of the DWT consist-
ing in fixing the starting point. The knowledge of the starting point enables to
avoid the post-processing described above. We have applied and compared these
methods in the framework of the 2D shape recognition. These methods can in-
dividually be used or combined to improve the efficiency and performances. We
also propose a technic to select the decomposition level before using the DWT .

2 Shape Descriptor

Generally, the shape signature must represent in a unique way the shape by a
one dimensional function derived from contour points. Many shape signatures
exist based on centroidal profile, complex coordinates, centroid distance, tangent
angle, cumulative angle, curvature, area, and chord length. In this section, we
show the different steps to built up the signature and the shape descriptor. The
contour associated to a close curve is re-parameterized by the normalized arc-
length, and then it is re-sampled uniformly into 2k points. The four proposed
solutions to resolve the non-invariance to translation of the DWT are presented,
and finally the shape descriptor is deduced by using the DWT on the contour
signature.

2.1 Arc Length Parameterization and Normalization

Let assume that the contour is defined by a closed curve Γ = (xi, yi) with
1 ≤ i ≤ n where n is the number of points on the contour. To parameterize the
contour by the arc length one must compute l(i) which is the length of the
segment on the contour between the starting point (x1, y1) and a given point
(xi, yi):

l(i) =
{

0 for i = 1∑i−1
k=1

√
(xi − xi−1)2 + (yi − yi−1)2 for 2 ≤ i ≤ n

2D Shape Recognition Using Discrete Wavelet Descriptor 681

l(n) is the total length of the contour. For the scale invariance, the total length of
contour l(n) is normalize to a unity i.e the coordinates (xi, yi) and the parameter
l(i) are substituted respectively by (xi

l(n) ,
yi

l(n)) and l(i)
l(n) for each i 1 ≤ i ≤ n.

Before applying the DWT on the contour signature, the contour (xi

l(n) ,
yi

l(n)) is
re-sampled uniformly into N = 2k points. For simplification reasons, the new
contour is also denoted by (xi, yi) 1 ≤ i ≤ N and verifies the property that the
distance between two successive points is equal to a constant 1

N . Let’s note
that after this processing, the contour is always normalized according to scale
change. In order to normalize the contour according to translation and rotation,
we define s(i)1≤i≤N which represents the signature of the contour by

s(i) =
√

(xi − ẋ)2 + (yi − ẏ)2

ẋ = 1
N

∑N
i=1 xi, and ẏ = 1

N

∑N
i=1 yi

2.2 Fixing the Starting Point

As recalled in the introduction section, the well-known problem with DWT is
that it is not invariant to translation. To avoid this drawback, and in order
to compare the descriptors (obtained by the DWT application on the contour
signature), the same starting point must be used for the signatures representing
the same contour (object). In the following, four solutions are proposed to fix
this specific starting point on the contour before applying the DWT .

1. Furthest Distance
The first easiest solution is to consider the starting point at the contour point
such that its distance to the centroid is maximal. Formally this is equivalent
to consider the point (ximax

, yimax
) as a starting point with

imax = arg max
1≤i≤N

s(i). The choice of a point if one finds many points verifying

this condition, is discussed later.
2. Maximum Curvature

Another solution is to choose a point which has the maximum curvature.
Many equivalent definitions of curvature exist, in this paper the curvature
ki at a given point (xi, yi) is given by :

ki =
ẋiÿi − ẍiẏi

(ẋ2
i + ẏ2

i)3/2 (1)

where (ẋi, ẏi) et (ẍi, ÿi) represent respectively the first and the second deriva-
tive at (xi, yi). Many ways can be used to calculate the curvature ki of
equation (1). The approach we adopt here is to substitute the first and the
second derivative at the point (xi, yi) by the first and the second derivative of
the convolved version at the same point with the gaussian function gσ(i) as
in S. Abbasi and Kittler 2000Mokhtarian and Abbasi 2002, hence the equa-
tion (1) becomes:

ki =
ẋ(i, σ)ÿ(i, σ)− ẍ(i, σ)ẏ(i, σ)

[ẋ2(i, σ) + ẏ2(i, σ)]3/2

682 K. Kith and E.-h. Zahzah

with ẋ(i, σ) = (x ∗ ġσ)(i) and ẍ(i, σ) = (x ∗ g̈σ)(i)
the same formula are used for ẏ(i, σ) and ÿ(i, σ).

3. Principal Axis
One can also consider the starting point as the intersection point between
the principal axis and the contour. The principal axis is deduced from the
well known principal Component Analysis (PCA). The eigen vectors and
values are calculated from the covariance matrix C given by:

C =
N∑

i=1

(xi − ẋ, yi − ẏ)t (xi − ẋ, yi − ẏ)

If e1 is the eigen vector with magnitude equal to one corresponding to the
greatest eigen value of the covariance matrix C, the two intersection points
(xs1 , ys1) and (xs2 , ys2) between the contour and the principal axis (e1) are
deduced calculating the subscripts P1 and P2:

P1 = argmin
i
‖(xi − ẋ, yi − ẏ)− e1si‖

P2 = argmin
i
‖(xi − ẋ, yi − ẏ) + e1si‖

The intersection between the principal axis and the contour gives two
point, the selection of a unique point is discussed later.

4. The Natural Axis
Another possibility to fix the starting point is to extract from the so called
natural axis, the point which coordinates (xinatural

, yinatural
) such as the

subscript inatural is defined by

inatural = #Θnatureal

2π/N
$+ 1

with Θnatural = angle(
N∑

m=1

sme2πi(m−1)/N)

with angle(z) returns the angle between the interval [0, 2π[of the complex
number z and #x$ returns the integer number i such as i ≤ x < i+1. Θnatural

correspond to the natural orientation of the signature (si)1≤i≤N .
The value of sm of the above equation can be substituted by the value

sp
m with p > 0 and instead of considering Θnaturel as the angle of the first

Fourier coefficient of the signature sp
m, one can substituted it by the first

non zero Fourier coefficient of the signature sp
m, it means that if the first

coefficient is zero, one takes the second if it is non zero and the third if not,
and so on.

Let’s note that
– to choose the starting point, the strategy using the furthest distance, the

maximum curvature and the principal axis can be changed with respectively
the minimum distance, minimum curvature and secondary axis.

2D Shape Recognition Using Discrete Wavelet Descriptor 683

– in case of multiple points verifying the furthest distance and maximum cur-
vature, one can select randomly a given point among this choice to fix the
starting point, another way is to select the two or the three first as the start-
ing point and taking the one which verifies the minimum distance. The same
processing can be used for the intersection points P1 and P2 between the
principal axis and the contour.

– the methods proposed to choose the starting point could be combined in
a way that if an ambiguity appears for example when using the furthest
distance, a second technic as the maximum curvature or the one based on
the natural axis could be used.

– to reinforce the robustness of the method, one can consider the nearest point
to the starting point as another starting point and finally, choose the one
which verify the criteria of the minimum distance.

2.3 The Choice Decomposition Level

After the stage of the contour parameterization and re-sampling, and after the
starting point determination using one of the four methods described above (2.2),
each contour object can be now represented by a characteristic vector obtained
by the application of the DWT on the contour signature. Before applying the
DWT , one needs to choose which level of decomposition is to be useful to rep-
resent the contour?. Let’s note that there is k possible levels of decomposition
(k = log2 N given at the beginning when re-sampling uniformly the contour).
Here, we explain why and how to choose the decomposition level using the sig-
nature energy.

Let’s Sj = (sj
i)1≤i≤N is the jth contour signature of the database. As the

energy of Sj represents information contained in Sj , and more the energy is
high, better the signal Sj is represented. The figure (1) illustrates this idea. In
this figure, one can notice that more the decomposition level is high, more the
signal approximation energy decreases and hence the approximation quality goes
to be badly. We keep in mind that the signal energy gives global information,
i.e that if two signals are close, the energy difference of these signals is low. note
that the contrary is not always true. i.e, if two signals have the same energy,
these signals are not necessarily close. In our application, to select a level L
which represents at best the global signature of the database models, we use
the average energy of the database on k decomposition levels. The figure (2)
and the table (1) give the average values of energy of the whole 1400 contour
signatures of the database. According to these table and graph, the best and
the reasonable choice is to take L = 3 or L = 4 because the energy difference in
term of percentage between level 3 and the other lower levels is small, and the
difference between the level 4 and the the upper levels is high enough. According
to our experimentation, L = 3 gives the best result. We recall that the goal here
is to use a minimum DWT coefficients which represent at best the signal. The
contours Sj can be now represented by the approximation coefficients AL(Sj)
at level L = 3.

684 K. Kith and E.-h. Zahzah

0 200 400 600
0

0.1

0.2

0 200 400 600
0

0.1

0.2

0 200 400 600
0

0.1

0.2

0 200 400 600
0

0.1

0.2

0 200 400 600
0

0.1

0.2

0 200 400 600
0

0.1

0.2

0 200 400 600
0

0.1

0.2

0 200 400 600
0.05

0.1

0 200 400 600
0.085

0.09

0.095

0 200 400 600
0.0871

0.0871

Signal Origine (énergie 100%) Approximation niveau 1 (énergie 99,9997%)

Approximation niveau 2 (énergie 99,9984%) Approximation niveau 3 (énergie 99,9935%)

Approximation niveau 4 (énergie 99,9447%) Approximation niveau 5 (énergie 99,6639%)

Approximation niveau 6 (énergie 98,7103%) Approximation niveau 7 (énergie 80,8414%)

Approximation niveau 8 (énergie 80,5514%)

Approximation niveau 9 (énergie 80,5324%)

Fig. 1. Signal energy and its approximations on 7 decomposition levels

0 1 2 3 4 5 6 7
80

82

84

86

88

90

92

94

96

98

100

Level

m
ea

n
en

er
gy

Fig. 2. Representation of the mean energy of signature decomposition by the DWT

on 7 decomposition levels

Table 1. The percentage in average of signature energy of the database on the 7
decomposition levels

Level 0 1 2 3 4 5 6 7
Mean energy 100 99.994 99.971 99.788 98.893 95.736 91.432 91.154

2D Shape Recognition Using Discrete Wavelet Descriptor 685

2.4 Matching and Complexity

A detailed study can be found in Zhang 2003 on the the effect of using differ-
ent similarity measurement as Histogram Intersection, Mahalanobis Distance,
Minkowski-form distance, cosine, χ2... for image retrieval. The results have
shown that city block distance (which is a particular case of the Minkowski
distance) and χ2 statistic measure outperform other distance measure in terms
of both retrieval accuracy and retrieval efficiency. As the city bloc distance is
cheaper and easy to calculate comparing to χ2, then to measure the dissimilarity
degree between signatures Si and Sj , the city-block distance between two vectors
AL(Si) and AL(Sj) has been used. In order to take into account the symmetric
contour, the curve is scanned in both directions clockwise and counter-clockwise.

For the computational complexity, one can easily show that the parameteri-
zation and the starting point localization is calculated in O(N) operations. The
complexity of the DWT is linear according to input signal dimension (O(N)).

Finally, the global computational complexity is O(N), without taking into
account the time used to retrieve similar contours, because this stage, depends
on the number of contours existing in the database and the strategy used to
structure data for indexing and comparing the characteristic vectors.

3 Experimentation

For our experimentation, we use the CE-1 MPEG7 database which contains 3
sets of contours A, B, C described in details in Latecki et al. 2000.
– The set A is dedicated to test the invariance according to rotation and scal-

ing.
– The set B is dedicated to test the recognition according to the similitude

transforms. This set contains 1400 contours of 70 classes and each class
contains 20 different contours of the same object.

– The set C is dedicated to test the recognition according to the affine trans-
form.
In this paper, we limit our experience to the set B. The value of N is fixed

to 128 and the value of decomposition level L is 3. For the curvature of equation
(1), σ is set to 1.4. All the database contours are closed, hence, all the signatures
are periodic and each one is represented by a descriptor vector of dimension 16
which represent the approximation coefficients at level 3.

To assess the performance of our method, we use the most common measure
well known by precision (P) and recall (R) of retrieval used by Bimbo 1999, and
defined respectively by:

P =
r

n
=

number of relevant retrieved contour
number of retrieved image in the database

R =
r

m
=

number of relevant retrieved contour
number of relevant image in the database

Precision P is defined as the ratio of the number of retrieved relevant shapes
r to the total number of retrieved shapes n. Precision P measures the accuracy

686 K. Kith and E.-h. Zahzah

of the retrieval and the speed of the recall. Recall R is defined as the ratio of
the number of retrieved relevant images r to the total number m of relevant
shapes in the whole database. Recall measures the robustness of the retrieval
performance used also by Zhang and Lu 2002.

Three experimentations are presented here. The first one concerns the eval-
uation using different wavelet basis functions, in the second experimentation
the four solutions presented in section (2.2) are compared, and the last one is
the comparison between our method and the one using the Fourier descriptor.
For each experimentation the values of precision P and recall R are
calculated.

For each query, the precision values are calculated corresponding to the recall
values between 10%, and 100%. The precision values of our system are actually
the average values of precision of the whole 1400 queries.

Wavelet Basis Functions Comparison

At the introduction section, we have recalled that one advantage of using the
DWT according to the others well known transforms is that the users are free to
use or to built up their own basis functions. In the following several well known
wavelet basis functions are used and compared with the method we propose,
as Daubechies, Coiflets, Symlets, Discrete Meyer, Discrete Bi-orthogonal and the
inverse bi-orthogonal. The time consuming of the DWT depend principally on the
filter length which is set to 12 in our experimentations except the Discrete Meyer
length filter which is set to 62. Using the furthest distance to the the centroid to
fix the starting point, the average performance of retrieval using different basis
wavelets functions are given in figure (3) (a-c). The table (2) gathers all the
graph data of figure (3) (a-c).

According to this table and to the graphs of figure (3) (a-c), we can see that
the performance is similar for the five basis functions db6, sym6, coif2, bior1.5
and rbio1.5, the graphs corresponding to basis functions db6, sym6 and coif2
are overlapped in figure (3) (a). One can also see that the two basis functions
bior3.5 and rbio5.5 have the same performance greater than the others ones. On
the contrary, the performance of the basis function of dmey is the lowest com-
pared to all the others basis functions used in our experimentations. The perfor-
mance of the basis functions bior5.5 and rbio3.5 is also small but greater than of
dmey.

Comparison of the Four Starting Point Fixation Technics

In this paragraph, the performance evaluation is done by comparing the four
solutions to fix the starting point proposed in section (2.2). The wavelet basis
function used for this comparison is rbior5.5.

The figure (4)(a) and the table (3) show the graphic and the data corre-
sponding to this evaluation. From this table one can read that the technic to fix
the starting point using the furthest distance is the best comparing to the three
others technics.

2D Shape Recognition Using Discrete Wavelet Descriptor 687

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
coif2
db6
dmey
sym6

(a)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
bior1.5
bior3.5
bior5.5

(b)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
rbio1.5
rbio3.5
rbio5.5

(c)

Fig. 3. Performance of the retrieval in average using different wavelet basis functions

Table 2. The Precision table corresponding to different recall values and different
wavelet basis functions

Wavelet
Recall

10 20 30 40 50 60 70 80 90 100 Average

db6 92.6 80.8 71.3 63.7 56.8 49.5 43.4 36.7 28.1 17.4 54.0
sym6 92.5 80.8 71.4 63.8 56.6 49.5 43.3 36.7 28.0 17.4 54.0
coif2 92.7 80.8 71.5 63.6 56.7 49.4 43.2 36.6 27.8 17.45 54.0
bior1.5 92.9 81.0 71.9 63.8 56.8 49.9 44.1 37.1 28.4 18.0 54.4
bior3.5 93.1 82.1 73.6 65.8 58.8 52.1 46.5 40.0 30.4 19.6 56.2
bior5.5 91.6 78.8 69.1 60.8 53.1 46.1 40.0 33.8 25.5 15.7 51.4
rbio1.5 92.4 80.0 70.0 62.1 55.1 48.2 42.1 35.3 27.0 16.9 52.9
rbio3.5 91.5 77.9 68.1 59.9 52.7 45.7 39.6 33.3 25.3 15.8 51.0
rbio5.5 92.9 82.2 73.3 66.1 59.0 52.2 46.4 39.6 30.3 19.7 56.2
dmey 90.5 76.5 65.7 57.7 50.9 44.4 38.9 33.0 25.2 14.9 49.8

Comparison with Fourier Transform

The literature is very affluent on Fourier Descriptors. On the contour based
processing, the difference of these descriptors is mainly on the contour represen-
tation. The contour can be represented for instance by signature, the cartesian
coordinates, complex numbers etc. Zhang Zhang 2002 shows that the most ro-
bust descriptor is the one obtained from the signature.

To be objective in the comparison, our method using the furthest distance
to fix the starting point is compared with the Fourier descriptor obtained from
the contour signature using 15 coefficients (see Zhang 2002 for the details of cal-
culating the Fourier Descriptor). The figure (4) (b) and the table (4) show the
comparison results. On can see the the performance of both methods are very
similar. This result is very encouraging, because we believe that it can be im-
proved by selecting for example an adapted basis wavelet function or taking into
account not only the approximation coefficients but also the details coefficients.
The performance may also be improved by applying the DWT with other types

688 K. Kith and E.-h. Zahzah

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Max. distance
Max. curvature
Axe principal
Axe naturel

(a)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
DWT
Fourier

(b)

Fig. 4. Performance Retrieval Comparison (a) Between the four solutions to fix the
starting point (b) Between the DWT using the furthest distance to the centroid and
the Fourier transform

Table 3. Average Performance Comparison Table using the four proposed technics
���������Starting Point

Recall
10 20 30 40 50 60 70 80 90 100 Average

Maximum Distance 92.9 82.2 73.3 66.1 59.0 52.2 46.4 39.6 30.3 19.7 56.2
Maximum Curvature 91.7 78.7 68.7 59.3 50.9 44.3 36.8 29.4 20.3 11.4 49.2
Principal Axis 88.1 71.5 58.3 50.3 43.6 38.9 34.3 28.6 22.6 14.3 45.0
Naturel Axis 83.0 63.2 50.2 41.8 35.9 30.0 24.6 18.3 13.9 8.71 36.9

Table 4. The average comparison Table of performance of the proposed and Fourier
method

Method
Recall

10 20 30 40 50 60 70 80 90 100 Average

Fourier 93 81 69.5 64.3 57.8 53.4 47.4 42.9 33.8 24.5 56.76
DWT 92.9 82.2 73.3 66.1 59.0 52.2 46.4 39.6 30.3 19.7 56.2

of representation, keeping in mind that the DWT is faster the the FFT in term
of computational complexity.

4 Conclusion

In this paper we propose a 2D shape recognition method based on the Discrete
Wavelet Transform. To compare objects regardless of their geometric properties
in translation, rotation and scale using the DWT coefficients, one must fix the
starting point. To do that, we proposed four easy solutions based on the distance

2D Shape Recognition Using Discrete Wavelet Descriptor 689

of the contour to the centroid, the object curvature, the principal axis, and
the natural axis. Furthermore to represent at best the signature contour by the
DWT coefficients, we proposed a solution to select automatically the decompo-
sition level, based on the average energy contained in the whole database. The
experimentations done show that the results are very encouraging and quite sim-
ilar to those obtained by Zhang 2002. In the future works we project to improve
the results by using for example other contour representation or other invariant
obtained from both approximation and detail coefficients of the DWT .

References

A. Del Bimbo. visual information retrieval. morgan kauffman, san francisco usa, pages
56–57, 1999.

Sang Uk Lee Hee Soo Yang and Kyoung Mu Lee. Recognition of 2d object contours
using starting-point-independent wavelet coefficient matching. Journal of Visual
Communication and Image Representation, 9(2):171–191, 1998.

M. Khalil and M. Bayoumi. Affine invariant for objet recognition using the wavelet
transform. Pattern Recognition Letters, 23:57–72, 2002.

L.J Latecki, R Lakamper, and U Eckhardt. Shape descriptors for non-rigid shapes with
a single closed contour. IEEE conf on Computer Vision and Pattern Recognition
(CVPR), pages 4124–429, 2000.

Stephan Mallat. A theory for multiresolution signal decomposition : the wavelet repre-
sentation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 11:674–
693, 1989.

Stphan Mallat. Zero-crossings of a wavelet transform. IEEE Transactions on Infor-
mation Theory, 37:1019–1033, 1991.

Michel Misiti, Yves Misiti, Georges Oppenheim, and Jean-Michel Poggi. Les ondelettes
et leurs applications. hermes Sciences, 2003.

Farzin Mokhtarian and Sadegh Abbasi. Shape similarity retrieval under affine trans-
forms. Pattern Recognition, 35:31–41, 2002.

F. Mokhtarian S. Abbasi and J. Kittler. Enhancing css-based shape retrieval for objects
with shallow concavities. Image and Vision Computing, 18:199–211, 2000.

Q. M. Tieng and W. W. Boles. Wavelet-based affine invariant representation: A tool
for recognizing planar objects in 3d space. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 19(8):846–857, 1997.

Dengsheng Zhang and Guojun Lu. A comparative study of curvature scale space and
fourier desriptors for shape-based image retrieval. PhD thesis, Gippsland school of
computing and Info Tech Monach Univer, 2002.

D. S. Zhang and G. Lu. Review of shape representation and description techniques.
Pattern Recognition, 37(1):1–19, 2004.

Dengsheng Zhang. Image Retrieval Based on Shape. PhD thesis, Faculty of Information
Technologie, March 2002.

Dengsheng Zhang. Evaluation of similarity measurement for image retrieval. PhD
thesis, Gippsland school of computing and Info Tech Monach Univer, March 2003.

Which Stereo Matching Algorithm for Accurate
3D Face Creation ?

Ph. Leclercq, J. Liu, A. Woodward, and P. Delmas

CITR,
Department of Computer Science,

The University of Auckland,
New Zealand

patrice@cs.auckland.ac.nz

Abstract. This paper compares the efficiency of several stereo match-
ing algorithms in reconstructing 3D faces from both real and synthetic
stereo pairs. The stereo image acquisition system setup and the creation
of a face disparity map benchmark image are detailed. Ground truth is
build by visual matching of corresponding nodes of a dense colour grid
projected onto the faces. This experiment was also performed on a hu-
man face model created using OpenGL with mapped texture to create as
perfect as possible a set for evaluation, instead of real human faces like
our previous experiments. Performance of the algorithms is measured by
deviations of the reconstructed surfaces from a ground truth prototype.
This experiment shows that contrary to expectations, there is seemingly
very little difference between the currently most known stereo algorithms
in the case of the human face reconstruction. It is shown that by com-
bining the most efficient but slow graph-cut algorithm with fast dynamic
programming, more accurate reconstruction results can be obtained.

1 Introduction

Reliable human-computer interface systems are today under active research. As
their essential component, realistic 3D face generation recently received much
attention [1]. Potential applications vary from facial animation and modelling for
augmented reality and head tracking to face authentication for security purposes.
Since the nineteen eighties [2], researchers have been trying to use planar images
of faces for any of the above applications. Lately, more advanced methods such as
Active Appearance Models [3] have been able to retrieve 3D pose and geometry
of the face in real-time using both 2D image information and a statistical model
of a 3D face. Still, results are highly influenced by viewpoint and illumination
variations and usually provide a very rough description of face features such as
eyes, mouth, eyebrows. At the same time, 3D face acquisition techniques have
been found less dependent to the viewpoint and illumination; and for humans, to
posture and expression variations. Furthermore, such techniques are expected to
be reliable, compact, accurate and low-cost. Although many approaches (such as

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 690–704, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Which Stereo Matching Algorithm for Accurate 3D Face Creation ? 691

laser range scanner devices, stripe pattern generator-based tools, marker-based
techniques) may be used to generate 3D faces, imaging techniques involving only
off-the-shelf low cost digital still cameras have been the most widely researched
as they are cheap, require no special hardware equipment or complicated system
setup and may be applicable in the future to a wide range of situations. Here
we propose to assess the performance of the most widely known stereo corre-
spondence algorithms for 3D face generation. First, the theory beneath the nine
different stereo algorithms studied will be described. Next, two different ways to
generate human face stereo pairs using off-the-shelf cameras will be presented.
Performances of the stereo algorithms on the generated ground truths are then
exhibited and commented.

2 Algorithms

Notations. IL(P), respectively IR(P), is the information (intensity, luminance
or any other colour channel) at point P in the left, respectively right, image.
Correlation functions in each image are evaluated over a square ‘window’ w(P, r)
of (2 · r + 1)× (2 · r + 1) neighbouring pixels, with P , its centre and r its radius.

Corr1: Normalised Square of Differences Correlation (C1 in Faugeras
et al. [4]). The first correlation cost, C(P), is the normalised intensity difference:

C1(P) =
√

1

∑
P ′∈w(P,β)

(IL(P ′)− IR(P ′))2√ ∑
P ′∈w(P,β)

IL(P ′)2 ·
√ ∑

P ′∈w(P,β)
IR(P ′)2

(1)

Corr2: Normalised Multiplicative Correlation (C2 in Faugeras et al. [4]).
The second cost is a normalised multiplicative correlation function:

C2(P) =

∑
P ′∈w(P,β)

IL(P ′) · IR(P ′)√ ∑
P ′∈w(P,β)

IL(P ′)2 ·
√ ∑

P ′∈w(P,β)
IR(P ′)2

(2)

Sum of Absolute Differences (SAD). The third cost simply sums absolute
differences without normalisation:

SAD(P) =
∑

P ′∈w(P,β)

|IR(P ′)− IL(P ′)| (3)

A variant of the SAD cost is the Sum of Squared Differences (SSD):

SSD(P) =
∑

P ′∈w(P,β)

(IR(P ′)− IL(P ′))2

More details regarding SAD and possible parallel implementation can be
found in [5]

692 Ph. Leclercq et al.

Census. Zabih et al. use intensities in a different way [6]: bit-vectors V are
created by concatenating the results of the Census transform - ξ(P, P ′) - first in
w(P, β), then over a correlating window w(O,α):

V (O,α) = ⊗
P∈w(O,α)

(⊗
P ′∈w(P,β) ξ(P, P ′)

)
, ξ(P, P ′) =

{
1 if I(P) < I(P

′
)

0 otherwise.

The correlation cost is obtained using the Hamming distance between V (OL, α)
and V (OR, α) bit vectors at point O in left and right image.

CCensus = V (OL, α)0 V (OR, α)

where 0 denotes the Hamming distance.

Chen and Medioni. The Chen-Medioni algorithm [7] takes a volumetric ap-
proach to calculate a disparity map of a 3D surface. A correct disparity map
corresponds to a maximal surface in the u-v-d volume, where u and v are pixel
co-ordinates, d is the disparity. The disparity surface is extracted by first locat-
ing seed points in the volume (correspondences with a high likelihood of being
correct matches), and propagating outward from these positions, thus tracing
out a surface in the volume. An upper threshold is used to discriminate these
seed points. Propagation utilizes the disparity gradient limit [8] which states that
the rate of change in disparity is less than the rate of change in pixel position.
Therefore only directly adjacent neighbours along a scan line are analyzed. A
lower threshold is be used to reject poor matches at the propagation stage. Nor-
malized cross-correlation is used as the similarity measure. The initial step for
the algorithm requires the location of seed points. A multi-resolution approach
is utilized where a mipmap of the original stereo pair is created. At the lowest
resolution, the left image is divided into buckets and pixels inside are randomly
selected for seed points suitability. Next, as a result of surface tracing, a low res-
olution disparity map is obtained. The disparities from this map are inherited
as seed points for each higher resolution, until the full scale disparity map is
constructed. By propagating from initial seed points a level of local coherence is
obtained.

Symmetric Dynamic Programming Stereo: SDPS. Gimel’farb proposes
a dynamic programming approach [9] to the stereo problem based on a Markov
chain modelling of possible transitions to form a continuous graph of profile
variants. Then, the reconstructed profile has to maximise the likelihood ratio -
chosen as the log-likelihood ratio for instance - with respect to a purely random
one.

This more traditional algorithm sequentially estimates a collection of con-
tinuous 1D epipolar profiles of a 2D disparity map of a surface by maximising
the likelihood of each individual profile. Regularisation with respect to partial
occlusions is based on the Markov chain models of epipolar profiles and image
signals along each scanline. The algorithm accounts for non-uniform photometric
distortions of stereo images by mutually adapting the corresponding signals. The

Which Stereo Matching Algorithm for Accurate 3D Face Creation ? 693

adaptation is based on sequential estimation of the signals for each binocularly
visible point along the profile variant by averaging the corresponding signals in
the stereo images. The estimated signals are then adapted to each image by
changing the corresponding increments to within an allowable range.

Roy and Cox Maximum Flow Formulation. Roy and Cox introduce the
local-coherence constraint [10]: the algorithm1 assesses the full 2D problem in-
stead of the usual 1D epipolar constraint. The stereo correspondence problem
is posed as a maximum flow problem and minimal cut is used to extract the
disparity map.

Graph Cut Variants. This approach performs a statistically optimal estima-
tion of a disparity map for a 3D human face from a given stereo pair of images.
The estimation is based on general local 2D coherence constraints [10], instead
of the previous traditional 1D ordering ones. To perform the 2D optimization,
the matching is formulated as a maximum-flow graph problem. The images and
maps are described with a simple Markov Random Field (MRF) model taking
into account the differences between grey values in each pair of correspond-
ing points and the spatial relationships between the x-disparities. The goal is to
find a piecewise smooth x-disparity map consistent with the observed data which
minimises the total energy based on the Gibbs potentials of pairwise interactions
between the disparities and corresponding signals. Epipolar surface profiles are
stacked together to form a 3D matching cube. The disparity map of a desired
surface is obtained by approximately solving the maximum-flow/minimum-cut
problem on a graph linking discrete 3D points in the cube [11]. Here, three graph
cut algorithm variants2 have been evaluated: BVZ in [12], KZ1 in [13] and KZ2
in [14].

3 Experimental Setups and Benchmark Definitions

This chapter introduces two different methods to generate dense ground truth
for the assessment of stereo matching algorithms performance on stereo set of
human faces. The first method uses standard off the shelf digital camera while
the latter integrates data acquired with these cameras and an OpenGL 3D face
model to create a synthetic stereo pair with corresponding disparity map.

3.1 Stereo Bench Setup

Two Cannon PowerShot A60 cameras are manually placed as close as possible
to the epipolar geometry configuration as illustrated in Fig. 1. The cameras fo-
cal length and synchronized frame capturing (1600× 1200 pixels uncompressed)
are controlled via an embedded Cannon software for image acquisition. The

1 www2.iro.umontreal.ca/~roys/publi/iccv98/code.html
2 www.cs.cornell.edu/People/vnk/software.html\#MAXFLOW

694 Ph. Leclercq et al.

Fig. 1. Stereo bench setup. The 2 cameras are placed in vertical epipolar position

Fig. 2. Stereopairs of Alex placed in vertical epipolar position

baseline length is ∼ 11 cm and the subject-camera distance is around 110 cm.
Further studies on optimal subject-camera distances for best accuracy as well
as full camera calibration are not detailed here but can be found in [15]. Most
stereo-matching algorithms scan epipolar stereo images line per line, to find
corresponding, pixels for sake of simplicity and speed. Usually stereo cameras
are placed horizontally with left camera lines matched to their respective right
camera rows. However, for faces, as suggested in [7] and confirmed by our ex-
periments, cameras should be placed one on top of another to avoid symmetric
face features, such as eyebrows, eyes, nostrils and mouth to appear line wise on
the stereo image set. Furthermore, this setup minimizes the creation of outliers
around the nose region as both cameras see the face from a symmetric vertical
viewpoint.

Typical stereo pairs of faces (as in Fig. 2) occupy a 650×450 pixels rectangle
in the image and have a disparity range of 20 to 30 pixels

In many cases, Stereo-matching algorithms have been compared to artificial
set of images corrupted with added Gaussian noise [16]. The created stereo set
is then processed by each algorithms and the obtained disparity map compared
to the perturbed synthetic disparity. For human faces, it is very unlikely that ar-
tificially created stereopairs will exhibit realistic surface and texture. Therefore,
the ground truth has to be generated from acquired face data.

To initiate our data acquisition a coloured (red, green, and blue, see Fig.
3) grid was projected onto a human test subject. A stereo pair of images with
grid projections, and a third without (for texture mapping purposes), was taken.
Correspondence between pixels in the left and the right images was carried out

Which Stereo Matching Algorithm for Accurate 3D Face Creation ? 695

‘

Fig. 3. Projection of a coloured grid on stereo images of test subjects for creating the
reference disparity maps

Fig. 4. Depth map, with and without texture, of a test subject

through semi-automatic registration using the points located at the intersections
of the grid lines. Once acquired, this sparse dataset, composed of approximately
350 points evenly distributed over the whole facial surface, was interpolated,
through cubic spline interpolation, to obtain dense ground truth disparities (see
Fig. 4).

Note that as stereo pairs were acquired in real conditions, left and right
images might exhibit different illuminations as well as slight epipolar errors. For
the latter, manually generating the sparse maps showed epipolar irregularities
of about 1 ∼ 2 pixels, eventhough cameras were carefully adjusted beforehands.

3.2 3D-Modelled Stereo Pairs

In order to develop a test environment for accurate comparison of stereo recon-
struction algorithms, the provision of ground truth disparity data is necessary.
A methodology for synthetic ground truth was developed involving three steps:
– manual acquisition of a sparse set of data,
– generation of a dense set and creation of a synthetic 3D model and
– virtual camera setup allowing sub-pixel ground truth disparities.

Obtaining an Initial Dataset. After acquiring the data set, as described in
section 3.1, it is tessellated to form a surface; the relatively small facet size means
the resultant surface has smoothness at an ample scale. Since each pixel in the
acquired image corresponds to a surface’s vertex, generating texture mapping co-
ordinates is straight forward. This composition provides an accurate synthetic
representation of a true human face.

696 Ph. Leclercq et al.

Virtual Test Bench Setup. Rendering of our face model utilised the OpenGL
API which contains number of features for quick camera locations and parame-
ters setup. To mirror the existing Canon Powershot A60 cameras setup used in
our lab: the baseline was set to 100mm and the focal length was derived from a
1/2.7” (i.e. 5.27mm× 3.96mm) CCD sensor in simple geometric terms:

FocalLength =
SensorHeight

2 · tan(FieldOfV iew/2)
= 5.4mm

Fig. 5. The camera configuration used for this experiment
consisted of a vertical arrangement, coplanar images planes,
and equivalent parameter settings between both cameras.
Generated images were taken at 800 × 600 resolution while
cameras were placed on their sides to allow the human
face to fully exist within the frame. This also followed the
convention of standard epipolar searches restricted to scan
lines

Extraction of Ground Truth and Synthetic Stereo Pair. To extract
ground truth disparities the scene is first rendered from the lower camera, this
will result in the top image becoming our reference frame. The OpenGL depth
buffer is then read from, providing us with a window-space z-value at each pixel
position, i.e. the pseudo-depth value expressed in the default range of [0.0, 1.0].
A value of 0.0 corresponds to a point lying on the near clipping plane, and
1.0, the far one. The clipping planes exist axis-aligned along the optical axis
in front of the virtual camera. Once this information is obtained we can then
un-project each pixel location back into the scene to find out its existence in
the world-space frame. This transform uses the contextual knowledge of the cur-
rent OpenGL modelview and projection matrices along with the current view-
port. The scene is now setup and rendered from the upper camera, obtaining
a new modelview matrix which can be utilised to project our known 3D points
defined in world-space, into window-space co-ordinates (defined at sub-pixel ac-
curacy). All points that exist on the far clipping plane (after un-projection) can
be rejected as they are not of interest. Due to the epipolar setup, sub-pixel ac-
curate disparities are found simply through the parallax across scan-lines as:
Disparity = Xtop −Xbottom.

Note: since we can find a disparity for every pixel within the virtual camera
frame, this technique provides disparities at occluded areas within the stereo
pair. The benefit of a virtual setup allows a variety of stereo pairs based on
different camera configurations to be quickly and easily generated. It provides
a relevant test bench for the special case of stereo reconstruction for human
faces.

Which Stereo Matching Algorithm for Accurate 3D Face Creation ? 697

4 Results
4.1 Experimental face stereopairs

”Alex” and ”Mannequin” stereopairs were processed using the previously
described algorithms, the computed disparity maps were compared to the bench-
mark by point-to-point subtraction. Both visual appearances of the disparity
maps obtained - see Fig. 10 and 9 - and their statistical error behaviour - see
Table 2 and 1 - provide useful insights. Clearly, The Chen-Medioni (C-M) al-
gorithm shows a very large error range and seems unsuitable for faces lacking
texture such as ”Philippe” (Fig. 6) while retaining acceptable results on ”Mark”
(Fig. 6). This is easily understandable as the algorithm first looks for seeds,
defined as pixels with high likelihood of good matches, to propagate its search
for corresponding pixels through the face. Generally all algorithms have better
results on ”Alex”, because of its richer texture compared to ”Mannequin”. As
expected, SDPS (Fig. 7) performs well (Table 2) offering the best trend between
statistical behaviour (best average, best standard deviation) on ”Mannequin”
while taking only 27 seconds to process. Although correlation approaches are
outperformed, Census and C2 show decent matching and would probably make
use of bigger correlation windows. Due to its bit-pattern, Census is penalised on
standard PC architecture but could be a good candidate for hardware imple-
mentation. C2 (described by Faugeras as the best performing correlation cost)
exhibits overall better results due to its robustness to lighting conditions change.
Slight shift from perfect epipolar geometry as well as illumination variation may
be responsible for the, otherwise performing, Minimal-Cut algorithms bad re-
sults. However, Minimal-Cut variants and SDPS show very tight distribution
and would show much higher correct matches percentages if the constraint was
to be relaxed to ±1 pixel.

4.2 3D Modelled Stereopair

Using ground truth benchmark derived from real stereopairs of human faces
showed that most stereo algorithms are highly influenced by slight shift in epipo-
lar geometry configuration as well as variation of illumination within the stereo
pair images. In this experiment we intend to use the synthetic stereo pair created
in Section 3.2 to annihilate the effect of most noise sources.

Table 3 shows that in the case of the human face, correlation algorithms are
not as clearly outperformed by dynamic programming as in other situations -
see [16] - except in the case of the error range where dynamic programming algo-
rithms provides sensibly tighter distributions. Results confirm the trend observed
with the previous experiment where Graph-Cut based algorithms do not show a
good percentage of correct matching points while retaining a low mean and stan-
dard deviation error range. On error-free ground truth Correlations methods do
provide good correct matching points ratio as well as a low mean but do have a
somehow larger standard deviations. Although the Roy-Cox algorithm provides
the lowest error range mean, standard deviation and second best correct match-
ing point value it takes up to 20 minutes to process a stereo pair. It can be noted
that SAD combined with a Median[5, 5] filter outscores Roy-Cox, with 87

698 Ph. Leclercq et al.

Fig. 6. Disparity map ”Mark” (top left) and ”Philippe” (bottom left) obtained with
the Chen-Medioni algorithm with (right) and without (middle) median filtering

Fig. 7. Disparity map obtained on alex (first 2 images) and the mannequin (last 2
images) using SDPS and MCS

Algorithm Correct % |Mean| StdDev Error range Timing (s)
BVZ 81.3 0.72 1.9 −14 ∼ 14 23.7
KZ1 85.0 0.67 1.9 −14 ∼ 14 40.1
KZ2 85.6 0.59 1.7 −14 ∼ 14 65.3

Fig. 8. KZ2 disparity map (top), Our results (bottom) - after integrating Kolmogorov’s
code to our software - on the ”Tsukuba” stereopair for comparisons with [12, 13, 14],
with post-precessing applied

Which Stereo Matching Algorithm for Accurate 3D Face Creation ? 699

Fig. 9. All examples are given for the ”Alex” Stereopair. On the top is the grountruth
disparity map. On the left is the computed disparity map and on the right the corre-
sponding error histogram in pixels. The face has 184920 pixels. From top to bottom,
Census(r = 2), C1(r = 2), C2(r = 2) and SAD(r = 2)

700 Ph. Leclercq et al.

Fig. 10. All examples are given for the ”Alex” stereopair. On the left is the computed
disparity map and on the right the corresponding error histogram in pixels. The face
has 184920 pixels. From top to bottom, BV Z, KZ1, KZ2, SDPS and Chen−Medioni

Which Stereo Matching Algorithm for Accurate 3D Face Creation ? 701

50 100 150 200 250 300 350 400

50

100

150

200

5

10

15

20

25

30

35

40

50 100 150 200 250 300 350 400

50

100

150

200

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350 400

50

100

150

200

5

10

15

20

25

30

50 100 150 200 250 300 350 400

50

100

150

200

0

5

10

15

20

25

30

50 100 150 200 250 300 350 400

50

100

150

200 5

10

15

20

25

30

50 100 150 200 250 300 350 400

50

100

150

200

Fig. 11. From top to bottom and left to right:
generated ground truth, SAD, Chen and Medioni, SDPS, BVZ and Roy and Cox error
distributions

Table 1. Results of several algorithms on the ”Alex” stereopair: the percentage of good
matches, i.e. |error| < 0.5 pixels, mean of absolute errors, error distribution standard
deviation and error range

∗ denotes algorithm working on a smaller window, i.e. 820 × 529.

Algorithm Correct % |Mean| StdDev Error range Timing (s)
Census(α = 2, β = 2) 17.5 4.61 7.2 −22 ∼ 27 167∗

Census(α = 4, β = 4) 29.2 2.23 4.4 −22 ∼ 26 1532∗

Corr1(r = 4) 7.3 8.03 10.0 −22 ∼ 27 49∗

Corr2(r = 4) 27.9 2.38 4.6 −22 ∼ 26 44∗

SAD(r = 4) 3.2 8.31 10.2 −22 ∼ 27 34∗

BV Z 9.5 7.65 9.8 −22 ∼ 26 2036
KZ1 25.3 1.83 2.6 −12 ∼ 11 4447
KZ2 35.5 1.59 2.4 −10 ∼ 7 2214
SDPS 30.7 1.06 1.4 −9 ∼ 8 27
Chen − Medioni 30.7 1.23 3.6 −318 ∼ 13 89

Conclusion

Nine different stereo-matching algorithms have been applied to a set of real and
synthetic referenced stereo pairs of faces. Simple correlation-based (C1, C2 and
SAD) algorithms result in a high noise level of their face disparity map. The
Chen-Medioni algorithm encounters difficulty to process textureless area of faces
which results in entire zone of the face (often on the forehead) being left with no
disparity information. Otherwise described as one of the best stereo algorithms
in terms of accuracy [16], Minimal-Cut algorithms, have problems dealing with
the specific geometry of faces as well as exhibiting penalising processing time.
As expected, SDPS exhibits good time-accuracy behaviour. Overall, this ex-

702 Ph. Leclercq et al.

Table 2. Results of several algorithms on the ”Mannequin” stereopair: the percentage
of good matches, i.e. |error| < 0.5 pixels, mean of absolute errors, error distribution
standard deviation and error range

∗ denotes algorithm working on a smaller window, i.e. 590 × 500.

Algorithm Correct % |Mean| StdDev Error range Timing (s)
Census(α = 2, β = 2) 8.8 6.12 7.8 −20 ∼ 24 130∗

Census(α = 4, β = 4) 12.7 5.31 7.2 −19 ∼ 24 369∗

Corr1(r = 4) 6.8 8.38 10.1 −20 ∼ 24 39∗

Corr2(r = 4) 12.9 4.69 6.6 −20 ∼ 24 35∗

SAD(r = 4) 6.2 8.54 10.3 −20 ∼ 24 27∗

BV Z 9.5 8.92 10.7 −19 ∼ 24 2320
KZ1 9.7 7.57 9.1 −18 ∼ 21 3301
KZ2 11.1 7.44 8.9 −18 ∼ 20 1916
SDPS 22.6 1.60 2.2 −11 ∼ 14 22
Chen − Medioni 15.2 15.34 59.7 −393 ∼ 341 175

Table 3. Main results for the studied algorithms: their percentage of correct matches
i.e. |error| < 0.5pixels, the mean of absolute errors, the standard deviation, the error
range and the running time. Tests executed on a Pentium III 1266MHz with 5BG of
RAM with no parallel implementation

∗ denotes time compensation for correlation algorithms, i.e. these are ran on a small
window around the face and have been normalised for 800 × 600 = 480000 pixels
instead of 87584.

Algorithm Correct % |Mean| Stdev. Error Range Time(s)
Census(α = 2, β = 2) 79.6 0.4 2.2 −35 ∼ 42 315.4∗

C1(r = 2) 82.3 0.3 2.0 −42 ∼ 44 47.2∗

C2(r = 2) 75.4 0.7 2.9 −32 ∼ 45 41.3∗

SAD(r = 2) 85.9 0.3 1.8 −32 ∼ 44 25.3∗

Chen − Medioni(Rthr. = 0.6) 67.7 1.6 6.5 −39 ∼ 41 18.8
SDPS(PB = 0.9, PM = 0.1) 71.0 0.3 1.2 −31 ∼ 17 10.4
GraphCut(KZ1) 36.0 1.0 2.0 −32 ∼ 36 182.3
GraphCut(KZ2) 35.5 1.0 1.8 −33 ∼ 34 603.4
GraphCut(BV Z) 40.0 0.8 1.6 −33 ∼ 19 87.5
Roy − Cox(dsmooth = 10) 80.5 0.2 1.1 −31 ∼ 17 1329.9

periment illustrated that most of background or recent stereovision algorithms
provide close results in the case of the human face. Even though Graph-Cut vari-
ants produce smaller percentages of correct matches, they have a low standard
deviation. Also, our stringent criterion might explain the difference with other
studies - [16] - using a ±1.5 pixel criterion leads to correct percentages of ! 85%.
It seems that Energy minimisation methods tend to have an overall optimisa-
tion criterion instead of a local, which explains why it has a lower percentage of
correct matches with our stringent criterion but still delivers a tight error dis-
tribution. Further studies involve assessing the accuracy of stereo algorithms on

Which Stereo Matching Algorithm for Accurate 3D Face Creation ? 703

face features (rather than on the overall face), which are especially important as
they carry most of the audiovisual and biometric information expressed, as well
as introducing a new stereo algorithm adapted to the specific geometry profile
of the face.

References

1. Q. Wang, H. Zhang, T. Riegeland, E. Hundt, G. Xu, and Z. Zhu. Creating ani-
matable MPEG4 face. In International Conference on Augmented Virtual Envi-
ronments and Three Dimensional Imaging, Mykonos, Greece, 2001.

2. E.D. Petajan, B. Bischoff, D. Bodoff, and N.M. Brooke. An improved automatic
lipreading system to enhance speech recognition. CHI88, pages 19–25, 1988.

3. J. Xiao, S. Baker, I. Matthews, and T. Kanade. Real–time combined 2D+3D
active appearance models. IEEE International Conference on Computer Vision
and Pattern Recognition, june 2004.

4. O. Faugeras, B. Hotz, H. Mathieu, T. Viéville, Z. Zhang, P. Fua, E. Théron, L. Moll,
G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real time correlation-based stereo:
algorithm, implementatinos and applications. Technical Report 2013, Institut Na-
tional De Recherche en Informatique et en Automatique (INRIA), 06902 Sophia
Antipolis, France, 1993.

5. Philippe Leclercq and John Morris. Robustness to noise of stereo matching. In
IEEE Computer Society, editor, Proceedings of the International Conference on Im-
age Analysis and Processing (ICIAP’03), pages 606–611, Mantova, Italy, Septem-
ber 2003.

6. Ramin Zabih and John Woodfill. Non-parametric local transforms for computing
visual correspondence. Lecture Notes in Computer Science (LNCS), 800:151–158,
1994.

7. Q. Chen and G. Medioni. Building 3-D human face models from two photographs.
In Journal of VSLI Signal Processing, pages 127–140, 2001.

8. S.T. Barnard and M.A. Fischler. Computational stereo. In Surveys, volume 14,
pages 553–572, 1982.

9. Georgy Gimel’farb. Binocular stereo by maximising the likelihood ratio relative
to a random terrain. In Reinhard Klette, Shmuel Peleg, and Gerald Sommer,
editors, International Workshop Robot Vision ’01, number 1998 in Lecture Notes
in Computer Science (LNCS), pages 201–208, Auckland, New-Zealand, February
2001.

10. Sébastien Roy and Ingemar J. Cox. A maximum-flow formulation of the n-camera
stereo correspondence problem. In IEEE Proceedings of International Conference
on Computer Vision (ICCV’98), Bombay, 1998.

11. Yu. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. In Proc. 7th Int. Conf. Computer Vision (ICCV 1999), pages 377–384,
Kerkyra, Corfu, Greece, September 20–25 1999. IEEE Computer Society.

12. Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov random fields with efficient
approximations. In IEEE Computer Vision and Pattern Recognition Conference
(CVPR’98), June 1998.

13. Vladimir Kolmogorov and Ramin Zabih. Computing visual correspondence with
occlusions via graph cuts. In International Conference on Computer Vision
(ICCV’01), July 2001.

704 Ph. Leclercq et al.

14. Vladimir Kolmogorov and Ramin Zabih. Multi-camera scene reconstruction via
graph cuts. In A. Heyden et al., editor, In European Conference on Computer
Vision (ECCV’02), number 2352 in Lecture Notes in Computer Science (LNCS),
pages 82–96, 2002.

15. M. Chan, C.F. Chen, G. Barton, P. Delmas, G. Gimel’farb, P. Leclercq, and
T. Fisher. A strategy for 3D face analysis and synthesis. Image and Vision Com-
puting New Zealand, pages 384–389, 2003.

16. Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. International Journal of Computer Vi-
sion, 47:7–42, April–June 2002.

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 705–715, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Video Cataloging System for Real-Time Scene Change
Detection of News Video

Wanjoo Lee1, Hyoki Kim2, Hyunchul Kang2, Jinsung Lee3,
Yongkyu Kim4, and Seokhee Jeon5

1 Division of Computer & Information, YongIn University,
Samga-Dong 470, Yong-In, Gyunggi-Do, 449-714, Korea

wjlee@yongin.ac.kr
2 Dept. of Information & Telecommunication Engineering, University of Inchoen,

Dowha-Dong, Nam-Gu, Inchoen, 402-749, Korea
{coolbrain, hckang}@incheon.ac.kr

3 Hee-Jung B/D 4F, Banpo-4Dong 49-11, Seocho-gu, Seoul, 137-044, Korea
jinsemi@neomedia.co.kr

4 Dept. of Information Communication Engineering, Sungkyul University,
Anyang 8-Dong, Manan-Gu, Anyang, 430-742, Gyunggi-Do

ykkim@sungkyul.edu
5 Dept. of Electronics Engineering, University of Incheon,

Dowha-2Dong, Nam-Gu, Incheon, 402-749, Korea

Abstract. It is necessary for various multimedia database applications to de-
velop efficient and fast storage, indexing, browsing, and retrieval of video. We
make a cataloging system, which has important information of video data. In
this paper, we proposed a method to process huge amount of broadcasting data.
It can detect scene-change quickly and effectively for MPEG stream. To extract
the DC-image, minimal decoding is employed form MPEG-1 compressed do-
main. Scene-change is detected by the modified histogram comparative method
that combines luminance and color component. A neural network is used to
judge whether it is scene-change with an anchorperson and to raise precision of
an anchorperson scene extraction.

1 Introduction

In the past, information retrieval was dependent on key words that are extracted from
document(sentence). It is necessary for more relevant search to use contents based
search which is based not only on character but also on image and audio related the
character[2]. In particular, about 73% of many billions website are including image
data[2]. It will be important element to use image and video information for searching.
There is video data for 6 million hours in all around world. Every year, video is increas-
ing by 10%[2]. In addition, video that has 1 hour requires about 10 hours to add an
indexing to the video [2]. Thus, it is impossible and inefficient to make literal explana-
tion to image and video, because that is subjective and has huge amount of information.
Therefore, as image and video have become more important subjects for information
retrieval, a cataloging system is needed for more efficient search of the media.

706 W. Lee et al.

In this paper, we intend to achieve real-time processing to deal with huge amount
of broadcast data. We also want to detect correct scene-change with fast method. For
example of news video, every accident report consists of anchorperson part and re-
porter part repeatedly. We wish to analyze the structure information from video
stream. In structure information of the news video, anchorperson scene is the best for
analysis. We create a model for anchorperson by neural network, and we detect an-
chorperson scene. This structural information as well as time data play an important
role in retrieval. As the result of parsing, it is possibility to provide video summary
and video plot.

2 Video Cataloging System and Characteristic of News Video

2.1 Video Cataloging System

The Video Cataloging System extract semantic information such as key frame, letter
and figure from inputted video data, and effectively stores the information for later
search. This system functionally consists of video data formation, browsing system,
automatic index, and content-based retrieval system. Figure 1 shows an example of the
video cataloging system. In order to build in this video cataloging system, video sum-
mary system, which searches scene-change, extracts key-frame, and removes similar
frame, must be developed.

Fig. 1. Video Cataloging System

This paper proposed the video processing system for video cataloging system. The
video processing system extract video structure information from input video stream,
and it consist of scene-change detection process, an anchorperson screen extraction
process and a video summary creation process. Also the extracted representative
screen is stored with the time code, and the compression of this input stream follows a
MPEG standard form.

Video Cataloging System for Real-Time Scene Change Detection of News Video 707

The current content-based retrieval cannot do automatic meaning analysis of con-
tents. In order to overcome this limit, many researches about news video data, which
have the character with fixed type, are become accomplished mainly in the inside and
outside of the country for content-based retrieval.

2.2 Characteristic of News Video

According to each genre, content-information with high level will be different. With
the genre of news, many content-information with high level may exist such as an-
chorperson scene, and graphic scene, but obviously anchorperson scene is the most
important. We will be able to summarize the full story by anchorperson-scene. And
we will be able to separate different articles as it is placed at the beginning of each
article video data.

News video data helps scene segmentation, composition of index, extraction of
representative content by using the formal knowledge of time and space. Temporal
composition of news video is explained in figure 2. The beginning scenes tell that
news has been started. Each news program has different beginning scene, and fur-
thermore each broadcasting system has different beginning scene.

Fig. 2. Temporal Composition of News Video

Anchorperson scene after beginning scene tells the news story, and one or more
anchorperson may show up. The place where the news contents which briefly shown
in anchorperson scene is reporter scene. The reporter scene may consist of data, in-
terview, artificial pictures and tables, which are connected the content of the news.

Spatial composition of news video, consists of anchorperson scene and reporter
scene as shown in figure 3. The anchorperson scene consists of news icon, news cap-
tion, anchorperson part, anchorperson’s name, news program title, and name of broad-
casting company. Usually the location and the lasting-time of each components are
uniform.

News icon, the name of a broadcasting company and the caption for one frame is
only a portion of the whole video stream, but they give important information regard-
ing the news.

708 W. Lee et al.

Fig. 3. Spatial Composition of News Video

3 Scene Change Detection

Content-based retrieval can be categorized by which is used among visual informa-
tion, literal information, audio information, and usually visual information is used for
video summary. Visual information is usually used segmentation for video scenes, and
through this, structural video browsing becomes possible. As video compression skills
are developed more and more, many researches regarding video search, summary,
browsing are being done. The algorithm for scene change generally consists of com-
pressed domain and non-compressed domain. In this paper, for the purpose of real
time process, the algorithm of compressed domain is applied. We do an automatic
scene change detection and anchorperson scene detection, which are basis for the
index of content-based. Video data stored in MPEG-1 video stream.

3.1 Cut-Comparison for Scene Change Detection

As Figure 4 shows, a D-picture is generated from the DC-values of DCT coefficients
in each 8x8 blocks. For example, a original image with 352x240 has a D-picture with
44x30. This D-picture is used for cut-scene change detection as a source frame. Figure
4 shows cut-scene change detection using D-picture[8].

There are various methods, which the MPEG video frame can be compared with
the created D-Picture. But, some problem would be happened in case the P,B frame
uses, because the frame refer the previous or the after. Therefore, these comparing
methods with only I-frames lead to faster processing time[9]. In this paper, we use no
P and B frames that require much time to decode a part of frame because of real time
processing.

Video Cataloging System for Real-Time Scene Change Detection of News Video 709

Fig. 4. Original Image and DC Image

3.2 Proposed Method for Scene Change Detection

The Figure 5 shows a feature in news video through the histogram difference of
frames. In the figure, We can found out characteristic of the news video data that an
anchor introduce to the summary at the induction before a reporter says in detail. The
whole flow of news video is very static and the frequency of the scene-change is rela-
tively less than the one of advertisements or music videos.

In general, the generation sequence in the video is about 5 sec such as TV program.
The NTSC MPEG with 29.97 frame per second usually includes under 15 pictures on
a GOP, this GOP show I-picture one time at least. Therefore, it will be right to detect
a cut even if I-picture only uses, because I-picture is a representative frame in GOP.

As we decode DC coefficients that represent pixel values in 8x8 blocks, the shape
of histogram shows a sharp Gaussian curve. This shape would not have much differ-
ence, in case of detected feature vector through quantization with luminance compo-
nent, because the most quantization has the similar value.

For calculating the distance of the compressed domain, it usually would use the
YUV of the DC Image. The Figure 6 shows which compared with the difference of the
decoding DC Image average value, variance value, luminance component(Y compo-
nent) and the suggested methods in this paper.

In this paper, to emphasize the distance of scenes, we use the variation of a method
that gets the difference of cumulative histogram between two frames [4,5,6]. Lumi-
nance represents a whole image, but dose not contain any color information. So the
similar distribution of luminance in images results an errors in the detection. To em-
phasize the distance of scenes, we use not only luminance but also chrominance.

710 W. Lee et al.

Fig. 5. Histogram Difference of News Video

Fig. 6. Feature Value of Frame Comparison

Equations to compute mean)(1D , distribution)(2D , cumulative histogram

value)(3D , and the value)(4D from the proposed method are.

=
+

=

−=+
n

j
i

n

j

i Y
n

Y
n

meaniiD
1

1
1

1

11
)1,(---(1)

2
1

1
1

2

1
2)(

1
)(

1
var)1,(+

=
+

=

−−−=+ i

n

j
ii

n

j

i Y
n

Y
n

iiD μμ ---(2)

=
+

=

−=+
n

j
i

n

j
i YHYHhistoiiD

1
1

1
3)1,(---(3)

−+

−

×+−=+

=
+

=

=
+

=

=
+

= n

j
i

n

j
i

n

j
i

n

j
i

n

j
i

n

j
i

VHVH

UHUH

wYHYHiiD

1
1

1

1
1

1

1
1

1
4)1,(

 ---(4)

Video Cataloging System for Real-Time Scene Change Detection of News Video 711

Where n is the number of entire pixels, Y is the luminance, U and V are the
chrominance and YH , UH , and VH is the histogram values of Y , U , and V in
each ith frame respectively. In case of)(4D , we make the decision of threshold easy
by adding [w x the cumulative histogram of chrominance] to the cumulative histogram
of luminance, where w represent weight that we set as 2 in our experiment. As Figure
6 shows, the difference of distance between scenes through the proposed method than
the others is much lager.

With a I-picture in MPEG-1 video sequence, we generate a DC image from the
least decoding and compute the distance of the images, shortly, the cumulative histo-
gram, between the frames. This method is robust against noise or light.

We use the YCbCr color model and first compute the cumulative histograms for Y,
Cb, and Cr. If the distance, using the proposed method in this paper, between images
is lager than Th(threshold), then we regard a scene change as detected.

4 Anchorperson Shot Detection

For the efficient retrieval of news videos, it is required to extract the exact terms of
anchorpersons. There are many different data in news videos, and anchorpersons,
graphics, interviews, reports, and so on would be high-level data. Especially, the
scenes of anchorpersons are useful to divide the items of news.

4.1 Characteristic of Anchorperson Scene

Figure 7 shows an example of the anchorperson-frame of spatial composition. News
icon may not exist, and exist to anchorperson-frame. But however, we can see that
anchorperson's face exists without correlation with existence availability of news icon.
For an anchorperson-frame extraction, we analyze the structural feature of the frame
where the anchorperson exists. Then we search the feature of anchorperson’s face
region, and recognize anchorperson’s face using this feature. Recognized result is
used information of key-frame.

 Fig. 7. Anchorperson Model

712 W. Lee et al.

In this paper, we wish to recognize the anchor face with anchor facial existence
area without considering existence availability of news icon.

In this paper, we define anchorperson by the following features:

1. Anchorperson’s face always appear.
2. Anchorperson’s faces have uniform size.
3. Anchorperson’s face is little motion.
4. Anchorperson’s background is similar.

4.2 Proposed Extraction Algorithm of Anchorperson

Generally, there are many methods that use the color information or the organizational
feature to detect the scenes of an anchorperson, or anchorpersons. But, in this paper,
we use the ADALINE(Adaptive Linear Neuron) neural network, unlike other existing
methods. Because, whether the scene contains an anchorperson (or anchorpersons) is
regarded as pattern recognition. Neural network is good for deciding where a class
belongs in, according to feature vectors, defined as input.

Figure 8 shows an example that forms a DC image into the input pattern of neural
network. Binary coded procedure is performed for 40x30 DC image, not full-size
image. Threshold in this procedure becomes the mean of intensities of a DC image.

Fig. 8. ADALINE Input Pattern

By the property of the ADLINE neural network, input vectors should be normal-
ized into 10x10 input values. On a normalized image, input pattern becomes -1 for 0
pixel value and +1 for 255. The reason of using luminance as input vector is that in
most news videos the scenes of anchorperson occur indoors and in this case a human
face becomes the brightest areas.

In respect of contents-base retrieval news icons play an important role. So, we di-
vided these models into pure anchor and anchor with news icon while the purpose in
this experiment is to search for the term of anchorperson. But, comparing the anchor-
person with the reporter, input patterns for these two scenes are nearly same. There-
fore, we should separate these two scenes. In this paper, we created an additional input
model for the non-anchorperson.

Video Cataloging System for Real-Time Scene Change Detection of News Video 713

Fig. 9. Non-Anchorperson Pattern Modeling

5 Experiment Result and Analysis

For our experiment, we used a Pentium IV 1.7GHz with Widows XP-OS and Visual
C++ 6.0 for programming language. To verify our algorithm proposed in this paper,
we used news videos of TV Program. New video is decoded by MPEG-1 standard.

Fig. 10. Results of Missed Detection & False Detection

Figure 10 shows a result of the missed detection. Missed detection occurs in the
case which has the distribution where the histogram is similar. Figure 10 shows a
result of the false detection. False detection dose not have similar histogram. False
detection occurs in the case which has the effect of panning. Figure 11 shows a result
of the Anchorperson detection.

Fig. 11. Result of Anchorperson Detection

714 W. Lee et al.

Table 1. Proposed Scene Change Dtetction Result. This paper used MBC news. rN : number

of scene-change really; cN : number of correct scene-change in detected scene-change; dN :

number of detected scene-change; tN : number of false detection; mN : number of missed

detection;
fc

c

NN

N
recall

+
= ;

mc

c

NN

N
percision

+
= ;

 Total frame
Time

rN cN dN tN mN Recall Precision

News1 16063 121 110 114 4 7 96.5% 94.0%
News2 15284 106 95 100 5 6 95.0% 94.1%
News3 27452 221 196 207 11 4 94.7% 93.3%
Average 95.1% 93.8%
Time of
process

0.016 sec (Per frame processing time)

Table 2. Proposed Anchorperson Detection Result

Class Total Detection Miss False Time of Process
Anchor 1 1 0 0 0.01 sec

Anchor+News Icon 5 6 1 0 0.01 sec

The result of the proposed scene-change is show in Figure 12-14. The average of
recall is 95.1% and the average of precision is 93.8%. The processing of proposed
scene-change is 0.016 second. The proposed detection of anchorperson is 0.01 sec-
ond. These algorithms will be able to accomplish with a real-time.

However, in distribution of similar histogram and the panning of the camera, pro-
posed algorithms occur miss and false. And anchorperson detection preceding learn-
ing is necessary. When the learning which is sufficient is not accomplished, it will not
be able to use in anchorperson detection. Also, training many non-anchorperson
model is necessary, and the error of judge of anchorperson is demand the 2nd decision.

6 Conclusion

In this paper, to accomplish real-time video cataloging system, we used histogram of
YUV component. The proposed algorithm was fast and was correct. We also pro-
posed anchorperson model which uses the neural network(ADALINE) in order to
extract anchorperson scene in news video. It is required to research input vector that
represent feature of anchorperson. It will be better if there were a preceding research
for speaker identification system.

Video Cataloging System for Real-Time Scene Change Detection of News Video 715

References

1. T. Sikira. MPEG Digital Video-Coding. In IEEE Signal Processing Magazine, Vol. 14,
82-100. Sep. 1997.

2. Young-Min Kim, Song-Ha Choe, Bon-Woo Hwang and Yoon-Mo Yang. Content-Based
Retrieval of Video. In Korea Information Science Society, Vol. 16, No. 8, 39-47. Aug.
1998.

3. Shin You. A Study on the Video Segmentation for an Education VoD Service System. In
University of Incheon, Korea, Dec. 1999.

4. B. L. Yeo and B. Liu. On the extraction of DC sequence from MPEG compressed video.
In IEEE Proc ICIP, Vol. 12, 260-263. Oct. 1995.

5. P. Arman and H. Zhang. Content-Based Representation and Retrieval of Visual Media:A
State-of-the-Art Review. In Multimedia Tools and Application, Vol. 3, 179-202, Nov.
1996.

6. J. Meng, Y. Juang and S.F. Chang. Scene change detection in a MPEG compressed video
sequene. In Proc SPIE, Vol.2419, 14-25, Feb. 1995.

7. Jun-Il Hong. A Study on the Extraction of Caption and Recognition for Knowledge-Based
Retrieval. In University of Incheon, Korea, Dec. 2001.

8. Boon-Lock Yeo and Bede Liu. Rapid Scene Analysis on Compressed Video. In IEEE
Trans. On Circuit and Systems for Video Technology, Vol. 5, No. 6, 533-544, Dec. 1995.

9. Nilesh V.Patel and Ishwar K.Sethi. Compressed Video Processing for cut Detection. In
IEEE Proc. Video, Image and Signal Processing, Vol. 143, No. 5, 315-522, Oct. 1996.

10. H. Luo and Q. Haung. Automatic Model-based Anchorperson Detection. In Processings of
SPIE on Storage and Retrieval for Media Database, Vol. 4315, 536-544, Oct. 2001.

11. D. Chai and K.N. Ngan. Face Segmentation Using Skin-Color Map in Videophone Appli-
cations. In IEEE Trans. On Circuit and Systems for Video Technlogy, Vol. 9, No. 4, 551-
564, June. 1999.

12. A. Hanjalic, R.L. Lagensijk and J. Biemond. Template-based detection of anchorperson
shots in news programs. In IEEE Proc ICIP, Vol. 3, 148-152. Oct. 1998

Automatic Face Recognition by
Support Vector Machines�

Huaqing Li, Shaoyu Wang, and Feihu Qi

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 20030, P.R. China

{waking lee, wang, fhqi}@sjtu.edu.cn

Abstract. Automatic face recognition, though being a hard problem,
has a wide variety of applications. Support vector machine (SVM), to
which model selection plays a key role, is a powerful technique for pattern
recognition problems. Recently lots of researches have been done on face
recognition by SVMs and satisfying results have been reported. However,
as SVMs model selection details were not given, those results might have
been overestimated. In this paper, we propose a general framework for
investigating automatic face recognition by SVMs, with which different
model selection algorithms as well as other important issues can be ex-
plored. Preliminary experimental results on the ORL face database show
that, with the proposed hybrid model selection algorithm, appropriate
SVMs models can be obtained with satisfying recognition performance.

1 Introduction

Support vector machine (SVM) is considered to be one of the most effective
algorithms for pattern recognition (classification) problems. Generally, it works
as follows for binary problems [11]: First the training examples are mapped,
through a mapping function φ, into a high (even infinite) dimensional feature
spaceH. Then the optimal separating hyperplane inH is searched for to separate
examples of different classes as possible, while maximizing the distance from
either class to the hyperplane. In implementation, the use of kernel functions
avoids the explicit use of mapping functions and makes SVM a practical tool.
However, as different kernel functions lead to different SVMs with probably
quite different performance, it is very important to select appropriate types and
parameters of the kernel function for a given problem.

Automatic face recognition (AFR), being a special case of pattern recogni-
tion, has a wide variety of applications including access control, personal identi-
fication, human-computer interaction, law enforcement, etc. In recent yeas, AFR
has attracted lots of research efforts and a large amount of algorithms have been
proposed in literature [3]. Not surprisingly, exploiting SVMs for face recogni-
tion also has been widely carried out [4–8]. Though excellent performance was

� This work is supported by the National Natural Science Foundation of China (No.
60072029).

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 716–725, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Automatic Face Recognition by Support Vector Machines 717

reported, no details about how the authors have selected the SVMs parame-
ters for their problems were given. Hence the reported results might have been
overestimated. On the other hand, if we have to select a kernel function and its
parameters manually for every given problem, AFR by SVMs becomes semiau-
tomatic. These, together with the inherent difficulty of SVMs model selection,
explain why no commercial face recognition software is based on SVMs [1, 2].

In this paper, we propose a framework for investigating AFR by SVMs, which
is shown in Figure 1. It has the following work flows: In the training phase, im-
ages are preprocessed and features are extracted. Then SVMs hyperparameters
are automatically selected. Finally SVMs models are trained on the training set.
In the testing phase, the same image preprocessing and feature extraction op-
erations are performed on the test images, and those trained SVMs models are
employed for class prediction. The ”user settings” module in the training phase
involves four user-dependant choices: type of kernel function, model selection al-
gorithm, decomposing strategy for multi-class problems and SVMs outputs com-
bining strategy. Note that, this module is for investigating purpose and there is
no need to change the choices from problem to problem in practical use.

Fig. 1. Framework of automatic face recognition by SVMs

This paper focuses on SVMs with the radius basis function (RBF) kernel.
Three model selection algorithms are explored: the cross-validation algorithm,
a gradient-descent based algorithm with the radius/margin bound and a hybrid
algorithm. Their performance is evaluated in terms of the quality of the chosen
SVMs models. Preliminary experimental results on the ORL face database show
that, with the proposed hybrid algorithm, appropriate SVMs models can be cho-
sen to achieve satisfying recognition performance. The rest of the paper is orga-
nized as follows: In Section 2, we briefly review the basic theory of SVMs. Model
selection algorithms are described in Section 3. Section 4 introduces schemes
of using SVMs for multi-class classification problems. Experimental results and
analysis are given in Section 5. Finally, Section 6 concludes the paper.

718 H. Li, S. Wang, and F. Qi

2 SVMs for Pattern Recognition

Given a set of linearly separable training examples {xi, yi}, i = 1, 2, . . . , l, where
xi ∈ Rn is the i-th training vector and yi ∈ {−1, 1} is the corresponding target
label. An SVM searches for the optimal separating hyperplane which separates
the largest possible fraction of examples of the same class on the same side. This
can be formulated as follows:

min
1
2
||w||2 , (1)

s.t. yi(w • xi + b)− 1 ≥ 0 ∀i ,

where w is normal to the hyperplane, b is the threshold, || · || is the Euclidean
norm, • stands for dot product. Introducing Lagrangian multipliers αi, we obtain

min LP =
1
2
||w||2 −

l∑
i=1

αiyi(xi • w + b) +
l∑

i=1

αi . (2)

(2) is a convex quadratic programming problem, we can equally solve the Wolfe
dual

max LD =
l∑

i=1

αi −
1
2

l∑
i=1

l∑
j=1

αiαjyiyj(xi • xj) , (3)

s.t.
l∑

i=1

αiyi = 0 , αi ≥ 0 ∀i ,

with the solution

w =
l∑

i=1

αiyixi . (4)

For a test example x, the classification is f(x) = sign(w • x + b).
The above linearly separable case results in an SVM with hard margin, i.e.

no training errors occur. If the training set is nonlinearly separable, we can first
map, through function φ, the original inputs into a feature space H wherein
the mapped examples are linearly separable. Then we search for the optimal
separating hyperplane in H. The corresponding formulas of (3) and (4) are

max LD =
l∑

i=1

αi −
1
2

l∑
i=1

l∑
j=1

αiαjyiyj(φ(xi) • φ(xj)) . (5)

w =
l∑

i=1

αiyiφ(xi) . (6)

The corresponding classification rule is

f(x) = sign(w • φ(x) + b)
= sign(

∑l
i=1(φ(xi) • φ(x)) + b) .

(7)

Automatic Face Recognition by Support Vector Machines 719

As the only operation involved is dot product, kernel functions can be used
to avoid the use of the mapping function φ via K(xi, xj) = φ(xi) • φ(xj). One
of the most popular kernels is the RBF kernel

K(xi, xj) = exp(−σ||xi − xj ||2) .

If the training set is nonseparable, slack variables ξi have to be introduced.
Then the constraints of (1) are modified as

yi(w • xi + b)− 1 + ξi ≥ 0 ∀i . (8)

Two objectives exist under such cases. One is the L1 soft margin formula:

min
1
2
||w||2 + C

l∑
i=1

ξi , (9)

where C is the penalty parameter. The other is the L2 soft margin formula:

min
1
2
||w||2 +

C

2

l∑
i=1

ξi
2 . (10)

(9) and (10) differ in that (10) can be treated as hard margin cases through
some transformation while (9) can not. Since some theoretical bound (e.g. the
radius/margin bound) based model selection algorithms are applicable only to
SVMs with hard margin, we employ (10) in this paper. The kernel employed
is the RBF kernel. Thereby, there are two parameters to be tuned by model
selection algorithms, the penalty parameter C and the kernel parameter σ.

3 SVMs Model Selection Algorithms

There are mainly two categories of algorithms for SVMs model selection. Algo-
rithms from the first category estimate the prediction error by testing error on
a data set which has not been used for training, while those from the second
category estimate the prediction error by theoretical bounds.

3.1 The Cross Validation Algorithm

At present, the cross validation (CV) algorithm, which falls into the first cate-
gory, is one of the most popular and robust algorithms [13, 14]. The CV algorithm
first divides the original training set into several subsets of nearly the same size.
Then each subset is sequentially used as the validation set while the others are
used as the training set. Finally SVMs performance on all validation sets is
summed to form the cross validation rate.

Generally the CV algorithm employs an exhaustive grid-search strategy in
some predefined parameters ranges. In [12], Chung et al. pointed out that trying
exponentially growing sequences of C and σ is a practical method to identify

720 H. Li, S. Wang, and F. Qi

good parameters for SVMs with the RBF kernel. However, a standard grid-search
is very computational expensive when dealing with even moderate problems.

In [14], Staelin proposed a coarse-to-fine search strategy for the CV algorithm
based on ideas from design of experiments. Experimental results showed that
it is robust and worked effectively and efficiently. The strategy can be briefly
described as follows: Start the search with a very coarse grid covering the whole
search space and iteratively refine both the grid resolution and search boundaries,
keeping the number of samples roughly constant at each iteration. In this paper,
a similar search strategy like this is employed for the CV algorithm.

3.2 The Algorithm with the Radius/Margin Bound

The gradient-descent based algorithm with the radius/margin bound is another
popular algorithm for SVMs model selection [16–18]. The radius/margin bound
is proposed by Vapnik and only suitable for SVMs with no training errors [19].
It is an upper bound on the number of errors of the leave-one-out procedure and
can be expressed as

T =
1
l

R2

γ2 =
1
l
R2||w||2 , (11)

where R is the radius of the minimal sphere which encloses all mapped examples
in H, γ = 1

||w|| is the margin of the optimal separating hyperplane obtained by
an SVM. Note that R can be easily computed [15].

Chapelle et al. argued that the radius/margin bound is differentiable with
respect to the SVMs parameters and gave generalized formulas for computing
the derivatives [16]. Based on their work, the following gradient of SVMs with
the BRF kernel can be obtained [17]:

∂T

∂C
=

1
l

[
∂||w||2
∂C

R2 + ||w||2 ∂R
2

∂C

]
, (12)

∂T

∂σ2 =
1
l

[
∂||w||2
∂σ2 R2 + ||w||2 ∂R

2

∂σ2

]
. (13)

The derivatives of ||w||2 are given by

∂||w||2
∂C

=
1
C2

l∑
i=1

α 2
i , (14)

∂||w||2
∂σ2 = −

l∑
i=1

l∑
j=1

αiαjyiyj
∂K(xi, xj)

∂σ2 . (15)

The derivatives of R2 are given by

∂R2

∂C
= − 1

C2

l∑
i=1

λi(1− λi) , (16)

Automatic Face Recognition by Support Vector Machines 721

∂R2

∂σ2 = −
l∑

i=1

l∑
j=1

λiλj
∂K(xi, xj)

∂σ2 . (17)

and
∂K(xi, xj)

∂σ2 = −K(xi, xj)||xi − xj ||2 . (18)

Hence the gradient of T can be easily obtained once T has been computed.
Here (18) is different from (11) in [17] due to the difference in RBF kernel
formulas.

With this good property of the radius/margin bound, gradient-descent based
algorithms can be employed to obtain good SVMs parameters. In this paper, we
consider the BFGS quasi-Newton method described in [12]. The gradient-descent
based algorithm is very fast and can theoretically obtain the best parameters.
However its practical performance depends on the initialization a lot. An inap-
propriate initialization may leads to very poor parameters.

3.3 The Hybrid Algorithm

To overcome the shortcoming of the gradient-descent based algorithm, we pro-
pose a hybrid algorithm which works as follows: First the CV algorithm is em-
ployed to select the SVMs parameters. Then with these parameters as initials,
the gradient-descent based algorithm is employed to obtain even better parame-
ters. Since the course-to-fine search strategy described in Section 3.1 is employed,
the first step is not very expensive. Such a scheme makes the gradient-descent
based algorithm more stable and can always obtain good parameters. Note that,
this is also mentioned in [14]. However no experiments were performed there.

4 SVMs for Multi-class Classification Problems

As SVM is dedicated to binary classification problems, two popular strategies
have been proposed to apply it to multi-class problems. Suppose we are dealing
with a K-class problem. One scheme can be used is the one-against-rest method
[10], which trains one SVM for each class to distinguish it from all the other
classes. Thus K binary SVMs need be trained. The other scheme is the one-
against-one method [9], which trains K(K − 1)/2 binary SVMs, each of which
discriminate two of the K classes. In this paper, the latter strategy is employed.

Another important issue is to combine the outputs of all binary SVMs to form
the final decision. The most simple method is Max-Voting, which assigns a test
example to the class with the most winning two-class decisions [20]. More sophis-
ticated methods are available, given that each binary SVM outputs probabilities.
Unfortunately, as shown in Section 2, SVMs can not produce such probabilistic
outputs. In [21], Platt suggested to map original SVM outputs to probabilities
by fitting a sigmoid after the SVM:

P (y = 1|x) =
1

1 + exp(Af(x) + B)
. (19)

722 H. Li, S. Wang, and F. Qi

Parameters A and B are found by minimizing the negative log likelihood of
the training data:

min −
l∑

i=1

ti log(pi) + (1− ti) log(1− pi) , (20)

where
pi =

1
1 + exp(Af(xi) + B)

, ti =
yi + 1

2
. (21)

Actually Platt argued more sophisticated method to assign the target proba-
bilities ti. However, empirically we find that when the training set is small, (21)
is more suitable. Care should also be taken when generating the sigmoid training
set (f(xi), yi).

With probabilistic outputs rij = P (i|i or j, x) = 1
1+exp(Afij(x)+B) of SVMs,

some pairwise coupling algorithms can be employed. In [22], Wu et al. proposed
an approach to combine the pairwise probabilities, which are the probabilistic
outputs of all binary SVMs, into a common set of posterior probabilities Pi.
They found the optimal P through solving the following optimization problem:

min
K∑

i=1

∑
j:j �=i

(rjiPi − rijPj)2 , (22)

s.t.
K∑

i=1

Pi = 1 , Pi ≥ 0 ∀i .

Note that (22) can be reformulated as

min 2PTQP ≡ min
1
2
PTQP , (23)

where

Qij =
{∑

s:s �=i r
2

si if i = j ,

−rjirij if i �= j .
(24)

Then P can be obtained by solving the following linear system:[
Q e
eT 0

] [
P
b

]
=
[
0
1

]
. (25)

5 Experimental Results

Experiments are performed on the ORL face database. The database contains 10
different images of 40 distinct subjects. For some of the subjects, the images were
taken at different times, varying lighting slightly, facial expressions (open/closed
eyes, smiling/non-smiling) and facial details (glasses/no-glasses). All the images
were taken against a dark homogeneous background and the subjects are in

Automatic Face Recognition by Support Vector Machines 723

Fig. 2. Example faces of four subjects from ORL, each row corresponds to one subject

up-right, frontal position (with tolerance for some side movement). The original
resolution of the images was 92×112, 8-bit grey levels. Some example faces are
show in Figure 2.

In our experiments, the ORL database is randomly divided into two sets
with equal size. Five images of each subject are used for SVMs training, the rest
five are used for SVMs testing. Feature extraction is done with the Eigenface
algorithm.

LIBSVM [13] is employed for SVMs training. Parameters selection is per-
formed in the log2-space with ranges of log2 C ∈ {−5,−4, . . . , 15} and log2 σ ∈
{−15,−14, . . . , 3}. For the five-fold CV algorithm, the search is done with a res-
olution of five for both parameters, totally five iterations are performed. For the
gradient-descent based algorithm, the initialization is log2 C = 0 and log2 σ = 0.
Note that, the fitting of sigmoid functions has no effect on the gradient-descent
based algorithm. But it makes the CV algorithm more complex.

Experimental results are shown in Table 1, where t-ratio stands for the recog-
nition accuracy achieved on the test set by a trained SVM. The “best” t-ratio
is also obtained through a coarse-to-fine search process but with a finer resolu-
tion of ten for both parameters, wherein recognition accuracies on the test set
are directly used to assess the quality of parameters. Totally ten iterations are
performed, which result in a much more exhaustive search than that of the CV
algorithm.

From Table 1, we can see that the hybrid algorithm can select SVMs models
with the best recognition ratio, which is very close to the “best” t-ratio, in all
cases. While the other two perform comparatively in most cases. The perfor-
mance of the CV algorithm is not surprising, as it is known to be an accurate
method for choosing parameters of any learning algorithm. When 20 eigenfaces
are used for feature extraction, the gradient-descent based algorithm obtains the
poorest SVMs models, which, from another point of view, verifies the importance
of the initialization of the algorithm. As expected, the hybrid algorithm is more
robust and can always obtain good SVMs models. It is interesting to note that
the selected parameters by different algorithms may differ widely even when the
resulted SVMs have the same recognition accuracy (e.g. when 40 features are
used for recognition).

724 H. Li, S. Wang, and F. Qi

Table 1. SVMs model selection results and corresponding face recognition accuracy

the CV the gradient the hybrid
#eigen algorithm algorithm algorithm “best”
faces log2 C log2 σ t-ratio log2 C log2 σ t-ratio log2 C log2 σ t-ratio t-ratio
20 3.27 -0.38 94.5% 5.34 -0.72 94% 0.63 -1.24 95.5% 96.5%
40 4.38 -0.47 95% 9.23 -1.47 95% 6.31 -0.53 95% 95.5%
60 3.45 -1.37 95% 3.46 -1.73 94.5% 2.94 -2.12 96% 96%
80 2.44 -0.87 94% 1.28 -0.03 95.5% 4.25 -2.74 95.5% 96%
100 3.75 -0.09 95.5% 0.76 -1.12 95% 3.72 0.92 95.5% 95.5%

It should be pointed out that the obtained SVMs performance is slightly infe-
rior to those reported in many literatures [6, 8]. This may due to two issues: the
difference in dividing the ORL database and the strategy employed to combine
binary SVMs outputs. In [6], a similar result of 95.13% on the ORL database was
reported, which is about 2-3% lower than those obtained with more sophisticated
combining strategies, which are currently under our investigation.

6 Conclusion

In this paper, we propose a framework for investigating automatic face recogni-
tion by support vector machines. Three model selection algorithms are explored:
the cross-validation algorithm, a gradient-descent based algorithm with the ra-
dius/margin bound and a hybrid algorithm. Their performance is evaluated in
terms of the quality of chosen SVMs models. Preliminary experimental results
on the ORL face database show that, with the proposed hybrid algorithm, nearly
“best” recognition ratio can be achieved.

References

1. http://www.viisage.com/ww/en/pub/viisage products/viisage products fac-
etools.htm

2. http://www.identix.com/products/pro sdks id.html
3. Zhao, W., Chellappa, R., Phillips, P. J., Rosenfeld, A.: Face recognition: A Liter-

ature Survey. ACM Computing Surveys. 35 (2003) 399-458
4. Dai, G., Zhou, C.: Face Recognition Using Support Vector Machines with the

Robust Feature. In: Proc. of IEEE workshop on Robot and Human Interactive
Communication. (2003) 49-53

5. Déniz, O., Castrillón, M., Hernández, M.: Face Recognition Using Independent
Component Analysis and Support Vector Machines. Pattern Recognition Letters.
24 (2003) 2153-2157

6. Li, Z., Tang, S.: Face Recognition Using Improved Pairwise Coupling Support
Vector Machines. In: Proc. of Intl. Conf. on Neural Information Processing. 2
(2002) 876-880

Automatic Face Recognition by Support Vector Machines 725

7. Jonsson, K., Matas, J., Kittler, J., Li, Y.P.: Learning Support Vector Machines
for Face Verification and Recognition. In: Proc. of IEEE Intl. Conf. on Automatic
Face and Gesture Recognition. (2000) 208-213

8. Guo, G., Li S., Kapluk, C.: Face Recognition by Support Vector Machines. In:
Proc. of IEEE Intl. Conf. on Automatic Face and Gesture Recognition. (2000)
196-201

9. Kressel, U.: Pairwise Classification and Support Vector Machines. In: Schölkopf, B.,
Burges, C., Smola, A. (eds.): Advances in Kernel Methods: Support Vector Learn-
ing. MIT Press (1999) 255-268

10. Hsu, C.-W, Lin, C.-J.: A Comparison of Methods for Multi-Class Support Vector
Machines. IEEE Trans. on Neural Networks. 13 (2002) 415-425

11. Burges, C.J.: A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery. 2 (1998) 121–267

12. Chung, K.-M., Kao, W.-C., Sun, T., Wang, L.-L., Lin, C.-J.: Radius Margin Bounds
for Support Vector Machines with the RBF Kernel. Neural Computation. 11 (2003)
2643–2681

13. Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines. (2002)
Online at http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

14. Staelin, C.: Parameter Selection for Support Vector Machines. (2003) Online at
http://www.hpl.hp.com/techreports/2002/HPL-2002-354R1.pdf

15. Li, H.-Q., Wang, S.-Y., Qi, F.-H: Minimal Enclosing Sphere Estimation and Its
Application to SVMs Model Selection. In: Proc. of IEEE Intl. Sympo. on Neural
Networks. (2004) 487-493

16. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S: Choosing Multiple Param-
eters for Support Vector Machines. Machine Learning. 46 (2002) 131-159

17. Keerthi, S.S.: Efficient Tuning of SVM Hyperparameters Using Radius/Margin
Bound and Iterative Algorithms. IEEE Trans. on Neural Networks. 13 (2002)
1225-1229

18. Chung, K.-M., Kao, W.-C., Sun, T., Wang, L.-L., Lin, C.-J.: Radius Margin Bound
for Support Vector Machines with the RBF Kernel. In: Wang, L., Rajapakse, J.C.,
Fukushima, K., Lee, S.Y., Yao, X. (eds.): Proc. of the 9th Intl. Conf. on Neural
Information Processing. 2 (2002) 893-897

19. Vapnik, V.: Statistical Learning Theory. Wiley (1998)
20. Friedman, J.: Another approach to polychotomous classification. Technical report,

Stanford University, (1996)
21. Platt, J.: Probabilistic Outputs for Support Vector Machines and Comparison to

Regularized Likelihood Methods. In: Smola, A.J., Bartlett, P.L., Schölkopf, B.,
Schuurmans, D. (eds.): Advances in Large Margin Classifiers. MIT Press (2000)
61-74

22. Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability Estimates for Multi-Class Classi-
fication by Pairwise Coupling. Journal of Machine Learning Research. 5 (2004)
975-1005

23. Goh, K., Chang, E., Cheng, T.: Support Vector Machine Pairwise Classifiers with
Error Reduction for Image Classification. In: Proc. of ACM Intl. Conf. on Multi-
media (MIR Workshop). (2001) 32-37

Practical Region-Based Matching for Stereo
Vision

Brian McKinnon and Jacky Baltes

Department of Computer Science,
University of Manitoba,

Winnipeg, MB,
Canada R3T 2N2

jacky@cs.umanitoba.ca
http://avocet.cs.umanitoba.ca

Abstract. Using stereo vision in the field of mapping and localization
is an intuitive idea, as demonstrated by the number of animals that have
developed the ability. Though it seems logical to use vision, the problem
is a very difficult one to solve. It requires the ability to identify objects
in the field of view, and classify their relationship to the observer. A
procedure for extracting and matching object data using a stereo vision
system is introduced, and initial results are provided to demonstrate the
potential of this system.

1 Introduction

This paper describes our research into stereo vision for simultaneous localization
and mapping (SLAM). In this paper we present a novel algorithm for matching
stereo images based on regions extracted from a stereo pair. Another notable
feature of our approach is that it is implemented using commodity hardware.

The overall goal of the project is to develop urban search and rescue (USAR)
robots that can generate maps of an unstructured environment given a sequence
of stereo images and find victims within this environment. In our research, we
focus on the use of vision as sole sensor. The use of vision as the sole sensor on
a mobile robot is considered by some to be a radical idea. Today, most work
in SLAM uses LADAR (laser scanners), which provide highly accurate point
clouds in 3D space. The advantage of vision is that cheap commodity hardware
can be used. Furthermore, developing methods for extracting and representing
the necessary information (e.g., ground plane, walls, doors, other objects) is a
wide open problem. The USAR domain adds to this complexity because the
real-time constraints imposed on the mobile robot.

To test our approach, we take part in the NIST sponsored USAR competi-
tions. The NIST domain (see Fig. 1) is a challenging domain for today’s robots
(especially ones using vision) since it includes uneven lighting, glass, mirrors,
and debris.

In this paper, the first stage of the vision-based mapping and localization
system is described. This involves image processing to extract and represent

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 726–738, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Practical Region-Based Matching for Stereo Vision 727

Fig. 1. NIST Reference Test Arenas for Autonomous Mobile Robots at the AAAI 2000
in Austin, Texas, USA

objects in the captured image. Included is a description of the methods currently
being used by other researchers. Additionally, the problem of localization will
be discussed and a variety of systems will be examined, including vision-based
and more traditional distance sensor-based solutions.

2 Related Work

Both region extraction and localization are active areas of research. There are
a wide variety of solutions currently being investigated, many of these yielding
promising results.

The two most important steps in region extraction are identification and rep-
resentation of features in the image. Research is still active in this area, since
current systems encounter environments that cause failure rates to become un-
manageable. Examples of systems currently being studied include [6] [3] and [4].

2.1 Scale Invariant Feature Extraction

In [6] an object recognition system is introduced that has become known as
Scale Invariant Feature Extraction (SIFT). It uses a feature representation that
is invariant to scaling, translation, rotation, and partially invariant to changes
in illumination. The output of this system is a set containing the orientation,
position, relative location, and colour gradient of key features within an image.
Scale invariance is achieved through the use of the Gaussian kernel as described
in [5]. For rotational invariance and efficiency, key locations are selected at the
maxima and minima from the difference of the Gaussian function applied in scale
space. A threshold is applied to the gradient magnitude for robustness. This is
useful since illumination changes may greatly affect the gradient magnitude,
however it should have little impact on the direction. Once a set of keys are
defined for a given object, live images are scanned and objects are selected using
a best-bin-first search method. Bins containing at least three entries for an object
are matched to known objects using a least square regression. Experimental
results show that the system is effective at detecting known objects, even in the

728 B. McKinnon and J. Baltes

presence of occlusion, since only three keys are necessary for a match to occur.
This can be seen in figure 2. Using this method, a localization system has been
implemented in [8].

Fig. 2. Using SIFT the sample objects(above) are searched from in the image(left).
The keys generated are used to match the samples to the image(right). Images are
from [6]

2.2 Blobworld Representation

The Blobworld representation is introduced in [3] as a means of performing im-
age retrieval. Pixels in an image are assigned to a vector containing their colour,
texture, and position. Colours are smoothed to prevent incorrect segmentation
due to textures, and are stored using the L*a*b* colour format. L*a*b* repre-
sentation shown in figure 3 contains three colour channels, L for luminosity, a
for the colour value between red and green, and b for the colour value between
yellow and blue. Texture features that are used include contrast, anisotropy, and
polarity. Contrast is the difference between light and dark area, anistropy in-
dicates the direction of the texture, and polarity measures how uniformly the
texture is oriented. Regions are grouped spatially if they belong to the same
colour/texture cluster. A gradient is generated in the x and y direction, contain-
ing the histogram value of pixels in that region. For matching, the user starts
by selecting blobs from the image that will be used for comparison against the
database. Regions are matched to the database by the quadratic distance be-
tween their histograms’ x and y values. The Euclidean distance for the contrast
and anisotropy texture are also used in the comparison. The best image is se-
lected based on the similarity values for the selected blobs as shown in figure 4.
This method was used as a basis for an optimal region match in [2], however it is
unclear how robustly the method handles translation of the blobs. This system
is not directly usable for localization, since blobs must be selected manually.

Practical Region-Based Matching for Stereo Vision 729

Fig. 3. The L*a*b* colour wheel. Image is from http://www.colorspan.com/
support/tutorials/cmpl/lab.asp

2.3 Wavelet-Based Region Fragmentation

A recent approach to region extraction is known as Wavelet-based Indexing
of Images using Region Fragmentation (WINDSURF) [1]. In this approach the
wavelet transform is employed to extract colour and texture information from an
image. The wavelet transform is similar in principle to a fast Fourier transform
where data is represented using a wave form. A clustering algorithm is used
on the output coefficients from the wavelet transform, producing regions that
contain similar colour and texture waves. By using only the coefficients, regions
are clustered without considering spatial information. This means that images

Fig. 4. This sample output from [3] shows the blobs generated from the sample, and
images containing similar blobs that were retrieved

730 B. McKinnon and J. Baltes

cannot be compared based on the location of the regions, however it allows
matching that is invariant to position and orientation differences. One limitation
in this system is that the region count must be defined, so clustering of dissimilar
regions can occur in the presence of images that contain more features than
expected. The results of the transformation are shown in figure 5 using different
region counts. Image retrieval is achieved by comparing the size, centroid, and
features of regions from the sample image to those in the database images.
Experimental results show that the system is capable of retrieving images which
are semantically correlated to the sample. In the case of figure 6 a match could
consist of images containing similar sized and textured blue and gray regions.

3 Implementation

In order to perform stereo matches we must first process the raw captured im-
ages. The process implemented in this paper consists of 5 steps:

1. Colour Correction
2. Image Blur
3. Edge Detection

Fig. 5. This image shows the results of applying the wavelet transform to sample image,
using region count of 2, 10 and 4 respectively. Images are from [1]

Fig. 6. This shows the results of a sample wavelet query using the dome of St. Peter’s
in Rome. Images are from [1]

Practical Region-Based Matching for Stereo Vision 731

4. Region Extraction
5. Stereo Matching

Each processing stage has an important role in transforming the image. The
result must be an accurate representation of the objects contained in the image.

3.1 Colour Correction

Normalization of the colour channels is necessary to correct imbalances in the
colour response of the two cameras. This is useful in situations where images
are too bright or dark, or if a colour channel is over saturated. This allows more
accurate matches between two separate images. The method used in this system
relies on the mean and standard deviation of the colour channels.

Calculating the mean and standard deviation of an image usually requires at
least two passes through the image. In the first pass, the mean is calculated and
in the second the differences to the mean are summed up. Applying the colour
correction would result in a third pass. It is impossible to perform this much
pre-processing for each image and maintain a reasonable frame rate.

To speed up the computation of colour normalization, we use a pipelined
approach. The key idea here is that mean and standard deviation of the image
sequence are relatively constant over time. Therefore, we use the mean and
standard deviation of previous images. At time t, the mean of the image at time
t − 2 and the standard deviation at time t − 1 is being used. This means that
colour correction has a negligible impact on the runtime.

The colour of each channel is bounded by using the mean as the centre value
and setting the range to a distance of two standard deviations plus and minus
from the mean. This range is then stretched to cover the entire possible range of
the colour channel. Using a distance of two standard deviations allows outliers
to be discarded, which gives a more accurate representation of the true colour
range of the image.

3.2 Image Blur

The blur that is applied to the image is important since raw images are prone
to noise. This noise can be generated by lighting problems, textured surfaces,
or a low quality capture device. The goal is to smooth the image so small in-
consistencies can be ignored by the edge detection. There are many methods of
applying a blur to an image. The simplest method, which was implemented in
the original version of the application, transformed the centre pixel to contain
the average colour of the surrounding neighbourhood. The primary advantage
of this method was simplicity, but it also operated very quickly on an image.

The Gaussian blur is an improved method that provides smoothness and
circular symmetry [9]. One feature that a Gaussian blur provides over simple
blurring is the ability to repeat small areas of blur to generate large areas. The
values used in a Gaussian blur are generally based on the binomial coefficients,
or Pascal’s triangle. To apply a blur of N = k, coefficients are selected such that
i + j = k. For example, to apply a 3x4 filter, k = 5 is selected, and then the

732 B. McKinnon and J. Baltes

Fig. 7. The normalization process helps balance the colours in the image by stretching
the colour range of pixels

coefficients at a depth of 2 and 3 are used. Depth 2 corresponds to the set {1 2
1}, and 3 corresponds to {1 3 3 1}. One set is applied to the image horizontally,
and the second is applied vertically to the result of the first. The result stored
in each pixel is normalized, with a division by the sum of the two coefficients.

3.3 Edge Detection

Edge detection is an essential component in the object extraction process. It
allows boundaries to form, which provides assistance in the region growing pro-
cess. For this, a Sobel edge detection is implemented, since it is simple, robust,
and versatile. It involves applying convolution masks across the entire image.
The Sobel edge masks used in the horizontal and vertical direction respectively
are: ⎛⎝−1 0 1

−2 0 2
−1 0 1

⎞⎠ and

⎛⎝−1 −2 −1
0 0 0
1 2 1

⎞⎠
The results of each mask are normalized with a division by four. The value

from these transformations are tested against a threshold, that once exceeded
indicates the presence of an edge. The edge pixels are stored within an edge map
used in the region extraction.

Practical Region-Based Matching for Stereo Vision 733

Fig. 8. The product of applying a Gaussian blur on the raw image

3.4 Region Extraction

The region growing method that has been explored uses a stack-based growth
that identifies matching pixels based on the colour channels match with the
previously accepted pixels. The image is scanned linearly for pixels that have not
been detected as edges and have not been previously examined. When a pixel is
found, it is set as the start point for the region growing, and is pushed on to the
stack to become the examined pixel. The neighbouring pixels to the top, bottom,
left, and right are considered for addition to the region provided they have not
been identified as edge pixels. Colour match is calculated by using the sum of
squared error across all the colour channels (RGB). If the resulting value falls
below a defined threshold then the match is considered to be acceptable. Initially,
the neighbouring pixels are added to the region based on an acceptable colour
match with only the examined pixel. Once a threshold size has been reached,
neighbours are added based on the colour match with the mean colour value of
all pixels in that region. Each time a pixel is accepted, it is pushed onto the stack
and the process is repeated. Termination occurs once no pixels are acceptable
matches with the current region. If the region has reached a threshold size then
it is added to the list of identified regions. Regions below the threshold size are
rejected, and each pixel is marked as previously examined to prevent additional
small regions from being generated at a starting pointing in this area.

The threshold value for the colour match is very small, and as a result a
single object in the image could be separated into several small regions. There
is no restriction on a new regions ability to expand into another region, and this

734 B. McKinnon and J. Baltes

Fig. 9. The result of applying a Sobel edge detection to the blurred image

overlap is used as the basis for merging regions into objects. Neighbouring regions
are combined if the overlap exceeds a threshold of either a percentage of the pixels
in the region (generally used to merge smaller regions), or a threshold number
of pixels (used for matching larger regions). This method of overlap merging
the objects, allows either shadow or glare to be joined properly without setting
the colour match threshold to an excessively high value.

Once completed, the objects are defined by:

1. Size (in pixels),
2. Mean colour value,
3. Centroid x and y,
4. Bounding box,and
5. Region pixel map (i.e., mapping from pixels to associated regions)

These objects are then used as the feature points in the stereo matching
process.

3.5 Stereo Matching

Once an image has been segmented, the shape of the object is used to identify
matches between the stereo images. Objects from the two images are superim-
posed onto each other at the centroid, and the size of the union between the two
is calculated. The union size is calculated by identifying pixels that are contained
in both images. If a minimum percentage of pixels overlap, then the two objects
are identified as a stereo pair. Though it is possible for an object to produce

Practical Region-Based Matching for Stereo Vision 735

Fig. 10. Shown here is the resulting set of regions. Red dots indicate the centroid,
and the colour represents the average colour of the region

more than a single stereo pair, only the strongest match is considered. The dis-
placement between the objects is calculated, and will later be used to determine
the distance to the object. Before a match of stereo regions is considered, it must
appear over a series of images. This is useful when attempting to ignore noisy
and incorrect matches.

Currently, the matching is done uncalibrated, so no consideration is given to
the intrinsic or extrinsic properties of the camera. Therefore, matches can occur
even in the presence of unreasonable displacement in the vertical direction. This
does increase the number of incorrect matches, however, a substantial number
of the matches are still correct. Since there are still many correct matches, it
may be possible to calibrate stereo cameras with no human interaction even in
the presence of a significant alignment difference between the two cameras. Once
calibrated the accuracy of the matching should increase dramatically.

4 Experiments

This system has been implemented and tested using an unmodified area in the
Computer Science department at the University of Manitoba. The robot used in
this project, named Spike, is a one-sixth scale model of a Pt Cruiser with rear
wheel drive. The radio controller has been modified to allow the vehicle to be
controlled through the parallel port on any standard PC. The micro-controller
is a C3 Eden VIA Mini-ITX running at 533MHz, with a 256Mb flash card. We
developed our own mini version of the Debian Linux distribution refined for use

736 B. McKinnon and J. Baltes

Fig. 11. Matching regions are bounded by a coloured box, with a line going from
the centroid to the centre of the image. Pink crosses indicate the presence of a strong
match

Fig. 12. Spike, the mobile robot used for this experiment

on systems with reduced hard drive space. The vision hardware consists of two
USB cameras capable of capturing 320 by 240 pixel images. The cameras are
mounted on a servo that allows the stereo rig to pan in a range of plus or minus
forty-five degrees.

In figure 13 we demonstrate the matching ability of this system. The raw im-
age has been segmented into 21 objects for the right image, and 25 objects for the
left image. In this sample, seven stereo pairs have been generated, as indicated
by the coloured boxs surrounding the matched pairs. Over the compete runtime
in this sample, nine pairs were selected as strong stereo pairs, as indicated by

Practical Region-Based Matching for Stereo Vision 737

Fig. 13. Demonstration of matching in an unknown environment

the pink crosses on the resulting image. Five of these are both correct, and the
regions appropriately represent the object in the image. Two of the matches are
spatially correct, however these two should be represented as one. The system
still has some difficulty when bright glares are reflected from smooth surfaces.
The remaining two objects have been matched incorrectly.

Currently, the complete system runs at 0.5 frames per second. We are cur-
rently investigating methods for speeding up this process. In particular, the
matching of regions is computationally expensive because the stereo system is
uncalibrated at the moment. Therefore, regions must be compared against all
other regions. By adding at least a rough calibration, most of these compar-
isons can be avoided, since for example, matching regions must have similar Y
coordinates.

5 Conclusion

This paper presented the initial steps taken in the development of a vision-based
autonomous robot. With the region-based object extraction and stereo match-
ing implemented the ground work is laid for the development of the remaining
components. These include 3D scene interpretation, mapping, localization, and
autonomous control.

With the ability to extract objects from an image, and generate stereo pairs
from a set of images, the next step will involve the development of a camera cal-
ibration system. The goal is to design a self-calibrating system that can produce
the Fundamental Matrix without human interaction [7]. The Fundamental Ma-

738 B. McKinnon and J. Baltes

trix allows the object matching search to be constrained to a single line, rather
than the entire image. This will improve the run-time and accuracy of the stereo
pair matching process.

Once a set of stereo pairs can be generated, the next step is to calculate the
distance to the objects. This is done by measuring the disparity, or horizontal
offset, of the object as observed in each image. Once the set of objects have
a distance associated with them, they can be used to generate a map. Once a
mapping system is developed, localization and path planning can be added. The
research presented in this paper represents a core component in the development
of a fully autonomous robot, that is able to view its environment, interpret the
images into a 3D model, and given this information is able to create a map of
its surroundings and localize itself within this environment.

References

1. Stefania Ardizzoni, Ilaria Bartolini, and Marco Patella. Windsurf: Region-based
image retrieval using wavelets. In DEXA Workshop, pages 167–173, 1999.

2. Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. A sound algorithm for region-
based image retrieval using an index. In DEXA Workshop, pages 930–934, 2000.

3. Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and Jitendra
Malik. Blobworld: A system for region-based image indexing and retrieval. In Third
International Conference on Visual Information Systems. Springer, 1999.

4. Hiroshi Ishikawa and Ian H. Jermyn. Region extraction from multiple images. In
Eigth IEEE International Conference on Computer Vision, July 2001.

5. Tony Lindeberg. Scale-space: A framework for handling image structures at multiple
scales. In Egmond aan Zee, editor, Proc. CERN School of Computing,, September
1996.

6. David G. Lowe. Object recognition from local scale-invariant features. In Proc. of
the International Conference on Computer Vision ICCV, Corfu, pages 1150–1157,
1999.

7. Quang-Tuan Luong and Olivier Faugeras. The fundamental matrix: theory, al-
gorithms, and stability analysis. The International Journal of Computer Vision,
17(1):43–76, 1996.

8. Stephen Se, David Lowe, and Jim Little. Mobile robot localization and mapping
with uncertainty using scale-invariant visual landmarks. I. J. Robotic Res, 21:735–
760, 2002.

9. F. Waltz and J. Miller. An effecient algorithm for gaussian blur using finite-state
machines. In SPIE Conf. on Machine Vision Systems for Inspection and Metrology
VII, 1998.

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 739–749, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Video Program Clustering Indexing Based on Face
Recognition Hybrid Model of Hidden Markov

Model and Support Vector Machine*

Yuehua Wan1, Shiming Ji1, Yi Xie2, Xian Zhang1, and Peijun Xie1

1 Zhejiang University of Technology, 310032, Hangzhou, P.R.China
(Wanyuehua, jishiming)@zjut.edu.cn

2 Hangzhou University of Commerce, 310035, Hangzhou, P.R.China
xieyi@mail.hzic.edu.cn

Abstract. Human face is a very important semantic cue in video program.
Therefore, this paper presents to implement video program content indexing based
on Gaussian clustering after face recognition through Support Vector Machine
(SVM) and Hidden Markov Model (HMM) hybrid model. The task consists of
following steps: first, SVM and HMM hybrid model is used to recognize human
face by Independent basis feature of face apparatus; then, the recognized faces are
clustered for video content indexing by Mixture Gaussian. From the experiments,
the precision of the mixed model for face recognition is 97.8 percent, and the recall
is 95.2, which is higher than the complexion model. And the precision of the face
clustering indexing is 94.6 percent of the mixed model for compere new program.
The indexing result of clustering is famous.

1 Introduction

The information is expressed in the style of multimedia in digital libraries. And the
readers acquire knowledge from the text, figure, image, video and audio. How to find
the needed information from the great deal data of multimedia has become a hot
research topic in the field of multimedia indexing based on content [1-4]. In the
multimedia indexing technology based on content of digital library, the video flow
information must be accurate sorted and indexed firstly, i.e. structured [5]. The main
idea is to achieve the aim of sorting, identifying and indexing the multimedia
information by using vision characteristics or hearing characteristics or fusing those
two characteristics [6].

To sorting and indexing the video flow may based on different semantics levels.
One is the advanced semantics level, which is the high abstract result of some video
and audio multimedia event occurring in different time and palace. Two is
intermediate semantics level, which is the description of single event, not deal with

* This work is supported by Zhejiang Provincial Natural Science Foundation of China; Grant

Number: M503099.

740 Y. Wan et al.

some events’ intersection. The last is elementary semantics level, which is to sort
multimedia data basically using seeing or hearing information. To indexing
multimedia data using semantic realizes the courses of multimedia data from no
structure to be structured, and organizes data flow efficiently. It makes indexing
facility.

The traditional method of sorting video only uses the basic characteristic of seeing
and hearing, not considers the vision object composed of those characteristics, i.e.
face. In fact, face is the familiar object of vision program, and it contains a lot of
semantics information. The indexing aim of video content is achieved by picking-up
the important characters of face first, then identifying the characters, processing the
clustering indexing of the identify result lastly.

Because Support Vector Machine (SVM) has the better sorting ability and the
divert probability of Hidden Markov Model (HMM)’s every state can restrict the
topology of face’s every apparatus, this paper brings forward a new method that SVM
and HMM may be used to identify the face’s apparatus, and cluster the recognized
faces for video content indexing.

2 The Video Face Identifying Based on SVM and HMM

The essence of face identifying is the matching problem of conversion 3D mold
object to 2D projection. Its difficult consists of the face pattern diversity and
ambiguity in the process of acquiring image. This requests the right rate high in the
process of identifying, though the face sample is a few.

This paper divides a face into five parts: forehand, eyes, nose, mouth and chin,
then seeks the independent basis feature of those apparatus and constructs the SVM to
identify those apparatus. In order to use the topology restriction, this paper uses HMM
containing five states to restrict the identify result, and forms the mixed model of
video face identifying based on SVM and HMM (Fig.1).

Fig. 1. The mixed model of video face identifying based on SVM and HMM

In Fig.1, the located square area which a face may be in is transformed into a
50*70 gray image (shown in the top right of Fig.1b), then the gray image is scanned

Video Program Clustering Indexing Based on Face Recognition Hybrid Model 741

from below to top using 10*70 image and every apparatus of face can be found (eyes
area found by scan is shown in the middle of Fig.1b). Moreover, every apparatus is
transformed into a 25*30 gray image (the transformed image of eyes area is shown in
the below of Fig.1b). The training face samples may be transacted also. This gains the
transformed images of every apparatus. Then the independent basis feature can be
sought. Five SVM are created through training those independent basis features.
Gaussian model used in HMM is replaced by the created SVM. And HMM is
reconstructed which transfers from left to right and has five states. Those five states in
HMM are corresponding to five face apparatus. The five states and transfer
probability between those states forms the develop restriction to face every apparatus.
The issues of the mixed model construction, face identifying based on the mixed
model and face-clustering indexing are discussed below.

2.1 The Mixed Identifying Model of Face Based on SVM and HMM

SVM brought forward by Vapink is a statistic learning theory based on Structural Risk
Minimization (SRM) [7-8]. It can be used to analyze the sort and regression problems.
The decision-making hyperplane is formed based on SVM theory, which makes the
most sort margin between every data. For linearity impartibility data, SVM mapped
the data of lower dimension space to multi - dimension space according the Cover
theory [9]. The nucleus function of SVM has three kinds mostly: the polynomial
function, the radial basis function and multilayer sigmoidal NN function. In this paper,
the sigmoidal NN function is used. In the case of lower dimension impartibility data,
for each unknown demanded distinguish sample u, the best hyperplane sort function f
is calculated:

 bxuky ii +=
=

),(af(u)
s

1i
i (1)

Where, ia is the Lagrange operator corresponding to support vector ix , iy is
the sort label of support vector ix (the value is 1or -1). S is sum of support vector;
K is the nucleus function, and the sign of f(x) shows the different sorts.

Because HMM has stability math foundation and can simulate dynamic variety of
data better, it is used in the field of face identifying proverbially [10-11]. In order to
combine SVM and HMM, the method is to replace the Gaussian of HMM by SVM.
So the output value of SVM must be a probability. But the standard SVM doesn’t
create probability (the output data of SVM is a distance, not probability). The problem
was solved by Platt [12]. He trained SVM ic first, then using the sigmoid nucleus
function, he calculated the probability of the unknown data u (the unknown data is
independent basis feature of apparatus) relative to ic :

B)exp(Ax1

1
u) |p(ci ++
= (2)

Where, A and B is the parameter of sigmoid function.

742 Y. Wan et al.

So, the mixed model of SVM and HMM may be expressed by the five
elements array)b,a,M,(Q,= [13]. Where, Q equal 5, expressing the state total
number of (denoting every apparatus of the face); M equal 1, which means for
each state there is one SVR corresponding to the face apparatus basis feature which
had been adopted; a is a N*N matrix, expressing the state diverting probability in

(the probability from one face apparatus shift to another). There is only the diverting
probability which state shifts from the left to right, other one is zero. The effect of the
diverting probability is to restrict the develop distributing of face apparatus; b is a
Q*M matrix, which means the probability of the observed event turns to some state.

{ })k(bb j= ,where []jq |voP)k(b tktj === (Mk1),expresses the

probability that the observed event to equal kv ,when the current state is j . The

value is calculated by formular2; { }i= ,where []iqP 1i == (Qi1),

expresses in one random process serial, the probability that the first state is state
(the probability is promised equal in the experiment).

2.2 The Face Identifying Based on Mixed Model

Sid face training samples that needed to be identified are collected. To each sample,

the basis features are picked-up and trained. Then the SVR, which is used to

identify those apparatus, may be acquired (when training, the face which doesn’t

belong to some body is a counter example). Through Baum-Welch expect arithmetic,

the corresponding diverting probability parameters are calculated in HMM, and the

mixed model iSid (Sidi1), which is token some face is created, Sid is the

faces’ sort. For face block, which is located through random complexion model, the

forward operator is used to calculate the appearance probability

)block |P(Sidi that the face block relative to the mixed model iSid .

From Bayesian, ,
))P(SidSid|P(block

))P(SidSid|P(block
block)|P(Sid

Sidi1
ii

ii
i = where

)Sid|P(block i is the probability of block appearing for each

iSid ;)P(Sidi is the prior probability of each model appearing. Over here,

the probability of each model appearing is thought to be equal; also because

to each),Sid|P(block i
i

ii))P(SidSid|P(block is equal. Therefore

Video Program Clustering Indexing Based on Face Recognition Hybrid Model 743

block)|P(Sidi ~),Sid|P(block i and then)Sid|P(block i is calculated

through forward operator. Seeing about the size relationship

of block),|P(Sidi through select the iSid making the)Sid|P(block i

most, so the block)|P(Sidi is the most also, then the block is identified to

be face iSid .

2.3 The Clustering Indexing of Face Characteristic

For the face video frame identified by the mixed model, the video contents they
contain must be indexed. The identified similarity faces are mustered together by
clustering operator. So the significative video scene is formed.

When face clustering, we use all the identified face apparatus to buildup an integer

eigenvector, then put up the Gaussian clustering by three Gaussian model. The

parameter of Gaussian mixed model is acquires by EM operator [14]. Supposed the

identified face total number is nFace , and the parameter in the mixed model

{ }i= (3i1). Eigenvector dnFacex = consists of all the basis frame of

the identified face‘s forehand, eyes, nose, mouth and chin. Three row vectors selected

random from x is the clustering center. The new parameter i of each clustering

subset is calculated by k average operator, such as the clustering center, prior

probability, mean, covariance and posterior probability.

Actually the EM operator consists of parameter estimation and maximum

likelihood operator. When the step 1k + iterativeness is calculated, the estimation

of mixed model parameter i is counted by the fellow formula:

[] [][]

[]
[] [][]

=

+ =
3

1l

1-k

l

k
lj

Tk
lj

2/1-k

l

1-k

i

k
ij

Tk
ij

2/1-k

i

1][k
ij

2

)u-x()u-(x
-exp

2

)u-x()u-(x
-exp

)|P(x (3)

744 Y. Wan et al.

[]

[]
=

=+ = nFace

1j

k
ij

nFace

1j j
k

ij1k
i

)|P(x

x)|P(x
u (4)

[] [] []

[]
[]+

=

==
1k

i nFace

1j

k
ij

nFace

1j

Tk
ij

k
ij

k
ij

)|P(x

)u-x)(u-x()|P(x
 (5)

[]
[]

nFace

)|P(x
)P(

nFace

1j

k
ij1k

i
=+ = (6)

[] =+1k
iCenter []

j

nFace

1j

k
ij x)|P(x

=
 (7)

The hereinbefore formula express the posterior probability. []1k
ij)|P(x + ,

mean []1k
iu + , covariance

[]+1k

i
, prior probability 1][k

i)P(+ and clustering

center []1k
iCenter + which is corresponding to each Gaussian model, when the

estimation is in step 1k + on condition that the step k parameters are acquired.

In step 1k + , the parameter of maximum likelihood method may be predigested

as follow inequality:

[] [] <+)|P(x-)|P(x 1kk (8)

If formula (8) is right, the iterativeness will stop. Then for each row of x (they are

corresponding to each identified face),)|P(x ij is calculated. Finally each jx is

classified to Gaussian distributing i , which is corresponding to the most)|P(x ij . In

this way, all the identified faces are clustering to three types, and the clustering result of

face is used to indexing video content.

3 The Experiments and Data Analyses

3.1 The Face Basis Characters’ Picked-Up

In the experiments, VC and Matlab are used to process simulating. The face database
which is used in the face identification is the Olivetti Research Laboratory database of

Video Program Clustering Indexing Based on Face Recognition Hybrid Model 745

AT&T laboratory in Cambridge College. The face database has 400 gray face images
came from 40 men in differ complexion, race and sex (each men has 10 photographs),
and the image is photographed in different time and different illumination. The pose
and expression aren’t ilk, and some face is little deflexion.

While identifying the face, we find that it is difficult to distinguish the chin and
mouth. So to the 50*70 face block, the block of chin (mouth), nose, eyes and forehand
is picked-up separately from underside to top according to width of 14 pixels, 8 pixels,
10 pixels and 18 pixels. Upon that the corresponding mixed model has four states only.
Then those blocks are transformed to 25*30 images and the characteristic ICA is
picked-up. In the experiment, to each body six faces are selected to form the
training database, the other is testing face. Eight face bases ICA and each apparatus
basis ICA are shown in Fig.2 that is acquired from 60 face-training samples.

Fig. 2. The basis ICA space (from top the downside it is face, forehand, eyes, nose and mouth
(chin))

If all the training and testing samples are looked upon the face space, the eight
face basis in the first line of Fig.2 are used to express the every face in training and
testing samples. Also the eight forehand bases in the second line of Fig.2 are used to
express the every forehand of the forehand space that is formed by all the samples.
The other face apparatus is expressed by the same method. The denote method is
coefficient ICA which is formed by those bases.

3.2 The Face Identifying of Mixed Model

In order to carry through the contrast experiment, ICA frames are picked-up from
each body’s six training samples in training database and the mixed model is trained.
Furthermore, PCA and ICA frame are picked-up also to train SVM sorter. The
identifying efficiency result of those two models is shown in table 1. Table 1is the
average right ratio of the 40 identified faces (for each body the testing faces number is
four). When training, the opposite samples of each identified template aren’t belong to
this body’s sample.

746 Y. Wan et al.

From table 1, we can see the identified result of mixed model is famous in
condition that the ICA dimension is proper. The reason for identifying error is that
eight percent face in the face database isn’t the full frontal face.

Table 1. The different basis frame and identifying ratio of sorting model

The dimension

of frame

The face characteristic +

identifying method

The identifying

ratio (%)

PCA face characteristic +SVM 23.3

ICA face characteristic +SVM 26.8

8

ICA apparetus face characteristic

+mixed model
25

PCA face characteristic +SVM 75.6

ICA face characteristic +SVM 83.7

20

ICA apparetus face characteristic

+mixed model

85.4

PCA face characteristic +SVM 82.7

ICA face characteristic +SVM 91.1

36

ICA apparetus face characteristic

+mixed model

93

Nefian[15] presented the inline HMM to identify face. Each face apparatus is
identified by the inline HMM in which every state is corresponding to Gaussian
distributing. And the restriction is realized by a super inline HMM. But the training of
inline HMM will take long time, and the repeat training will lead of model complex.
The identifying ratio will fall also. Its identifying ratio is 86 percent only, under this
paper’s ratio. In the textual mixed model, the least frame risk characteristic of SVR
and the restriction of inline HMM to face apparatus make the identifying ratio high in
small training samples.

3.3 The Face Clustering Semantic Indexing

From ATT face database 2 samples are selected of each body, 20 faces is acquired.
The mixed model for face identifying is created by picking-up and training the ICA
frame of face.

We first choose the compere new program, conversation program and other video
program. Each program lasts 2minutes and the sampling frequency is 5 frames per
second. Then we apply the trained mixed model to identify the possible face block
which is located by complexion model. 952 faces are gained. Finally to the ICA frame
of those apparatus, the Gaussian clustering based on three mixed model is progressed.

Video Program Clustering Indexing Based on Face Recognition Hybrid Model 747

According to the clustering result, the indexing is:(1) If the face in some video flow
belong to one great kind mostly, the segment is to be indexed as “the compere new
program”; (2) If the mainly face belong to other side great kind mostly and subsection
belong to one small kind, the segment is to be indexed as “the conversation program
program”; (3) The rest is indexed as the other.

(a) the compere program (b) the conversation program (c) the other program

Fig. 3. The semantic indexing based on Gaussian clustering of mixed face model

Table 2. The face block locating, face identifying and clustering result

(a) The locating result of face block (b) The clustering indexing result of face

 and face identifying result

The indexing result is shown in Fig. 3. The compere faces are clustered to one
great sort and indexed as the compere new program. To the conversation program,
because the cover face and other face belong to different sort, the program is
indexed as conversation program. The rest program is indexed as other program.

The result of complexion locating, identifying based on mixed model and
clustering indexing is shown in table 2(a). From table 2, we can see, though the
precision of impossible face block locating isn’t high, the veracity of identifying is
famous. Besides, even some faces block isn’t be located, the clustering result isn’t too
affected considering the space-time relativity of video flow. From the clustering
indexing of 952 faces, we can see the precision is high.

 Precision Recall Precision Recall

The identified result of

complexion model
92.3% 88.7%

 the compere new

program
94.6% 89%

The identified result of

mixed model
97.8% 95.2%

 conversation

program
91% 83%

 Other program 83% 70%

748 Y. Wan et al.

4 Conclusions

Because the face delegates some semantic, the indexing of video content is
realized by clustering different face. The precision of using SVR and HMM to
index face is high. Then we realized the video content indexing by clustering the
identified data.

The content for face recognition is extensive. At present, the method usually aims
for some types of problems, and the theory and relevance technology aren’t maturity.
There are lots of problems to be researched.

1. The face’s direction affects the identifying precision mostly. How to acquire the
higher precision to the face that is decline or covered half is always challenge,
almost in video programs the gesture and direction is variability.

2. How to acquire much more content indexing according the identifying result is
another problem to be resolved.

3. The face is only a medium containing semantics in multimedia data flow. How
to combinative the face and other medium containing semantics, especially the
audio information turning up with the face together, is the ultimate aim.

4. At present, the method for face recognition in complex background aims for
obverse and modesty face’s recognition mostly. There are lots of difficult to
identify the flank face. Researches in this field are emphasis in the future.

5. Due to the complication of face recognition, that there is an available method
isn’t realistic. So resolving the issue for face recognition in the condition of
particular restriction or some practical background is the main topic in face
recognition field in future.

References

1. He Limin, Wan Yuehua. Key techniques of content-based image retrieval in digital library.
The Journal of the Library Science in China,2002,28(6),26-36

2. He Limin, Wan Yuehua. Key techniques of content-based video retrieval in digital library.
The Journal of the Library Science in China,2003,29(2):52-56

3. Petkovic, M. et al. Content-based video indexing for the support of digital library search.
In: Proceedings 18th International Conference on Data Engineering,2002,494-495

4. Lin, Wei-Hao. Hauptmann, Alexander G. A wearable digital library of personal
conversations. In:Proceedings of the ACM International Conference on Digital Libraries,
2002, 277-278

5. Lyu, Michael R; Yau, Edward; Sze, Sam. A multilingual, multimodal digital video library
system. In: Proceedings of the ACM International Conference on Digital Libraries, 2002,
145-153

6. Y. Wang, Z. Liu and J. Huang. Multimedia content analysis using audio and visual
information. IEEE Signal Processing Magazine,2000,17(6):12-36

7. Boser BE, Guyon IM. et al. A training algorithm for optimal margin classifiers. In:
Proceedings of the fifth annual workshop on Computational learning theory, 1992,
144-152

Video Program Clustering Indexing Based on Face Recognition Hybrid Model 749

8. Guo, Guodong, Li, Stan Z. Content-based audio classification and retrieval by support
vector machines. IEEE Transactions on Neural Networks, 2003, 14(1):209-215

9. T. M. Cover. Geometrical and statistical properties of systems and linear inequalities with
applications in pattern recognition. IEEE Trans. on Electronic Computers,
1965,19:326-334

10. Wallhoff, F. et al. A comparison of discrete and continuous output modeling techniques for
a Pseudo-2D Hidden Markov Model face recognition system. In: IEEE International
Conference on Image Processing, 2001, 2:685-688

11. Jin Hui, Gao Wen. Analysis And Recognition Of Facial Expression Image Sequences
Based On Hmm, Acta Automatica Sinica,2002,28(4):646-650

12. Platt,J.C., Probabilistic Outputs for Support Vector Machines for Pattern Recognition,
U.Fayyad, Editor, 1999, Kluwer Academic Publishers: Boston

13. L.R.Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE,1989,77(2):257-286

14. Dempster, A., Laird, N., Rubin, D. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, 1977,39(Series B):1-38

15. A.V. Nefian, and M.H.Hayes. Hidden Markov Models for Face Recognition. In: IEEE
International Conference on Acoustics, Speech and Signal Processing, 1998, 5:2721-2724

 R. Klette and J. Žuni (Eds.): IWCIA 2004, LNCS 3322, pp. 750–757, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Texture Feature Extraction and Selection for
Classification of Images in a Sequence

Khin Win1, Sung Baik1, Ran Baik2, Sung Ahn3, Sang Kim1, and Yung Jo1

1 College of Electronics and Information Engineering,
Sejong University, Seoul, Korea

{kkwin, sbaik, sue9868, joyungki}@sejong.ac.kr
2 Dept. of Computer Engineering,

Honam University, Gwangju, Korea
baik@honam.ac.kr

3 School of Management Information System,
Kookmin University, Seoul, Korea

sahn@kookmin.ac.kr

Abstract. This paper presents texture feature extraction and selection methods
for on-line pattern classification evaluation. Feature selection for texture analy-
sis plays a vital role in the field of image recognition. Despite many approaches
done previously, this research is entirely different from them since it comes
from the fundamental ideas of feature selection for image retrieval.. The pro-
posed approach is capable of selecting the best features without recourse to
classification and segmentation procedures. In this approach, probability den-
sity function estimation and a modified Bhattacharyya distance method are ap-
plied for clustering texture features of images in sequences and for comparing
multi-distributed clusters with one another, respectively.

1 Introduction

Beyond the thriving of digital images, new challenges have arisen as difficult issues
to get the robust characterization and efficient extraction of features from various na-
tures of texture images for classification and segmentation. Ongoing approaches of
image recognition rely on color, texture, shape, and object spatial relations. However,
the difficult issue of image analysis is an investigation of very similar pattern dis-
crimination techniques. It is difficult to discriminate those images digitally by a ma-
chine vision. In general, the five major categories to identify the image are statistical,
geometrical, structural, model-based and signal processing [1]. The most recently
used methods in signal processing are the Fourier, Gabor and Wavelet transform.
Unlike the Fourier transform, wavelets have both scale aspect and time aspects. The
major advantage of the Wavelet transform is the ability to perform local analysis
whereas a serious drawback of the Fourier transform is a loss of time information in
the frequency domain, that is, it has no spatial extent. It is trivial if the signal proper-
ties do not change much over time but in the real world the nature of signals can be
found such as complex, sometimes self-similarity and fractal characteristics. And so,

Texture Feature Extraction and Selection for Classification of Images in a Sequence 751

triviality becomes nontrivial and the Fourier analysis could not address such cases.
Wavelet transform overcomes these problems with its local extent property. The use
of wavelets has developed in many fields for analyzing, synthesizing, de-noising, and
compressing signals and images. The discrete wavelet transform (DWT) is a simple
and intuitive method to discriminate the similar images.

In this paper, we describe feature extraction methods to characterize the very simi-
lar patterns with the support of the DWT, Gabor and Laws’ filters. A feature selection
method has been applied to a sequence of images. Since feature selection is a complex
problem, we need to form the criteria to measure and compare the class separability of
feature sets. Then, we have to choose the robust feature values from each feature set
by using the selection criteria, and build up the most reliable feature vector based on
these selected feature values. So we made many comparisons and used several statis-
tical parameters to obtain the best feature values from each feature set. Experiments
have conducted with texture images in a sequence (See Fig. 1) used in the previous
research for the adaptive texture recognition [2]. In each image, four different texture
areas in a scene are divided into two groups (areas A & D and B & C). Each group
consists of two classes of similar texture. The similarities of texture areas within the
same group are considered more difficult for classification.

Fig. 1. A sequence of 22 texture images with four classes (In the first image, label A, B, C, and
D represent different texture class areas)

2 Texture Feature Extractions

Each image is processed to extract texture features by using the most popular texture
feature extraction methods, which are 1) Gabor spectral filtering [3], 2) Laws’ energy
filtering [4,5], and 3) Wavelet transform. Those methods have been widely used by
researchers and perform very well for various classification and image segmentation
tasks. The Wavelet transform has rich information such as scale, spatial, and fre-

Image #1

Image #10 & #11

Image #22

B

D

A

C

752 K. Win et al.

quency to represent texture features and is a robust and an efficient method, rich in
functions and abilities for image processing. A pyramidal wavelet transform is a sim-
ple but reliable method to get the better performance. The Mother wavelet is formed
by the Daubechies wavelet (db1, db2, db3) and the biorthogonal wavelet (bior1.3,
bior2.4, bior3.7, bior4.4, bior5.5). An input image is decomposed into four sub-
images at one, two and three scale.

In a pyramidal wavelet transform, an image is decomposed into four sub-images
namely approximation (A), horizontal (H), vertical (V) and diagonal (D) at initial
scale (one scale), and for the next scale decompositions, each approximation compo-
nent is divided into four sub-images continually and goes down to desired scales (lev-
els). All of these wavelet sub-images are called wavelet coefficients. Channel
variances can be computed from each sub-image, and are used as texture features [6].
We can obtain 3n+1 sub-images for ‘n’ levels decompositions. Previous paper states
that it can be computed as the subsequent procedures [7].

The most significant information for texture images appears only in middle
frequency regions (horizontal and vertical frequency regions) [8]. For this reason, cur-
rent work selects the horizontal and vertical sub-images for texture images and
discards the unimportant frequency channels like diagonal and approximation. In ad-
dition, the performance of the wavelet transform procedures on input images at differ-
ent level decompositions with several experimental learning and testing shows that
strong discriminative power can be obtained from the horizontal and vertical sub-
images. For this reason, the horizontal and vertical components at level one are se-
lectable to discriminate the texture feature in a current scheme. This implies that the
low frequency region may not necessarily contain significant information. The notice-
able point to use the Daubechies wavelet is that the greater number of wavelet func-
tion (e.g. ‘db16’) can cause instability due to the nature of the wavelet translational
invariant. Thus, the decomposition level (scale) and selection of sub-images (chan-
nels) are determined by the needs and nature of original texture images.

3 Texture Features Selection

Choosing the best feature set is one of the fundamental problems in texture classifica-
tion and segmentation. The basic goals of feature selection are to identify which fea-
tures are important in discriminating among texture classes and to choose the best
subset of features for classification and segmentation.

Basically, the two quantitative approaches to the evaluation (selection) of image fea-
tures are prototype performance and figure-of-merit [9]. In the prototype approach, a
prototype image is classified by a classification procedure using various image features
to be evaluated. The classification is then measured for each feature set. The best feature
set provides the results in the least classification error. The problem of this approach is
that the performance depends not only on the quality of features but also on the classifi-
cation or segmentation ability of the classifier. The figure-of-merit approach uses some
functional distance measurements between sets of image features. For example, a large
distance implies a low classification error, and vice versa. The Bhattacharyya distance is
a scalar function of the probability densities of features of a pair of classes.

Texture Feature Extraction and Selection for Classification of Images in a Sequence 753

In this work, the fundamental idea to select the best performance feature set de-
pends on two main factors; 1) probability density function estimation and 2) Bhat-
tacharyya distance, by the concept of which new criteria for feature selection are in-
vented. The following are the detailed observations and discussions of selection and
comparisons between different feature sets.

3.1 Probability Density Function Estimation (PDF)

A popular method used to observe the mixture distributions is probability density
function estimation. The basic idea is that the density functions are used as the model
of mixture distributions and class conditional density functions are used as the learn-
ing weights after applying the winning mechanism. The parameters of PDF are appli-
cable to feature selection rules to discriminate the mixture distributions for each
feature image.

The probability density function estimation yields significant information such as
mean vectors, covariance matrices, mixing weights and the number of nodes for each
mixture. The mixing weights less than 2% are discarded in principle [10]. Conse-
quently, we can form a new feature set selection criterion by using these parameters
and Bhattacharyya distance together..

3.2 Bhattacharyya Distance

Bhattacharyya distance is to measure the similarity between two distributions
(groups) [7]. It can be expressed as:

21

21

2
1

12

1
21

128
1 2

ln)(
2

)(

+

+= MMMM Tμ (2)

where μ = Bhattacharyya distance, M = mean vectors, = covariance matrices.
number node=i (Note: there are four nodes in each class)

iAM = mean vectors of class A ,

iA = variance matrices of class A ,

iBM = mean vectors of class B ,

iB = variance matrices of class B .
We have to calculate the Bhattacharyya distances for two kinds of distributions; 1)

normal distribution and 2) mixture distributions. In normal distribution, the Bhat-
tacharyya distance is proportional to the Mahalanobis distance between the means of
classes [11], while histogram representation contains only one mean and its related
variance matrix. So far, the Bhattacharyya distance is well-suited for normal distribu-
tion with one mean and one variance. In mixture distributions, we modified the Bhat-
tacharyya distance in order to measure the similarity between two classes with several
distributions. The modified Bhattacharyya distance (See Fig. 2) is called Average
Bhattacharyya Distance.

We can write out the mathematical expression for our proposed distance between
two class distributions (e.g., class A and class B) by the following steps. First, we
measure the individual distance between two nodes of class A and class B as follows:

754 K. Win et al.

Fig. 2. Mixture distributions between class A and class B

BjAi

BjAi

AiBj
BjAiT

AiBj
BA

ji MMMMd

,,

,,

2
1

,,

1
,,

,,8
1,

,

2
ln)(

2
)(

+

+= (3)

where
BA

jid ,
, = Bhattacharyya distance between class A at node i and class B at node j ,

 , ji = node index in class A and class B , respectively,

BjM , , Bj, = mean and covariance of class B at node j ,

AiM , , Ai, = mean and covariance of class A at node i .
Second, we calculate the influence of each node,

)(,
,, ji

BA
ji

W
ji wwdd = (4)

where
W

jid , = Weighted Bhattacharyya distance of class A and class B ,

ji ww , = mixing weight at node i and j respectively,
)02.0.,.(1, =gethww ji for each node.

Hence, the Average Bhattacharyya distance of two class distributions can be ex-
pressed as:

= =

=
n

i

m

j

W
ji

BA
avg d

nm
d

1 1
,

, 1
 (5)

where mn, = number of nodes in class A and class B , respectively.

3.3 Selection Criteria

Criteria for feature selection are considered in the following cases to discriminate
several classes within each individual image, and to deal with a sequence of images
with regard to the given class.

Texture Feature Extraction and Selection for Classification of Images in a Sequence 755

(1) Class Sensitivity: It concerns the difference of the same class between two con-

secutive images. The difference shows changes occurred due to different resolu-
tion or perceptual condition between these two images.

(2) Class Range: It indicates the similarity of the two mean values between different
classes in each image and their class variances.

(3) Class Separability: It determines the separability of different classes according to
the values of the Average Bhattacharyya distances. The high value of Average
Bhattacharyya distances refers to strong separability.

The class measurement for these cases is as follows:

)5.,.(21, =+ gethdifM Cl
ii (6)

)3.0.,.(3
1, =
+

gethBD
ii ClCl (7)

where

)02.0.,.(4 weightmixing with
2

minmax =
+

geth
)N(N

N i
ClCl

Cl
i ,

Cl
iidifM 1, + = the difference of average mean values for same classes between two con-

secutive images (each mean value corresponds to each distribution of a class),

1, +ii ClClBD = Average Bhattacharyya distance between same classes between two con-
secutive images,

1', +ii ClClBD = Average Bhattacharyya distance between different classes between two
consecutive images,

Cl
iN = number of nodes for each class, and

Cl, Cl’ = class types (e.g. Cl= class A, Cl’= Class B).

4 Experimentation

Twenty two texture images in a sequence presented in Fig. 1 are used for experi-
ments, in which we evaluate the performance of different feature extraction methods:
1) Gabor filter bank, 2) Laws’ energy filter bank, and 3) Wavelet transform filter
bank. The Wavelet bank has 24 wavelet filters. The Gabor and Laws’ banks consist of
16 Gabor filters (8 orientations and 2 scales in the frequency domain) and 25 filters,
respectively. The first step of each experiment is to locally select the best eight filters
from each individual filter bank. The second step is to compare three feature sets ob-
tained by those filters with each other and to finally select the best eight features for
the efficient classification of images in a sequence.

According to feature selection rules, we tried to select the best feature set 1) to
separate all classes immediately within each image, and 2) to strongly separate be-
tween some classes of images in a sequence by observing the graphical representation
of mean value variations of each class for images in a sequence.

Table 1 presents the description of the eight features finally selected through sev-
eral experiments. In particular, it is indisputable that the Wavelet transform is a prefer-
able method to clearly discriminate the class A and D in each image whereas the Laws’
energy filtering is very good to separate class B and C. Also, the Gabor filtering has

756 K. Win et al.

strong discrimination on individual class separability in general and is also good in the
class sensitivity. Therefore, the feature selection makes very good effects on the classi-
fication of images in a sequence when these eight features are well combined.

Table 1. Eight selected features and their specifications

Feature Set Specification

Frequency, Angle 22 , 45˚

Frequency, Angle 22 , 135˚ Gabor

Frequency, Angle 24 , 0˚
E5S5 E5 = [-1 -2 0 2 1] S5 = [-1 0 2 0 -1]

S5E5 S5 = [-1 0 2 0 -1] E5 = [-1 -2 0 2 1] Laws’

L5E5 L5 = [1 4 6 4 1] E5 = [-1 -2 0 2 1]
Wavelet Function bior1 1.3

Decomposition Level 3
Wavelet Function db2 3

Wavelet

Decomposition Level 3

Fig. 3. The change of mean values of features obtained by one of Gabor filters over a sequence
of images (‘*’ and ‘o’ marks indicates class A and C, respectively.)

According to the results of several experiments, the performance of each feature
extraction is summarized as follows:

1 Biorthogonal.
2 Daubechies.

Texture Feature Extraction and Selection for Classification of Images in a Sequence 757

• Most of Wavelet filters are suitable to characterize the class A and D region in each
image.

• E5S5, E5E5 and L5E5 of Laws’ filters are well-suited to separate individual class
discrimination for class B and class C.

• Some of Gabor filters provide smooth changes (with some patterns) of mean values
of all classes over a sequence of images. In particular, class A and C are well sepa-
rate along all images except image 16 as presented in Fig. 3.

References

1. T. Randen, Filtering for Texture Classification: A Comparative Study, IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol.. 21, No.. 4, April, 1999

2. S. W. Baik and P. Pachowicz, On-Line Model Modification Methodology for Adaptive
Texture Recognition, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 32, Is-
sue. 7, 2002

3. M. Farrokhnia and A. Jain, A multi-channel filtering approach to texture segmentation,
Proceedings of IEEE Computer Vision and Pattern Recognition Conference, pp. 346-370,
1990

4. M. Chantler, The effect of variation in illuminant direction on texture classification, Ph D
Thesis, Dept. Computing and Electrical Engineering, Heriot-Watt University, 1994

5. K. Laws, Textured image segmentation, Ph.D. Thesis. Dept. of Electrical Engineering,
University of Southern California, Los Angeles, 1980

6. C.. C. Chen, Filtering Methods for Texture Discrimination, Pattern Recognition Letters,
Vol.. 20, pp. 783-790, 1999

7. O. Pichler, A. Teuner and B. J. Hosticka, A Comparison of Texture Feature Extraction us-
ing Adaptive Gabor Filtering, Pyramidal and Tree Structured Wavelet Transforms, El-
sevier Science on Pattern Recognition, Vol. 29, No.. 5, pp.. 733-742, 1996

8. T. Chang, Texture Analysis and Classification with Tree-Structured Wavelet Transform,
IEEE Trans. on Image Processing, Vol.. 2, No.. 4, pp. 429-441, October, 1993

9. K. P. William, Digital Image Processing, John Wiley & Sons, Inc, New York, NY 10158-
0012, 2001

10. H. Yin and N. M. Allinson, Self-Organizing Mixture Networks for Probability Density
Modelling, Neural Networks Proceedings, The IEEE World Congress on Computational
Intelligence, Vol. 3, pp.. 2277-2281, May, 1998

11. B. Huet and E. R. Hancock, Cartographic Indexing into a Database of Remotely Sensed
Images, Depart of Computer Science, University of York, Y01 5DD, UK

Author Index

Ahn, Sung 750
Alayrangues, Sylvie 122
Asano, Tetsuo 197

Baik, Ran 750
Baik, Sung 750
Bailey, Donald G. 394
Baltes, Jacky 726
Batenburg, K.J. 23
Bishnu, Arijit 197
Bodini, Olivier 137
Boukhriss, Isameddine 409
Borgefors, Gunilla 88
Brimkov, Valentin E. 276

Chalechale, Abdolah 474
Chassery, Jean-Marc 458
Chen, Qiuxiao 621
Choi, Jae-Gark 597
Ciria, J.C. 291
Cyganek, Bogus�law 534

Daragon, Xavier 122
Darbon, Jérôme 548
Dare, V.R. 209
Delmas, P. 690
De Miguel, A. 291
Dersanambika, K.S. 52
Domı́nguez, E. 291
Dupont, Florent 458

Fanany, Mohamad Ivan 65
Flach, Boris 631
Fourey, Sébastien 307
Francés, A.R. 291
Frosini, Andrea 1

Gau, Chyi-Jou 318
Gnanasekaran, S. 209

Haala, Norbert 607
Haxhimusa, Yll 77
Hirota, Kaoru 151
Hornegger, Joachim 38
Huang, Yuman 421

Huxley, Martin N. 219
Hwang, Sunghyun 656

Imiya, Atsushi 88, 432

Jamet, Damien 232
Jeon, Seokhee 705
Jeon, Young-Joon 597
Ji, Shiming 739
Jo, Yung 750
Jung, Junghoon 488

Kabir, Ehsanollah 639
Kang, Hyunchul 646, 705
Kang, Jinyoung 656
Kangarloo, Kaveh 639
Kawamoto, Kazuhiko 151
Ki, Hyunjong 488
Kim, Chungkyue 646
Kim, Hyoki 705
Kim, Haksoo 646
Kim, Jim-Il 597
Kim, Kiman 656
Kim, Sang 750
Kim, Yongkyn 705
Kingston, Andrew 110
Kiselman, Christer O. 443
Kith, Kimcheng 679
Klette, Gisela 164
Klette, Reinhard 276, 421, 502, 512, 583
Kobayashi, Kiichi 65
Kong, T. Young 318
Kopperman, Ralph 334
Krithivasan, K. 52
Kovalevsky, Vladimir 176, 366
Kropatsch, Walter G. 77
Kumazawa, Itsuo 65

Lachaud, Jacques-Olivier 122
Leclercq, Ph. 690
Lee, Byeong Rae 646
Lee, Jinsung 705
Lee, Seongwon 488, 656
Lee, Wanjoo 705
Li, Fajie 502

760 Author Index

Li, Huaqing 716
Liang, Xuefeng 197
Lienhardt, Pascal 122
Linh, Troung Kieu 88
Liu, J. 690
Lovell, Brian C. 558
Luo, Jiancheng 621

Marji, Majed 512
Martin-Vide, C. 52
McKinnon, Brian 726
McKinnon, David N.R. 558
Melin, Erik 351
Miguet, Serge 409
Ming, Dongping 621

Naghdy, Golshah 474
Nagy, Benedek 98
Nakamura, Akira 260
Nakamura, Kiwamu 432
Nivat, Maurice 1
Nouvel, Bertrand 137, 248

Paik, Joonki 488, 656
Palenstijn, W.J. 23
Pan, Mian 164
Park, Kyungsoo 646
Perwass, Christian 568
Pfaltz, John 334
Pizlo, Zygmunt 77
Premaratne, Prashan 474

Qi, Feihu 716
Quintero, A. 291

Rémila, Eric 248
Reulke, Ralf 607
Rosenhahn, Bodo 583

Saito, Masahiko 432
Sara, Radim 631
Schnörr, Christoph 38
Schüle, Thomas 38
Schulz, Henrik 176
Shin, Jeongho 488, 656
Sigelle, Marc 548
Sivignon, Isabelle 458
Siy, Pepe 512
Stelldinger, Peer 522
Subramanian, K.G. 52
Strand, Robin 88
Svalbe, Imants 110

Tougne, Laure 409

Wan, Yuehua 739
Wang, Shaoyu 716
Weber, Stefan 38
Win, Khin 750
Woo, Young W. 669
Woodward, A. 690

Xie, Peijun 739
Xie, Yi 739

Zahzah, El-hadi 679
Zhang, Xian 739
Zhou, Chenghu 621
Žunić, Jovǐsa 219

	Frontmatter
	Discrete Tomography
	Binary Matrices Under the Microscope: A Tomographical Problem
	On the Reconstruction of Crystals Through Discrete Tomography
	Binary Tomography by Iterating Linear Programs from Noisy Projections

	Combinatorics and Computational Models
	Hexagonal Pattern Languages
	A Combinatorial Transparent Surface Modeling from Polarization Images
	Integral Trees: Subtree Depth and Diameter
	Supercover of Non-square and Non-cubic Grids
	Calculating Distance with Neighborhood Sequences in the Hexagonal Grid
	On Correcting the Unevenness of Angle Distributions Arising from Integer Ratios Lying in Restricted Portions of the Farey Plane

	Combinatorial Algorithms
	Equivalence Between Regular {\itshape n}-{\itshape G}-Maps and {\itshape n}-Surfaces
	Z-Tilings of Polyominoes and Standard Basis
	Curve Tracking by Hypothesis Propagation and Voting-Based Verification
	3D Topological Thinning by Identifying Non-simple Voxels
	Convex Hulls in a 3-Dimensional Space
	A Near-linear Time Algorithm for Binarization of Fingerprint Images Using Distance Transform

	Combinatorial Mathematics
	On Recognizable Infinite Array Languages
	On the Number of Digitizations of a Disc Depending on Its Position
	On the Language of Standard Discrete Planes and Surfaces
	Characterization of Bijective Discretized Rotations

	Digital Topology
	Magnification in Digital Topology
	Curves, Hypersurfaces, and Good Pairs of Adjacency Relations
	A Maximum Set of (26,6)-Connected Digital Surfaces
	Simple Points and Generic Axiomatized Digital Surface-Structures
	Minimal Non-simple Sets in 4-Dimensional Binary Images with (8,80)-Adjacency
	Jordan Surfaces in Discrete Antimatroid Topologies
	How to Find a Khalimsky-Continuous Approximation of a Real-Valued Function

	Digital Geometry
	Algorithms in Digital Geometry Based on Cellular Topology
	An Efficient Euclidean Distance Transform
	Two-Dimensional Discrete Morphing
	A Comparison of Property Estimators in Stereology and Digital Geometry
	Thinning by Curvature Flow
	Convex Functions on Discrete Sets
	Discrete Surfaces Segmentation into Discrete Planes

	Approximation of Digital Sets by Curves and Surfaces
	Sketch-Based Shape Retrieval Using Length and Curvature of 2D Digital Contours
	Surface Smoothing for Enhancement of 3D Data Using Curvature-Based Adaptive Regularization
	Minimum-Length Polygon of a Simple Cube-Curve in 3D Space
	Corner Detection and Curve Partitioning Using Arc-Chord Distance
	Shape Preserving Sampling and Reconstruction of Grayscale Images

	Algebraic Approaches
	Comparison of Nonparametric Transformations and Bit Vector Matching for Stereo Correlation
	Exact Optimization of Discrete Constrained Total Variation Minimization Problems
	Tensor Algebra: A Combinatorial Approach to the Projective Geometry of Figures
	Junction and Corner Detection Through the Extraction and Analysis of Line Segments
	Geometric Algebra for Pose Estimation and Surface Morphing in Human Motion Estimation

	Fuzzy Image Analysis
	A Study on Supervised Classification of Remote Sensing Satellite Image by Bayesian Algorithm Using Average Fuzzy Intracluster Distance
	Tree Species Recognition with Fuzzy Texture Parameters

	Image Segmentation
	Fast Segmentation of High-Resolution Satellite Images Using Watershed Transform Combined with an Efficient Region Merging Approach
	Joint Non-rigid Motion Estimation and Segmentation
	Sequential Probabilistic Grass Field Segmentation of Soccer Video Images
	Adaptive Local Binarization Method for Recognition of Vehicle License Plates
	Blur Identification and Image Restoration Based on Evolutionary Multiple Object Segmentation for Digital Auto-focusing
	Performance Evaluation of Binarizations of Scanned Insect Footprints

	Matching and Recognition
	2D Shape Recognition Using Discrete Wavelet Descriptor Under Similitude Transform
	Which Stereo Matching Algorithm for Accurate 3D Face Creation ?
	Video Cataloging System for Real-Time Scene Change Detection of News Video
	Automatic Face Recognition by Support Vector Machines
	Practical Region-Based Matching for Stereo Vision
	Video Program Clustering Indexing Based on Face Recognition Hybrid Model of Hidden Markov Model and Support Vector Machine
	Texture Feature Extraction and Selection for Classification of Images in a Sequence

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

